
CMSC 132: Object-Oriented
Programming II

Shortest Paths

1

Quiz 1

One advantage of adjacency list representation
over adjacency matrix representation of a graph is
that in adjacency list representation, space is
saved for sparse graphs.

2

A. True
B. False

Quiz 1

One advantage of adjacency list representation
over adjacency matrix representation of a graph is
that in adjacency list representation, space is
saved for sparse graphs.

3

A. True
B. False

Quiz 2
Traversal of a graph is different from tree because

4

A. There can be a loop in graph so we must maintain a visited flag
for every vertex

B. DFS of a graph uses stack, but inorder traversal of a tree is
recursive

C. BFS of a graph uses queue, but a time efficient BFS of a tree is
recursive.

D. All of the above

Quiz 2
Traversal of a graph is different from tree because

5

A. There can be a loop in graph so we must maintain a visited flag
for every vertex

B. DFS of a graph uses stack, but inorder traversal of a tree is
recursive

C. BFS of a graph uses queue, but a time efficient BFS of a tree is
recursive.

D. All of the above

Quiz 3
One possible order of Breadth First Search on the
following graph

6

A. MNOPQR
B. NQMPOR
C. QMNPRO
D. QMNPOR

Quiz 3
One possible order of Breadth First Search on the
following graph

7

A. MNOPQR
B. NQMPOR
C. QMNPRO
D. QMNPOR

Quiz 4

Given two vertices in a graph 1 and 6, which of the two
traversals (BFS and DFS) can be used to find if there is
path from 1 to 6?

8

A. Only BFS
B. Only DFS
C. Both BFS and DFS
D. Neither BFS nor DFS

Quiz 4

Given two vertices in a graph 1 and 6, which of the two
traversals (BFS and DFS) can be used to find if there is
path from 1 to 6?

9

A. Only BFS
B. Only DFS
C. Both BFS and DFS
D. Neither BFS nor DFS

Quiz 5

Consider the DAG with Consider V = {1, 2, 3, 4, 5, 6},
shown below. Which of the following is NOT a topological
ordering?

10

A. 1 2 3 4 5 6
B. 1 3 2 4 5 6
C. 1 3 2 4 6 5
D. 3 2 4 1 6 5

Quiz 5

Consider the DAG with Consider V = {1, 2, 3, 4, 5, 6},
shown below. Which of the following is NOT a topological
ordering?

11

A. 1 2 3 4 5 6
B. 1 3 2 4 5 6
C. 1 3 2 4 6 5
D. 3 2 4 1 6 5

Shortest Paths

12

Shortest paths

Given an edge-weighted digraph, find the shortest path
from s to t.

13

Shortest path variants
• Which vertices?

• Single source: from one vertex s to every other vertex.
• Source-sink: from one vertex s to another t.
• All pairs: between all pairs of vertices.

• Restrictions on edge weights?
• Nonnegative weights.
• Euclidean weights.
• Arbitrary weights.

• Cycles?
• No directed cycles.
• No "negative cycles."

• Simplifying assumption: Shortest paths from s to each vertex v
exist.

14

Weighted directed edge

15

public class DirectedEdge
DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

String toString() string representation

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge implementation

16

public class DirectedEdge{
private final int v, w;
private final double weight;

public DirectedEdge(int v, int w, double weight){
this.v = v;
this.w = w;
this.weight = weight;

}

public int from() { return v; }
public int to() { return w; }
public double weight() { return weight; }

}

Edge-weighted digraph

17

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)
edge-weighted
digraph with V
vertices

void addEdge(DirectedEdge e) add weighted
directed edge e

Iterable<DirectedEdge> adj(int v) edges pointing from
v

int V() number of vertices

int E() number of edges

Iterable<DirectedEdge> edges() all edges

String toString() string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists
representation

18

Edge-weighted digraph implementation

19

public class EdgeWeightedDigraph{
private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph(int V){
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)

adj[v] = new Bag<DirectedEdge>();
}

public void addEdge(DirectedEdge e){
int v = e.from();
adj[v].add(e);

}

public Iterable<DirectedEdge> adj(int v){
return adj[v];

}
}

Single-source shortest paths

20

What is the shortest distance and path from A to H?

Single-source shortest paths

• Data structures: Represent the Shortest Path with two vertex-
indexed arrays:
• distTo[v] is length of shortest path from s to v.
• edgeTo[v] is last edge on shortest path from s to v.

21

public double distTo(int v){
return distTo[v];

}

public Iterable<DirectedEdge> pathTo(int v){
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
DirectedEdge e = edgeTo[v];

while (e != null){
path.push(e);
e = edgeTo[e.from()];

}
return path;

}

Edge relaxation
• Relax edge e = v→w.

