CMSC 132: Object-Oriented Programming II

Big-O Performance Analysis
Execution Time Factors

- **Computer:**
 - CPU speed, amount of memory, etc.

- **Compiler:**
 - Efficiency of code generation.

- **Data:**
 - Number of items to be processed.
 - Initial ordering (e.g., random, sorted, reversed)

- **Algorithm:**
 - E.g., linear vs. binary search.
Are Algorithms Important?

- The fastest algorithm for 100 items may not be the fastest for 10,000 items!
- Algorithm choice is more important than any other factor!
public void SelectionSort (int [] num){
 int i, j, first, temp;
 for (i = num.length - 1; i > 0; i - -)
 {
 first = 0; //initialize to subscript of first element
 for(j = 1; j <= i; j ++)
 {
 if(num[j] < num[first])
 first = j;
 }
 temp = num[first]; //swap smallest found with element in position i.
 num[first] = num[i];
 num[i] = temp;
 }
}

4 + 2*(n-1) + 4 + 2 * (n-2)+ ... 4 + 2*1 =
4(n-1) + 2((n-1)+(n-2)+(n-3)...1) = 4(n-1) * 2 n(n-1)/2
=4(n-1) + n² - n= n² + 3n - 4
What is Big-O?

- Big-O characterizes algorithm performance.

- Big-O describes how execution time grows as the number of data items increase.

- Big-O is a function with parameter N, where N represents the number of items.
Predicting Execution Time

- If a program takes 10ms to process one item, how long will it take for 1000 items?

- \((\text{time for 1 item}) \times (\text{Big-O}() \text{ time complexity of } N \text{ items})\)

<table>
<thead>
<tr>
<th>(\log_{10} N)</th>
<th>(3 \times 10\text{ms})</th>
<th>.03 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(10^3 \times 10\text{ms})</td>
<td>10 sec</td>
</tr>
<tr>
<td>(N \log_{10} N)</td>
<td>(10^3 \times 3 \times 10\text{ms})</td>
<td>30 sec</td>
</tr>
<tr>
<td>(N^2)</td>
<td>(10^6 \times 10\text{ms})</td>
<td>16 min</td>
</tr>
<tr>
<td>(N^3)</td>
<td>(10^9 \times 10\text{ms})</td>
<td>12 days</td>
</tr>
</tbody>
</table>
Complexity

- In general, we are not so much interested in the time and space complexity for small inputs.

- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with \(n = 10 \), it is gigantic for \(n = 2^{30} \).
For example, let us assume two algorithms A and B that solve the same class of problems.

The time complexity of A is $5,000n$, the one for B is $\left\lfloor 1.1^n \right\rfloor$ for an input with n elements.

For $n = 10$, A requires 50,000 steps, but B only 3, so B seems to be superior to A.

For $n = 1000$, however, A requires 5,000,000 steps, while B requires $2.5 \cdot 10^{41}$ steps.
Complexity

- This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.

- So what is important is the growth of the complexity functions.

- The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.
Complexity

- **Comparison: time complexity of algorithms A and B**

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$5,000n$</td>
<td>1.1^n</td>
</tr>
<tr>
<td>10</td>
<td>50,000</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>500,000</td>
<td>13,781</td>
</tr>
<tr>
<td>1,000</td>
<td>5,000,000</td>
<td>2.5×10^{41}</td>
</tr>
<tr>
<td>1,000,000</td>
<td>5×10^9</td>
<td>4.8×10^{41392}</td>
</tr>
</tbody>
</table>
The Growth of Functions

The growth of functions is usually described using the big-O notation.

Definition: Let f and g be functions from the integers or the real numbers to the real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that

$$|f(x)| \leq C|g(x)|$$

whenever $x > k$.
The Growth of Functions

- When we analyze the growth of complexity functions, $f(x)$ and $g(x)$ are always positive.

