
CMSC 132: Object-Oriented
Programming II

Threads in Java

1

Problem
Multiple tasks for computer
• Draw & display images on screen
• Check keyboard & mouse input
• Send & receive data on network
• Read & write files to disk
• Perform useful computation (editor, browser, game)

How does computer do everything at once?
• Multitasking
• Multiprocessing

2

Multitasking (Time-Sharing)
Approach
• Computer does some work on a task
• Computer then quickly switch to next task
• Tasks managed by operating system (scheduler)

Computer seems to work on tasks concurrently
Can improve performance by reducing waiting

3

Multitasking Can Aid Performance
Single task

Two tasks

4

Multiprocessing (Multithreading)
Approach
• Multiple processing units (multiprocessor)
• Computer works on several tasks in parallel
• Performance can be improved

32
processor
Pentium

Xeon

Dual-core
AMD

Athlon X2

Titan at
ORNL

5

Perform Multiple Tasks Using Processes
Process
• Definition à executable program loaded in memory
• Has own address space

Ø Variables & data structures (in memory)
• Each process may execute a different program
• Communicate via operating system, files, network
• May contain multiple threads

6

Perform Multiple Tasks Using Threads
Thread
• Sequentially executed stream of instructions
• Has own execution context

Ø Program counter, call stack (local variables)

• Communicate via shared access to data
• Also known as “lightweight process”

7

Motivation for Multithreading
Captures logical structure of problem
• May have concurrent interacting components
• Can handle each component using separate thread
• Simplifies programming for problem

Example

Web Server uses
threads to handle …

Multiple simultaneous
web browser requests

8

Motivation for Multithreading
Better utilize hardware resources
• When a thread is delayed, compute other threads
• Given extra hardware, compute threads in parallel
• Reduce overall execution time

Example

Multiple simultaneous
web browser requests…

Handled faster by
multiple web servers

9

Programming with Threads
Concurrent programming
• Writing programs divided into independent tasks
• Tasks may be executed in parallel on multiprocessors

Multithreading
• Executing program with multiple threads in parallel
• Special form of multiprocessing

10

Creating Threads in Java
Two approaches to create threads
• Extending Thread class (NOT RECOMMENDED)
• Runnable interface approach (PREFERED)

11

Extending Thread class
• We overload the Thread class run() method
• The run() methods defines the actual task the thread

performs
• Example

public class MyThread extends Thread {
public void run() {

… // work for thread
}

}
MyThread t = new MyThread() ;// create thread
t.start(); // begin running thread
… // thread executing in parallel

12

Runnable interface
Define a class (worker) that implements the Runnable interface

public interface Runnable {
public void run(); // work done by thread

}
• Create thread to execute the run() method

Ø Alternative 1: Create thread object and pass worker object to
Thread constructor

Ø Alternative 2: Hand worker object to an executor
• Example

public class Worker implements Runnable {
public void run() { // work for thread }

}
Thread t = new Thread(new Worker()); // create thread
t.start(); // begin running thread
… // thread executing in parallel

13

Extending Thread Approach Not Recommended

Not a big problem for getting started
• But a bad habit for industrial strength development

Methods of worker and Thread class intermixed
Hard to migrate to more efficient approaches
• Thread Pools

14

Thread Class
public class Thread extends Object implements

Runnable {
public Thread();
public Thread(String name); // Thread name
public Thread(Runnable R);
public Thread(Runnable R, String name);

public void run(); // if no R, work for thread
public void start(); // thread gets in line so it
eventually it can run
...

}

15

More Thread Class Methods
public class Thread extends Object {

…
public static Thread currentThread()
public String getName()
public void interrupt() // alternative to stop (deprecated)
public boolean isAlive()
public void join()
public void setDaemon()
public void setName()
public void setPriority()
public static void sleep()
public static void yield()

}

16

Creating Threads in Java
Note
• Thread eventually starts executing only if start() is called

• Runnable is interface
Ø So it can be implemented by any class
Ø Required for multithreading in applets

• Do not call the run method directly
17

Threads – Thread States
Java thread can be in one of these states
• New à thread allocated & waiting for start()
• Runnable à thread can begin execution
• Running à thread currently executing
• Blocked à thread waiting for event (I/O, etc.)
• Dead à thread finished

