
CMSC 132: Object-Oriented
Programming II

Big-O Performance Analysis

1CMSC 132 Summer 2018

2

Execution Time Factors

Computer:
• CPU speed, amount of memory, etc.

Compiler:
• Efficiency of code generation.

Data:
• Number of items to be processed.
• Initial ordering (e.g., random, sorted, reversed)

Algorithm:
• E.g., linear vs. binary search.

CMSC 132 Summer 2018

3

Number of Data Items

Ex
ec

ut
io

n
Ti

m
e

Are Algorithms Important?

The fastest algorithm
for 100 items may not
be the fastest for
10,000 items!

Algorithm choice is
more important than
any other factor!

O(log N)

O(N)

O(N2)

Counting the instructions

public void SelectionSort (int [] num){
int i, j, first, temp;
for (i = num.length - 1; i > 0; i - -)
{

first = 0; //initialize to subscript of first element
for(j = 1; j <= i; j ++) //locate smallest element between positions 1 and i.
{

if(num[j] < num[first])
first = j;

}
temp = num[first]; //swap smallest found with element in position i.
num[first] = num[i];
num[i] = temp;

}
}

4

n timesi times

1 time

4 + 2*(n-1) + 4 + 2 * (n-2)+ … 4 + 2*1 =
4(n-1) + 2((n-1)+(n-2)+(n-3)…1) = 4(n-1) * 2 n(n-1)/2
=4(n-1) + n2 - n= n2 + 3n - 4

5

What is Big-O?
Big-O characterizes algorithm performance.

Big-O describes how execution time grows as the
number of data items increase.

Big-O is a function with parameter N, where N
represents the number of items.

CMSC 132 Summer 2018

6

Predicting Execution Time

If a program takes
10ms to process one
item, how long will it
take for 1000 items?

(time for 1 item) x (Big-
O() time complexity of
N items)

log10 N 3 x 10ms .03 sec

N 103 x 10ms 10 sec

N log10 N 103 x 3 x 10ms 30 sec

N2 106 x 10ms 16 min

N3 109 x 10ms 12 days

7

Complexity
In general, we are not so much interested in the time and
space complexity for small inputs.

For example, while the difference in time complexity
between linear and binary search is meaningless for a
sequence with n = 10, it is gigantic for n = 230.

CMSC 132 Summer 2018

8

Complexity
For example, let us assume two algorithms A and B that
solve the same class of problems.

The time complexity of A is 5,000n, the one for B is é1.1nù
for an input with n elements.

For n = 10, A requires 50,000 steps, but B only 3, so B
seems to be superior to A.

For n = 1000, however, A requires 5,000,000 steps, while
B requires 2.5×1041 steps.

CMSC 132 Summer 2018

9

Complexity

This means that algorithm B cannot be used for large
inputs, while algorithm A is still feasible.

So what is important is the growth of the complexity
functions.

The growth of time and space complexity with increasing
input size n is a suitable measure for the comparison of
algorithms.

CMSC 132 Summer 2018

10

Complexity

Comparison: time complexity of algorithms A and B

Algorithm A Algorithm BInput Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5*109

1.1n

3

2.5*1041

13,781

4.8*1041392

CMSC 132 Summer 2018

11

The Growth of Functions

The growth of functions is usually described using the
big-O notation.

Definition: Let f and g be functions from the integers or
the real numbers to the real numbers.
We say that f(x) is O(g(x)) if there are constants C and
k such that

|f(x)| £ C|g(x)|

whenever x > k.

CMSC 132 Summer 2018

12

The Growth of Functions

When we analyze the growth of complexity functions,
f(x) and g(x) are always positive.

Therefore, we can simplify the big-O requirement to

f(x) £ C×g(x) whenever x > k.

If we want to show that f(x) is O(g(x)), we only need to
find one pair (C, k) (which is never unique).

CMSC 132 Summer 2018

13

The Growth of Functions
The idea behind the big-O notation is to establish an
upper boundary for the growth of a function f(x) for
large x.

This boundary is specified by a function g(x) that is
usually much simpler than f(x).
We accept the constant C in the requirement
f(x) £ C×g(x) whenever x > k,

because C does not grow with x.
We are only interested in large x, so it is OK if
f(x) > C×g(x) for x £ k.

CMSC 132 Summer 2018

What is Big-O

14

f(n) = O(g(n)) iff ∃ positive constants c and n0
such that 0 ≤ f(n) ≤ cg(n) ∀ n ≥ n0.

CMSC 132 Summer 2018

Big-O Example

15

Prove f(x)=O(n4)

) * = 6*, − 2*/ + 5

CMSC 132 Summer 2018

16

The Growth of Functions
Example:

Show that f(x)	=	x2 +	2x	+	1 is O(x2).

For x > 1 we have:

x2 +	2x	+	1		£ x2 +	2x2 +	x2
Þ x2 +	2x	+	1	£ 4x2

Therefore, for C = 4 and k = 1:

f(x)	£ Cx2 whenever x > k.

Þ f(x)	is	O(x2).

CMSC 132 Summer 2018

17

Common Growth Rates
Big-O Characterization Example

O(1) constant Adding to the front of a linked list

O(log N) log Binary search

O(N) linear Linear search

O(N log N) n-log-n Binary merge sort

O(N2) quadratic Bubble Sort

O(N3) cubic Simultaneous linear equations

O(2N) exponential The Towers of Hanoi problem

CMSC 132 Summer 2018

Common Growth Rates

18CMSC 132 Summer 2018

19

The Growth of Functions
• Question: If f(x) is O(x2), is it also O(x3)?

• Yes. x3 grows faster than x2, so x3 grows also faster than
f(x).

