CMSC 132: Object-Oriented
Programming |l

Shortest Paths

Quiz 1

One advantage of adjacency list representation
over adjacency matrix representation of a graph is
that in adjacency list representation, space is
saved for sparse graphs.

A. True
B. False

Quiz 1

One advantage of adjacency list representation
over adjacency matrix representation of a graph is
that in adjacency list representation, space is
saved for sparse graphs.

A. True
B. False

Quiz 2

Traversal of a graph is different from tree because

A. There can be a loop in graph so we must maintain a visited flag
for every vertex

B. DFS of a graph uses stack, but inorder traversal of a tree is
recursive

C. BFS of a graph uses queue, but a time efficient BFS of a tree is
recursive.

D. All of the above

Quiz 2

Traversal of a graph is different from tree because

A. There can be a loop in graph so we must maintain a visited flag
for every vertex

B. DFS of a graph uses stack, but inorder traversal of a tree is
recursive

C. BFS of a graph uses queue, but a time efficient BFS of a tree is
recursive.

D. All of the above

Quiz 3

One possible order of Breadth First Search on the
following graph

MNOPQR
NQMPOR
QMNPRO
QMNPOR

COowx

Quiz 3

One possible order of Breadth First Search on the
following graph

MNOPQR
NQMPOR
QMNPRO
QMNPOR

COowx

Quiz 4

Given two vertices in a graph 1 and 6, which of the two
traversals (BFS and DFS) can be used to find if there is
path from 1 to 67

Only BFS

Only DFS ©

Both BFS and DFS
Neither BFS nor DFS

OO w>

Quiz 4

Given two vertices in a graph 1 and 6, which of the two
traversals (BFS and DFS) can be used to find if there is
path from 1 to 67

Only BFS

Only DFS

Both BFS and DFS
Neither BFS nor DFS

ocow>

Quiz 5

Consider the DAG with Consider V ={1, 2, 3, 4, 5, 6},
shown below. Which of the following is NOT a topological
ordering?

123456
132456
132465
324165

oW

Quiz 5

Consider the DAG with Consider V ={1, 2, 3, 4, 5, 6},
shown below. Which of the following is NOT a topological
ordering?

2 5
1 4
B 6
3
A. 123456
B. 132456
C. 132465
D. 324165

Shortest Paths

sion (&) Sellman nv LTI VING g
nore ‘ 133 § %,
Den, Hillandale &= 31 min | £ = 5
evy A 18.8 miles é‘.? < %
2 View . — 201 & 5
L, 5\0 s
3954 £ ¢
s ¢
3
(2]
Adelphi Greenbelt
idge Ry 320
vy Chase E'e_fwg'tn R
Qi ; eights
_~ Silver Spring Langley Park College Park Goddard
. @eACh R O i
= 54_) , Greenbelt Park o
(@) 2 0¥, PV oo°
z o4y 495 4
OV
LW
"//4}/ New Lanham
PR “% Chillum % Carrollton
o, Military AN 2
SHIP % =
TS 9,('; 3;
A : N
2% = N 950 .
%y 2 (5]
73; = Mt Rainier Landover Hills ——
Z NORTHWEST @ !
WASHINGTON
nian National ® coLumsiA = 37 min Glenardah
ological Park HEIGHTS 9.0 miles
s -
> -,
@, d
2, AP d
= NORPIEAST /%}/C/I_Zq& Sheriff R 202
: WASEINGTON B i
Washington ok, FedExField® | Lake
Fg/"/f/ L7 2.0,
"Phyyy NOMA H st NE % "o
Benp, 4 e
Q 'ng,Rd NE %
Yy
<
United States Capitol) E Capitol St SE
CAPITOL HILL 2 Capitol A\TN
£y Heights 02954
54 [
(4] , & / Lar¢
N SOUTHWEST Se w Walker Mill
5% WASHINGTON Q& .
SOUTHEAST ¢ Coral Hills
%"Q_ o0

WASHINGTON

12

Shortest paths

Given an edge-weighted digraph, find the shortest path
from s to t.

edge-weighted digraph

4->5 0.35
5->4 0.35 @\»
4->7 0.37 w\®/r
5->7 0.28 “‘(:)
7->5 0.28 /@{%
5->1 0.32
0->4 0.38 (= °
0->2 0.26
7->3 0.39 shortest path from 0 to 6
1->3 0.29 0->2 0.26
2->7 0.34
2->7 0.34
6->2 0.40
7->3 0.39
3->6 0.52 3->6 0.52
6->0 0.58 '
6->4 0.93

Shortest path variants

Which vertices?
* Single source: from one vertex s to every other vertex.
* Source-sink: from one vertex s to another t.
* All pairs: between all pairs of vertices.
Restrictions on edge weights?
* Nonnegative weights.
* Euclidean weights.
* Arbitrary weights.
Cycles?
* No directed cycles.
* No "negative cycles."

Simplifying assumption: Shortest paths from s to each vertex v
exist.