• distTo[v] is length of shortest known path from s to v.
• distTo[w] is length of shortest known path from s to w.
• edgeTo[w] is last edge on shortest known path from s to w.
• If e = v→w gives shorter path to w through v, update both

distTo[w] and edgeTo[w]

22

v→w successfully relaxes

Edge relaxation
• Relax edge e = v→w.

• distTo[v] is length of shortest known path from s to v.
• distTo[w] is length of shortest known path from s to w.
• edgeTo[w] is last edge on shortest known path from s to w.
• If e = v→w gives shorter path to w through v, update both distTo[w] and

edgeTo[w]

23

private void relax(DirectedEdge e) {
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight()) {

distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;

}
}

Generic shortest-paths algorithm
Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat until optimality conditions are satisfied:

Relax any edge.

24

Efficient implementations: How to choose which edge to relax?
• Dijkstra's algorithm (nonnegative weights).
• Topological sort algorithm (no directed cycles).
• Bellman-Ford algorithm (no negative cycles).

Dijkstra's algorithm

25

• Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges pointing from that vertex.

26

Dijkstra's algorithm Demo

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 ∞

∞ ∞

∞

Pick vertex in List with minimum distance.

∞ ∞

V distTo[] edgeTo

A 0 --

B ∞

C ∞

D ∞

E ∞

F ∞

27

Update A’s neighbors

V distTo[] edgeTo

A 0 --

B 2 0

C ∞

D 1 A

E ∞

F ∞

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

∞ ∞

1

∞ ∞

28

Update D’s neighbors

V distTo[] edgeTo

A 0 --

B 2 A

C 3 D

D 1 A

E 3 D

F 9 D

G 5 D

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

13 3

9 5

29

Update B’s neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

V distTo[] edgeTo

A 0 --

B 2 A

C 3 D

D 1 A

E 3 D

F 9 D

G 5 D

No Update

30

Update E’s neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

9 5

V distTo[] edgeTo

A 0 --

B 2 A

C 3 D

D 1 A

E 3 D

F 9 D

G 5 D

No Update

31

Update C’s neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

8 5

V distTo[] edgeTo

A 0 --

B 2 A

C 3 D

D 1 A

E 3 D

F 8 C

G 5 D

32

Update G’s neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

V distTo[] edgeTo

A 0 --

B 2 A

C 3 D

D 1 A

E 3 D

F 6 G

G 5 D

33

Update F’s neighbors

A

GF

B

EC D

4 1

2

103

64

22

85

1

0 2

3 3

1

6 5

V distTo[] edgeTo

A 0 --

B 2 A

C 3 D

D 1 A

E 3 D

F 6 G

G 5 D

No Update

Dijkstra's algorithm Demo

34

• Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm

35

• Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm Implementation

36

public class DijkstraSP{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP(EdgeWeightedDigraph G, int s) {
edgeTo = new DirectedEdge[G.V()];
distTo = new double[G.V()];
pq = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.V(); v++)

distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pq.insert(s, 0.0);
while (!pq.isEmpty()){

int v = pq.delMin();
for (DirectedEdge e : G.adj(v))

relax(e);
}

}
}

Shortest Path Demo

37

Shortest Path Demo

38

Shortest Path Demo

39

Acyclic shortest paths

• Consider vertices in topological order. Relax all
edges pointing from that vertex.

40

0 1 4 7 5 2 3 6

Acyclic shortest paths

• Consider vertices in topological order.
• Relax all edges pointing from that vertex.

41

Longest paths in edge-weighted DAGs

• Formulate as a shortest paths problem in edge-weighted DAGs.
• Negate all weights.
• Find shortest paths.
• Negate weights in result

• Key point. Topological sort algorithm works even with negative
weights.

42

Longest paths in edge-weighted DAGs

• Parallel job scheduling.
• Given a set of jobs with durations and precedence constraints,

schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the
constraints.

43

Critical path method
• To solve a parallel job-scheduling problem, create edge-weighted

DAG:
• Source and sink vertices.
• Two vertices (begin and end) for each job.
• Three edges for each job.

Ø Begin to end (weighted by duration)
Ø Source to begin(0 weight)
Ø End to sink(0 weight)

• One edge for each precedence constraint (0 weight).

44

Critical path method
Use longest path from the source to schedule each job.

45

Quiz 1

46

A. SDT
B. SBDT
C. SACDT
D. SACET

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

Quiz 1

47

A. SDT
B. SBDT
C. SACDT
D. SACET

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

Quiz 2
In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

48

A. Dijkstra’s algorithm starting from S.
B. Performing a DFS starting from S.
C. Performing a BFS starting from S.
D. None of the above

Quiz 2
In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

49

A. Dijkstra’s algorithm starting from S.
B. Performing a DFS starting from S.
C. Performing a BFS starting from S.
D. None of the above