Transitions between states caused by
• Invoking methods in class Thread

Ø new(), start(), yield(), sleep(), wait(), notify()…
• Other (external) events

Ø Scheduler, I/O, returning from run()…
In Java states defined by Thread.State

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

18

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

Threads – Thread States
State diagram

runnable

scheduler

new

dead

running blocked

new start

terminate
IO, sleep,
wait, join

yield,
time
slice

notify, notifyAll,
IO complete,

sleep expired,
join complete

Running is a logical state → indicates runnable thread is actually running
19

Daemon Threads
Java threads types
• User
• Daemon

Ø Provide general services
Ø Typically never terminate
Ø Call setDaemon() before start()

Program termination
• All user threads finish
• Daemon threads are terminated by JVM

20

Threads – Scheduling

Scheduler

• Determines which runnable threads to run

Ø When context switching takes place

• Can be based on thread priority

• Part of OS or Java Virtual Machine (JVM)

Scheduling policy

• Non-preemptive (cooperative) scheduling

• Preemptive scheduling

21

Threads – Non-preemptive Scheduling
Threads continue execution until
• Thread terminates
• Executes instruction causing wait (e.g., IO)
• Thread volunteering to stop (invoking yield or sleep)

22

Threads – Preemptive Scheduling
Threads continue execution until
• Same reasons as non-preemptive scheduling
• Preempted by scheduler

23

Thread Scheduling Observations
Order thread is selected is indeterminate
• Depends on scheduler

Scheduling may not be fair
• Some threads may execute more often

Thread can block indefinitely (starvation)
• If other threads always execute first

Your code should work correctly regardless the
scheduling policy in place

24

Java Thread Example
public class ThreadNoJoin extends Thread {

public void run() {
for (int i = 0; i < 3; i++) {
try {

sleep((int)(Math.random() * 5000)); // 5 secs
} catch (InterruptedException e) {

e.printStackTrace();
}
System.out.println(i);

}
}
public static void main(String[] args) {

Thread t1 = new ThreadNoJoin();
Thread t2 = new ThreadNoJoin();
t1.start();
t2.start();
System.out.println("Done");

}
}

To understand this example better, let’s assume we want to make a
sandwich

25

Java Thread Example – Output
Possible outputs
• 0,1,2,0,1,2,Done // thread 1, thread 2, main()
• 0,1,2,Done,0,1,2 // thread 1, main(), thread 2
• Done,0,1,2,0,1,2 // main(), thread 1, thread 2
• 0,0,1,1,2,Done,2 // main() & threads interleaved

thread 1: println 0, println 1, println 2

main (): thread 1, thread 2, println Done

thread 2: println 0, println 1, println 2

26

Thread Class – join() Method
Can wait for thread to terminate with join()
Method prototype
• public final void join()

Ø Returns when thread is done
Ø Throws InterruptedException if interrupted

27

Java Thread Example (Join)

28

public class ThreadJoin extends Thread {
public void run() {

for (int i = 0; i < 3; i++) {
try {

sleep((int)(Math.random()*5000));// 5 secs
}catch (InterruptedException e) {

e.printStackTrace(); }
System.out.println(i);

}
}

public static void main(String[] args) {
Thread t1 = new ThreadJoin();
Thread t2 = new ThreadJoin();
t1.start();
t2.start();
try { t1.join();

t2.join();
} catch (InterruptedException e) { e.printStackTrace(); }

System.out.println("Done");
}

}

About Join
Important: You will limit the concurrency level if you
do not start/join correctly
Suppose you want to run many threads
concurrently. Start them all and then execute the
join for each one. Do not start one thread, then
join on that thread, start the second one, join on
that thread, etc.
The following is WRONG!

t1.start()
t1.join()
t2.start()
t2.join()

Feel free to use arrays, sets, etc., to keep track of
your threads

29

Terminating Threads

A thread ends when the run() method ends

Sometimes we may need to stop a thread before it ends

• For example, you may have created several threads to find a problem solution

and once one thread finds it, there is no need for the rest

How to stop thread?