• Therefore, we always have to find the smallest simple
function g(x) for which f(x) is O(g(x)).

CMSC 132 Summer 2018

20

The Growth of Functions
• “Popular� functions g(n) are

• n, log n, 1, 2n, n2, n!, n, n3, log n

• Listed from slowest to fastest growth:

• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!

CMSC 132 Summer 2018

21

The Growth of Functions

A problem that can be solved with polynomial worst-case
complexity is called tractable.

Problems of higher complexity are called intractable.

Problems that no algorithm can solve are called
unsolvable.

CMSC 132 Summer 2018

22

Determining Big-O: Repetition

for (i = 1; i <= n; i++)
{

m = m + 2 ;
}

constant time
executed
n times

Total time = (a constant c) * n = cn = O(N)

Ignore multiplicative constants (e.g., �c�).

CMSC 132 Summer 2018

23

Determining Big-O: Repetition

for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

k = k+1 ;
}

} constant time

outer loop
executed
n times

inner loop
executed
n times

Total time = c * n * n * = cn2 = O(N2)

CMSC 132 Summer 2018

24

Determining Big-O: Repetition

for (i = 1; i <= n; i++)
{

for (j = 1; j <= 100; j++)
{

k = k+1 ;
}

} constant time

outer loop
executed
n times

inner loop
executed
100 times

Total time = c * 100 * n * = 100cn = O(N)

CMSC 132 Summer 2018

25

Determining Big-O: Sequence

Total time =

x = x +1;
for (i=1; i<=n; i++)
{

m = m + 2;
}
for (i=1; i<=n; i++)
{

for (j=1; j<=n; j++)
{

k = k+1;
}

}

inner loop
executed
n times

outer loop
executed
n times

constant time (c2)

executed
n timesconstant time (c1)

constant time (c0)

Only dominant term is
used

Total time = c0Total time = c0 + c1nTotal time = c0 + c1n + c2n2Total time = c0 + c1n + c2n2 = O(N2)

CMSC 132 Summer 2018

26

Determining Big-O: Selection

if (depth() != otherStack.depth())
{
return false;

}
else
{
for (int n = 0; n < depth(); n++)
{
if (!list[n].equals(otherStack.list[n]))
return false;

}
}

then part:
constant (c1)

else part:
(c2 + c3) * n

test:
constant (c0)

another if :
test (c2)
+
then (c3)

Total time = c0Total time = c0 + Worst-Case(then, else)
Total time = c0 + Worst-Case(c1, else)

Total time = c0 + Worst-Case(c1, (c2 + c3) * n) = O(N)

test + worst-case(then, else)

CMSC 132 Summer 2018

Quiz 1

What is the Big-O of the following code?

CMSC 132 Summer 2018 27

void foo(int n){
int i;
for(int i = 1; i < n; n++);
print("good");

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(1)

Quiz 1

What is the Big-O of the following code?

CMSC 132 Summer 2018 28

void foo(int n){
int i;
for(int i = 1; i < n; n++);
print("good");

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(1)

Quiz 2
What is the Big-O of the following code?

CMSC 132 Summer 2018 29

void foo(int n){
int i;
for(int i = 1; i < n; i++)
for(int j = 1; j < n; j++)

print("good");
}

A. O(n2)
B. O(log n)
C. O(n)
D. O(1)

Quiz 2
What is the Big-O of the following code?

CMSC 132 Summer 2018 30

void foo(int n){
int i;
for(int i = 1; i < n; i++);
for(int j = 1; j < n; j++);

print("good");
}

A. O(n2)
B. O(log n)
C. O(n)
D. O(1)

Quiz 3
What is the Big-O of the following code?

CMSC 132 Summer 2018 31

void foo(int n){
int i = 1;
int s = 1;
while(s <= n){
i++;
s = s + i;
print("work");
}

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

Quiz 3

What is the Big-O of the following code?

CMSC 132 Summer 2018 32

void foo(int n){
int i = 1;
int s = 1;
while(s <= n){
i++;
s = s + i;
print("work");
}

}

A. O(n
2
)

B. O(log n)

C. O(n)

D. O(!)

S = 1

1+2

1+2+3

S_k= 1+2+3+k+(k+1) after k iteration

S_k = 2(k+1) k <= n

k < sqrt(n)

Quiz 4
What is the Big-O of the following code?

CMSC 132 Summer 2018 33

void foo(int n){
int i;
for(i = 1; i*i <= n; i++)
print("hello");

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

Quiz 4
What is the Big-O of the following code?

CMSC 132 Summer 2018 34

void foo(int n){
int i;
for(i = 1; i*i <= n; i++)
print("hello");

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

Quiz 5
What is the Big-O of the following code?

CMSC 132 Summer 2018 35

void foo(int n){
int i,j,k;
for(i = 1; i <= n; i++)
for(j = 1; j <= i; j++)
for(k=1; k <= 100; k++)
print("good");

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

Quiz 5
What is the Big-O of the following code?

CMSC 132 Summer 2018 36

void foo(int n){
int i,j,k;
for(i = 1; i <= n; i++)
for(j = 1; j <= i; j++)
for(k=1; k <= 100; k++)
print("good");

}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

total = 100 + 200 + 300 + 400 + 500 = 100
(1+2+3+..+n) = 100(n(n-1)/2) = O(n^2)

Quiz 6
What is the Big-O of the following code?

CMSC 132 Summer 2018 37

void foo(int n){
for(int i = 1; i < n; i = i * 2)

print("good");
}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

Quiz 6
What is the Big-O of the following code?

CMSC 132 Summer 2018 38

void foo(int n){
for(int i = 1; i < n; i = i * 2)

print("good");
}

A. O(n2)
B. O(log n)
C. O(n)
D. O(!)

