CMSC 132:. Object-Oriented
Programming ||

Inheritance

Mustang vs Model T

Ford Mustang

Ford Model T

Interior: Mustang vs Model T

Frame: Mustang vs Model T

Mustang

Model T

Compaq: old and new

Price: US$3590

Weight: 28 pounds

CPU: Intel 8088, 4.77MHz
RAM: 128K, 640K max

Inheritance

* Classes can be derived from other classes, thereby
inheriting fields and methods from those classes.

* A class that is derived from another class is called a
subclass (also a derived class, extended class, or
child class).

* The class from which the subclass is derived is
called a superclass (also a base class or a parent
class).

* Derived (Child) class can be base (parent) class

Inheritance

Motivation: In real life objects have a hierarchical structure:

/ ShTe \

Circle Triangle Rectangle

Right -Triangle Equilateral - Square
Triangle

Inheritance

» Define a general class
» Later, define specialized classes based on
the general class

» These specialized classes inherit properties
from the general class

Person

\

Student Employee

N N

Undergrad Grad Faculty Staff

Inheritance

-

Student

Undergrad

Person

\

Employee

Grad

Faculty

Person: name, address, phone, emall
Student: college, major, gpa
Employee: Salary, dateHired, office
Faculty: rank, officeHours

Staff: title

AN

Staff

Undergrad: freshman,sophomore, junior, or senior)
Grad: advisor, level (ms or phd)

Inheritance cont.

» What are some properties of a Person?
* name, height, weight, age

» How about a Student?
* |ID, major, gpa

» Does a Student have a name, height, weight,
and age?
* Student inherits these properties from Person

10

Is-a relationship

» This inheritance relationship is known as an is-a
relationship

» A Grad student is a Student
» A Student is a Person.

» |s a Person a Student? — Not necessarily!

11

Why inheritance is useful

» Enables you to define shared properties and
actions once

» Derived classes can perform the same actions
as base classes without having to redefine the
actions

» |f desired, the actions can be redefined —
method overriding

12

Person Class

public class Person {
private String name;
public Person() {
name = "noname'";
}
public Person (String name) {
this.name = name;
}
public void setName (String newName) {
name = newName;
}
public String getName () {
return name;

} -name
@Override
public String toString() { +Person()

return "Name:"+name; +Person(String name):void

} +setName(String name) : void

+getName() : String

13

Student Class

public class Student extends Person{
private int id;
public Student() {
id = 0;
}
public Student (String name, int id) {
super (name) ;
this.id = id;
}
public void setID(int idNumber) {
id = idNumber;
}
public int getID() {
return id;
}
@Override
public String toString() {
return "Id:"+ id +"\tName:" +
getName () ;

-name

+Person()

+Person(String name):void
+setName(String name) : void
+getName() : String

-id

+Student()

+Student(String name, int id) : void
+setID(int id) : void

+getlD(): int

+toString() : String

14

Dissecting the Student Class

* Extends: To specify that Student is a derived class (subclass) of Person
we add the descriptor “extends” to the class definition:

public class Student extends Person {

* Notice that a Student class
* Inherits everything from the Person class

* A Student IS-A Person (wherever a Person is needed, we can use a
Student).

15

Super()

* super(): When initializing a new Student object, we need to initialize its
base class (or superclass). This is done by calling super(...). For
example, super(name) invokes the constructor Person(name)

* super(...) must be the first statement of your constructor

* If you do not call super(), Java will automatically invoke the base
class’s default constructor

e \What if the base class’s default constructor is undefined? Error
* You must use “super(...)", not “Person(...)".

16

Memory Layout and Initialization Order

* When you create a new derived class object:

e Java allocates space for both the base class instance variables and
the derived class variables

 Java initializes the base class variables first, and then initializes the
derived class variables

« Example:
Person ted = new Person("Ted Goodman™);
Student bob = new Student("Bob Goodstudent™, 100);

ted —*| | name —> Ted Goodman
name —» Bob Goodstudent
bob——»]
ld — 100

17

Inheritance

Inheritance: Since Student is derived from Person, a Student object
can invoke any of the Person methods, it inherits them

Student bob = new Student ("Bob Goodstudent", 100) ;
String bobsName = bob.getName())
bob.setName ("Robert Goodstudent") ;

System.out.println("Bob's new info: " +
bob.toString())

18

Inheritance

» A Student “is a” Person:

* By inheritance a Student object is also a Person object. We can
use a Student reference anywhere that a Person reference is
needed

Person robert = bob; I/l Okay: A Student is a Person

* We cannot reverse this. (A Person need not be a
Student.)

Student bob2 robert; Il Error! Cannot convert Person to Student

19

Overriding Methods

* New Methods: A derived class can define entirely new
instance variables and new methods (e.g. gpa and

getGpa())
* Overriding: A derived class can also redefine existing
methods

public class Person {

The derived class can
redefine this method.

public String toString() { .. }
}

public class Student extends Person {

public String toString() { .. }

}
Student bob = new Student("Bob Goodstudent", 100);

System.out.println("Bob's info: " + bob);

Since bob i1s of type Student,
this invokes the Student toString()

20

Overriding and Overloading

* Don’t confuse method overriding with method overloading.

Overriding: occurs when a derived class defines a method with the same
name and parameters as the base class.

Overloading: occurs when two or more methods have the same name, but
have different parameters (different signature).

Example: The base class defines
a method setName ()

public class Person ({

public void setName (String n) { name = n; }

} Overriding: Same name and
public class Faculty extends Person { pargmgtgrs; different
public void setName (String n) ({ definition.

super.setName (“"The Evil Professor ” + n);

}

public void setName (String first, String last) {
super.setName (first + “ ” + last);

} Overloading: Same name, but
} different parameters.

21

Quiz 1: Output of following program

class Test {
int 1i;
}
class Main {
public static void main(String args[]) {
Test t;
System.out.println(t.1i);

A. 0

B. garbage value
C. compiler error
D. runtime error

22

Quiz 1: Output of following program

class Test {
int 1i;

}

class Main {

public static void main(String args[]) {
Test tg

System.out.println(t.1i);
}
}
A. 0

B. garbage value

C. compiler error: variable not initialized.
D. runtime error

23

Quiz 2: Output of following program

class Test {
int 1i;
}
class Main {
public static void main(String args[]) {
Test t = null;
System.out.println(t.1i);

A. 0

B. garbage value
C. compiler error
D. runtime error

Quiz 2: Output of following program

class Test {
int 1i;
}
class Main {
public static void main(String args[]) {
Test t = null;
System.out.println(t.1i);

A. O

B. garbage value

C. compiler error

D. runtime error: Null pointer exception

Quiz 3: Output of following program

class Base({
void display() {System.out.print(”Base ") ;}

}
class Child extends Base({

volid display () {System.out.print(“Child ") ;}
}
Base b= new Base() ;
Child ¢ = new Child ()
Base ref = b;

ref.display () ; A. Compilation error
ref = c; B. Base Child
ref.display() ; C. Child Base

D. Runtime error

26

Quiz 3: Output of following program

class Base({
void display () {System.out.print(”Base ") ;}

}
class Child extends Base({

volid display () {System.out.print(“Child ") ;}
}
Base b= new Base() ;
Child ¢ = new Child ()
Base ref = b;

ref.display(); A. Compilation error

ref = c; B. Base Child
ref.display() ; C. Child Base

D. Runtime error

27