- Therefore, we can simplify the big-O requirement to

$$f(x) \leq C \cdot g(x) \quad \text{whenever } x > k.$$

- If we want to show that $f(x)$ is $O(g(x))$, we only need to find one pair (C, k) (which is never unique).
The Growth of Functions

- The idea behind the big-O notation is to establish an upper boundary for the growth of a function $f(x)$ for large x.

- This boundary is specified by a function $g(x)$ that is usually much simpler than $f(x)$.

- We accept the constant C in the requirement

 $$f(x) \leq C \cdot g(x) \quad \text{whenever } x > k,$$

- because C does not grow with x.

- We are only interested in large x, so it is OK if

 $$f(x) > C \cdot g(x) \quad \text{for } x \leq k.$$
What is Big-O

\[f(n) = O(g(n)) \text{ iff } \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \forall n \geq n_0. \]
Big-O Example

\[f(x) = 6x^4 - 2x^3 + 5 \]

Prove \(f(x) = O(n^4) \)

\[
|6x^4 - 2x^3 + 5| \leq 6x^4 + |2x^3| + 5 \\
\leq 6x^4 + 2x^4 + 5x^4 \\
= 13x^4
\]
The Growth of Functions

Example:

Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

For $x > 1$ we have:

- $x^2 + 2x + 1 \leq x^2 + 2x^2 + x^2$
- $\Rightarrow x^2 + 2x + 1 \leq 4x^2$

Therefore, for $C = 4$ and $k = 1$:

- $f(x) \leq Cx^2$ whenever $x > k$.
- $\Rightarrow f(x)$ is $O(x^2)$.
Common Growth Rates

<table>
<thead>
<tr>
<th>Big-O Characterization</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>\textit{constant}</td>
</tr>
<tr>
<td></td>
<td>Adding to the front of a linked list</td>
</tr>
<tr>
<td>O(log N)</td>
<td>\textit{log}</td>
</tr>
<tr>
<td></td>
<td>Binary search</td>
</tr>
<tr>
<td>O(N)</td>
<td>\textit{linear}</td>
</tr>
<tr>
<td></td>
<td>Linear search</td>
</tr>
<tr>
<td>O(N \log N)</td>
<td>\textit{n-log-n}</td>
</tr>
<tr>
<td></td>
<td>Binary merge sort</td>
</tr>
<tr>
<td>O(N^2)</td>
<td>\textit{quadratic}</td>
</tr>
<tr>
<td></td>
<td>Bubble Sort</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>\textit{cubic}</td>
</tr>
<tr>
<td></td>
<td>Simultaneous linear equations</td>
</tr>
<tr>
<td>O(2^N)</td>
<td>\textit{exponential}</td>
</tr>
<tr>
<td></td>
<td>The Towers of Hanoi problem</td>
</tr>
</tbody>
</table>
Common Growth Rates
The Growth of Functions

• Question: If $f(x)$ is $O(x^2)$, is it also $O(x^3)$?

• **Yes.** x^3 grows faster than x^2, so x^3 grows also faster than $f(x)$.

• Therefore, we always have to find the **smallest** simple function $g(x)$ for which $f(x)$ is $O(g(x))$.
The Growth of Functions

• “Popular” functions \(g(n) \) are
 • \(n, \log n, 1, 2^n, n^2, n!, n, n^3, \log n \)

• Listed from slowest to fastest growth:
 • 1
 • \(\log n \)
 • \(n \)
 • \(n \log n \)
 • \(n^2 \)
 • \(n^3 \)
 • \(2^n \)
 • \(n! \)
The Growth of Functions

- A problem that can be solved with polynomial worst-case complexity is called **tractable**.

- Problems of higher complexity are called **intractable**.

