
CMSC 132: Object-Oriented
Programming II

Inheritance

1

Mustang vs Model T

2

Ford Mustang

Ford Model T

Interior: Mustang vs Model T

3

Frame: Mustang vs Model T

4

Mustang

Model T

Compaq: old and new

5

Price: US$3590
Weight: 28 pounds
CPU: Intel 8088, 4.77MHz
RAM: 128K, 640K max

Inheritance
• Classes can be derived from other classes, thereby

inheriting fields and methods from those classes.
• A class that is derived from another class is called a

subclass (also a derived class, extended class, or
child class).

• The class from which the subclass is derived is
called a superclass (also a base class or a parent
class).

• Derived (Child) class can be base (parent) class

6

Inheritance

7

Shape

Circle RectangleTriangle

Right -Triangle Equilateral -
Triangle

Motivation: In real life objects have a hierarchical structure:

Square

Inheritance
Define a general class
Later, define specialized classes based on
the general class
These specialized classes inherit properties
from the general class

8

Person

Student Employee

Faculty StaffUndergrad Grad

Inheritance

9

Person

Student Employee

Faculty StaffUndergrad Grad

Person: name, address, phone, email
Student: college, major, gpa
Employee: Salary, dateHired, office
Faculty: rank, officeHours
Staff: title
Undergrad: freshman,sophomore, junior, or senior)
Grad: advisor, level (ms or phd)

Inheritance cont.

What are some properties of a Person?
• name, height, weight, age

How about a Student?
• ID, major, gpa

Does a Student have a name, height, weight,
and age?
• Student inherits these properties from Person

10

is-a relationship
This inheritance relationship is known as an is-a
relationship

A Grad student is a Student
A Student is a Person.

Is a Person a Student? – Not necessarily!

11

Why inheritance is useful

Enables you to define shared properties and
actions once

Derived classes can perform the same actions
as base classes without having to redefine the
actions

If desired, the actions can be redefined –
method overriding

12

Person Class
public class Person {

private String name;
public Person(){
name = "noname";

}
public Person(String name){
this.name = name;

}
public void setName(String newName){

name = newName;
}
public String getName(){

return name;
}
@Override
public String toString(){

return "Name:"+name;
}

}

13

Person

-name
+Person()
+Person(String name):void
+setName(String name) : void
+getName() : String

Student Class
public class Student extends Person{
private int id;
public Student() {
id = 0;

}
public Student(String name, int id) {

super(name);
this.id = id;

}
public void setID(int idNumber) {

id = idNumber;
}
public int getID(){

return id;
}
@Override
public String toString(){

return "Id:"+ id +"\tName:" +
getName();

}
} 14

Person

-name
+Person()
+Person(String name):void
+setName(String name) : void
+getName() : String

Student

-id

+Student()
+Student(String name, int id) : void
+setID(int id) : void
+getID(): int
+toString() : String

Dissecting the Student Class

• Extends: To specify that Student is a derived class (subclass) of Person

we add the descriptor “extends” to the class definition:

public class Student extends Person {
…
}

• Notice that a Student class

• Inherits everything from the Person class

• A Student IS-A Person (wherever a Person is needed, we can use a

Student).

15

Super()
• super(): When initializing a new Student object, we need to initialize its

base class (or superclass). This is done by calling super(…). For
example, super(name) invokes the constructor Person(name)
• super(…) must be the first statement of your constructor

• If you do not call super(), Java will automatically invoke the base
class’s default constructor

• What if the base class’s default constructor is undefined? Error
• You must use “super(…)”, not “Person(…)”.

16

Memory Layout and Initialization Order
• When you create a new derived class object:

• Java allocates space for both the base class instance variables and
the derived class variables

• Java initializes the base class variables first, and then initializes the
derived class variables

• Example:
Person ted = new Person("Ted Goodman");
Student bob = new Student("Bob Goodstudent", 100);

17

name Ted Goodman

Bob Goodstudent

100

ted

name

idbob

Inheritance
• Inheritance: Since Student is derived from Person, a Student object

can invoke any of the Person methods, it inherits them

18

Student bob = new Student("Bob Goodstudent", 100);

String bobsName = bob.getName());

bob.setName("Robert Goodstudent");

System.out.println("Bob's new info: " +
bob.toString());

Inheritance
A Student “is a” Person:

• By inheritance a Student object is also a Person object. We can
use a Student reference anywhere that a Person reference is
needed

Person robert = bob; // Okay: A Student is a Person

• We cannot reverse this. (A Person need not be a
Student.)

Student bob2 = robert; // Error! Cannot convert Person to Student

19

Overriding Methods
• New Methods: A derived class can define entirely new

instance variables and new methods (e.g. gpa and
getGpa())

• Overriding: A derived class can also redefine existing
methods

public class Person {
…
public String toString() { … }

}
public class Student extends Person {

…
public String toString() { … }

}
Student bob = new Student("Bob Goodstudent", 100);
System.out.println("Bob's info: " + bob);

20

The derived class can
redefine this method.

Since bob is of type Student,
this invokes the Student toString()

Overriding and Overloading
• Don’t confuse method overriding with method overloading.

Overriding: occurs when a derived class defines a method with the same
name and parameters as the base class.

Overloading: occurs when two or more methods have the same name, but
have different parameters (different signature).

Example:
public class Person {

public void setName(String n) { name = n; }
…

}
public class Faculty extends Person {

public void setName(String n) {
super.setName(“The Evil Professor ” + n);

}
public void setName(String first, String last) {

super.setName(first + “ ” + last);
}

}
21

The base class defines
a method setName()

Overriding: Same name and
parameters; different
definition.

Overloading: Same name, but
different parameters.

Quiz 1: Output of following program
class Test {

int i;
}
class Main {

public static void main(String args[]){
Test t;
System.out.println(t.i);

}
}

22

A. 0
B. garbage value
C. compiler error
D. runtime error

Quiz 1: Output of following program
class Test {

int i;
}
class Main {

public static void main(String args[]){
Test t;
System.out.println(t.i);

}
}

23

A. 0
B. garbage value
C. compiler error: variable not initialized.
D. runtime error

Quiz 2: Output of following program
class Test {

int i;
}
class Main {

public static void main(String args[]){
Test t = null;
System.out.println(t.i);

}
}

24

A. 0
B. garbage value
C. compiler error
D. runtime error

Quiz 2: Output of following program
class Test {

int i;
}
class Main {

public static void main(String args[]){
Test t = null;
System.out.println(t.i);

}
}

25

A. 0
B. garbage value
C. compiler error
D. runtime error: Null pointer exception

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}
}
class Child extends Base{

void display(){System.out.print(”Child ");}
}
Base b= new Base();
Child c = new Child ();
Base ref = b;
ref.display();
ref = c;
ref.display();

26

A. Compilation error
B. Base Child
C. Child Base
D. Runtime error

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}
}
class Child extends Base{

void display(){System.out.print(”Child ");}
}
Base b= new Base();
Child c = new Child ();
Base ref = b;
ref.display();
ref = c;
ref.display();

27

A. Compilation error
B. Base Child
C. Child Base
D. Runtime error