• Using stop() method à WRONG! This is a deprecated method. Using it can

lead to problems when data is shared

• Using interrupt() method
Ø This method does not stop the thread. Instead, it notifies the thread that it should

terminate. The method sets a boolean variable in the thread and that value can be

checked by the thread (by using the method interrupted())

Ø It is up to the thread to terminate or not

Ø public void run() {

while(!Thread.interrupted()) {

// work

}

// release resource, cleaning tasks

}

30

Thread Example
Swing uses a single-threaded model
Long computations in the EDT freezes the GUI
Example: Progress Bar Example

31

Example

x = 0 initially. Then these threads are executed:

What is the value of x afterward

T1 y = x; T2 z = x;

x = y+1; x = z+2;

T1 y = x; T2
x = y+1;

z = x;

x = z+2;

T1 y = x; T2
z = x;

x = z+2;

x = y+1;

T1 T2 z = x;

x = z+2;

y = x;

x = y+1;

T1 T2 z = x;

y = x;

x = y+1;

x = z+2;

3 1 2

32

Data Races

That was an example of a data race
• Threads are �racing� to read, write x
• The value of x depends on who “wins” (3, 1, 2)

Languages rarely specify who wins data races
• The outcome is nondeterministic

So programmers restrict certain outcomes
• Synchronization with locks, condition variables

And they often mess up
• Leading to bugs that are hard to track down…

33

Thread API Concepts

Thread management
• Creating, killing, joining (waiting for) threads
• Sleeping, yielding, prioritizing

Synchronization
• Controlling order of execution, visibility, atomicity
• Locks: Can prevent data races, but watch out for

deadlock!
• Condition variables: supports communication

between threads

Most languages have similar APIs, details differ
34

35

Synchronization Example

public class Example extends Thread {
private static int cnt = 0;
public void run() {
synchronized (this) {
int y = cnt;
cnt = y + 1;

}
}
…

}

Acquires the lock
associated w/ current
object; only succeeds if
lock not held by another
thread, otherwise blocks

Releases the lock

Condition Variables

A condition variable represents a set of threads
waiting for a condition to become true
• Implemented, at least conceptually, as a wait set

Since different threads may access the variable
at once, we protect the wait set with a lock
• Thus avoiding possible data races

36

37

Synchronization, the traditional way
public class Example extends Thread {
private static int cnt = 0;
static Object lock = new Object();
public void run() {
synchronized (lock) {
int y = cnt;
cnt = y + 1;

}
}
…

}

Object uses as a
Lock

Acquires the intrinsic
lock; only succeeds if
lock not held by another
thread, otherwise blocks

Releases the lock
when exiting block

38

Synchronization, with explicit Locks
public class Example extends Thread {
private static int cnt = 0;
static Lock lock = new ReentrantLock();
public void run() {
lock.lock();
int y = cnt;
cnt = y + 1;
lock.unlock();

}
…

}

Lock, for protecting
the shared state

Acquires the lock; only
succeeds if lock not
held by another thread,
otherwise blocks

Releases the lock

39

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady)
ready.await();

buffer = o;
bufferReady = true;
ready.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady)
ready.await();

Object o = buffer;
bufferReady = false;
ready.signalAll();
lock.unlock();
return o; }

Producer / Consumer Solution

Uses single condition per lock (like intrinsics)

40

Lock lock = new ReentrantLock();
Condition producers = lock.newCondition();
Condition consumers = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady)
producers.await();

buffer = o;
bufferReady = true;
consumers.signalAll();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady)
consumers.await();

Object o = buffer;
bufferReady = false;
producers.signalAll();
lock.unlock();
return o; }

Producer / Consumer Solution

Uses 2 conditions per lock for greater efficiency

41

Lock lock = new ReentrantLock();
Condition producers = lock.newCondition();
Condition consumers = lock.newCondition();
boolean bufferReady = false;
Object buffer;

void produce(Object o) {
lock.lock();
while (bufferReady)
producers.await();

buffer = o;
bufferReady = true;
consumers.signal ();
lock.unlock();

}

Object consume() {
lock.lock();
while (!bufferReady)
consumers.await();

Object o = buffer;
bufferReady = false;
producers.signal ();
lock.unlock();
return o; }

Producer / Consumer Solution

Wakes up only one thread: More efficient, still!