- Problems that no algorithm can solve are called **unsolvable**.
Determining Big-O: Repetition

for (i = 1; i <= n; i++)
{
 m = m + 2 ;
}

Total time = (a constant c) * n = cn = \(O(N) \)

Ignore multiplicative constants (e.g., “c”).
Determining Big-O: Repetition

outer loop executed n times

\[
\begin{array}{l}
\text{for} \ (i = 1; i <= n; i++)
\\ \{ \\
\text{for} \ (j = 1; j <= n; j++)
\\ \{ \\
\quad k = k+1 \\
\} \\
\} \\
\end{array}
\]

inner loop executed n times

constant time

Total time = $c * n * n * = cn^2 = \mathcal{O}(N^2)$
Determining Big-O: Repetition

For \(i = 1; i \leq n; i++ \)

\{
 for (j = 1; j \leq 100; j++)
 \{
 k = k+1 ;
 \}
\}

constant time

Total time = \(c * 100 * n * = 100cn = O(N) \)
Determining Big-O: Sequence

constant time \((c_0)\) \(\rightarrow\) \(x = x + 1;\)
for \((i=1; i<=n; i++)\)
\{
 \(m = m + 2;\)
\}
for \((i=1; i<=n; i++)\)
\{
 for \((j=1; j<=n; j++)\)
 \{
 \(k = k+1;\)
 \}
\}
\(\text{constant time} \ (c_2)\)
executed \(n\) times

inner loop executed \(n\) times

Total time = \(c_0 + c_1n + c_2n^2 = O(N^2)\)

Only dominant term is used
Determining Big-O: Selection

test + worst-case(then, else)

test: if (depth() != otherStack.depth())
constant \((c_0)\)
\{
 return false;
\}
then part:
constant \((c_1)\)
else
\{
 for (int \(n = 0; n < \text{depth}(); n++\))
 \{
 if (!list[n].equals(otherStack.list[n]))
 return false;
 }\}
else part:
\((c_2 + c_3) \times n\)

another if:

\[\text{test (c}_2)\] + \[\text{then (c}_3)\]

Total time = \(c_0 + \text{Worst-Case}(c_1, (c_2 + c_3) \times n) = O(N)\)

Total time = \(c_0 + \text{Worst-Case}(\text{then, else})\)

Total time = \(c_0 + \text{Worst-Case}(c_1, \text{else})\)

CMSC 132 Summer 2018
Quiz 1

What is the Big-O of the following code?

```c
void foo(int n) {
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(1)$
Quiz 1

What is the Big-O of the following code?

```c
void foo(int n){
  int i;
  for(int i = 1; i < n; n++);
  print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(1)$
Quiz 2

What is the Big-O of the following code?

```c
void foo(int n) {
    int i;
    for(int i = 1; i < n; i++)
        for(int j = 1; j < n; j++)
            print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(1)$
Quiz 2

What is the Big-O of the following code?

```c
void foo(int n) {
    int i;
    for(int i = 1; i < n; i++){
        for(int j = 1; j < n; j++){
            print("good");
        }
    }
}
```

A. $O(n^2)$
B. $O(log\ n)$
C. $O(n)$
D. $O(1)$
What is the Big-O of the following code?

```c
void foo(int n){
    int i = 1;
    int s = 1;
    while(s <= n){
        i++;
        s = s + i;
        print("work");
    }
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 3

What is the Big-O of the following code?

```c
void foo(int n){
    int i = 1;
    int s = 1;
    while(s <= n){
        i++;
        s = s + i;
        print("work");
    }
}
```

A. O(n^2)
B. O(log n)
C. O(n)
D. O(√n)

\[
S = 1 \\
1+2 \\
1+2+3 \\
S_k = 1+2+3+k+(k+1) \text{ after k iteration}
\]

\[
S_k = 2(k+1) \text{ k <= n}
\]

k < sqrt(n)
Quiz 4

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(i = 1; i*i <= n; i++)
        print("hello");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 4

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(i = 1; i*i <= n; i++)
        print("hello");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
                print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 5

What is the Big-O of the following code?

```c
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
                print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$

- total = 100 + 200 + 300 + 400 + 500 = 100
- $(1+2+3+..+n) = 100(n(n-1)/2) = O(n^2)$
What is the Big-O of the following code?

```c
void foo(int n){
    for(int i = 1; i < n; i = i * 2)
        print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n){
    for(int i = 1; i < n; i = i * 2)
        print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$