14

Weighted directed edge

public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v—w
int from() vertex v
int to() vertex w
double weight() weight of this edge
String toString() string representation
weight

G- 0

|ldiom for processing an edge e: int v = e.from(), w = e.to();

15

Weighted directed edge implementation

public class DirectedEdge{
private final int v, w;
private final double weight;

public DirectedEdge (int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;

}

public int from() { return v; }
public int to() { return w; }
public double weight() { return weight; }

16

Edge-weighted digraph

public class EdgeWeightedDigraph

EdgeWeightedDigraph (int V)

void addEdge (DirectedEdge e)

Iterable<DirectedEdge> adj(int v)

int V()

int E ()
Iterable<DirectedEdge> edges|()
String toString()

Conventions. Allow self-loops and parallel edges.

edge-weighted
digraph with V
vertices

add weighted
directed edge e

edges pointing from
v

number of vertices
number of edges
all edges

string representation

17

Edge-weighted digraph: adjacency-lists
representation

SO
LN,

v\f;yEiD/'tE ~[o]2].26+{0]4].38]
’s 0.3 . / RBEED
$5: B2
; i g:gg i_/' \ Z reference to a
gg g;g o f— ~[4]7].37+4]5].35] Direocl}jggfdge
7 3 0.39 5
27 0.3 6:s\|5|1|.:<;2|—~|5|7|.28|—»|5|4|.35|
6 2 0.40 7]
SN \\|6|4|.93}—»|6|o|.58|—»|6|2|.4o|
v Tl 7]s].2]

18

Edge-weighted digraph implementation

public class EdgeWeightedDigraph{
private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph (int V) {
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>() ;
}

public void addEdge (DirectedEdge e) {
int v = e.from() ;
adj[v] .add(e) ;

}

public Iterable<DirectedEdge> adj(int wv) {
return adj[v];

}

19

Single-source shortest paths

What is the shortest distance and path from Ato H?

11 ®
15 , 8 17
6 ® 7
® w © 1 16 12
3
18 (&) * ©
> 4 10

14

0, 99 ©

20

Single-source shortest paths

Data structures: Represent the Shortest Path with two vertex-
iIndexed arrays:

* distTolv] is length of shortest path from s to v.
* edgeTo|v] is last edge on shortest path from s to v.

(1) —-(3)

public double distTo(int v) { %/\r’ MAQ%/
return distTo[v]; (6? % i !i}
N el NS

public Iterable<DirectedEdge> pathTo (int v) {
Stack<DirectedEdge> path = new Stack<DirectedEdge> () ;
DirectedEdge e = edgeTol[Vv];

while (e '= null) {
path.push (e) ;
e = edgeTo[e.from()];

}

return path;

Edge relaxation

Relax edge e = v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* |f e =v—w gives shorter path to w through v, update both
distTo[w] and edgeTo[w]

C Q/ 3.1
v—Ww successfully relaxes

@ 72 4.4
black edges

are in edgeTo[]

22

Edge relaxation

Relax edge e = v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* If e = v—w gives shorter path to w through v, update both distTo[w] and
edgeTo[w]

private void relax(DirectedEdge e) ({ O C>’/)C{&]

int v = e.from(), w = e.to(); Cf:: 13
if (distTo[w] > distTo[v] + e.weight()) { \
distTo[w]

distTo[v] + e.weight(); / (W) 72 a4
e, black edges
} are in edgeTo[]

edgeTo [w]

23

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)
Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.
Repeat until optimality conditions are satisfied:
Relax any edge.

Efficient implementations: How to choose which edge to relax?
e Dijkstra's algorithm (nonnegative weights).

e Topological sort algorithm (no directed cycles).

* Bellman-Ford algorithm (no negative cycles).

24

Dijkstra's algorithm

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

25

Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

distTo[] | edgeTo

8
MmO > <
8

26

Update A’'s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 0
oo C 0
D 1 A
E o0
F o0

27

Update D’s neighbors

V | distTo[] | edgeTo
A 0

B 2 A

C 3 D

D 1 A

E 3 D

F 9 D

G 5 D

28

Update B's neighbors

No Update

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

29

Update E’'s neighbors

No Update

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

30

Update C’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 8 C
G 5 D

31

Update G's neighbors

V | distTo[] | edgeTo
A 0

B 2 A

C 3 D

D 1 A

E 3 D

F 6 G

G 5 D

32

Update F’s neighbors

| v [distTo[] | edgeTo |

No Update

33

Dijkstra's algorithm Demo

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

1 15 >

- /

4
AN
S 4RN

34

Dijkstra's algorithm

Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
Add vertex to tree and relax all edges pointing from that vertex.

)

@/’

(2)

distTo[] edgeTo[]

0.0
5.0
14.0
17.0
9.0
13.0
25.0
8.0

35

Dijkstra's algorithm Implementation

public class DijkstraSP{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s) ({
edgeTo = new DirectedEdge[G.V ()]
distTo = new double[G.V ()],
pag = new IndexMinPQ<Double>(G.V()) ;
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pg.insert(s, 0.0);
while ('pqg.isEmpty()) {
int v = pg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

36

Shortest Path Demo

Shortest Path Demo

8 7

38

Shortest Path Demo

100-5000
O O O

Acyclic shortest paths

. Consider vertices in topological order. Relax all
edges pointing from that vertex.

1 15 >

s /

4
01475236 O<

8

/4—
S

40

Acyclic shortest paths

. Consider vertices in topological order.
. Relax all edges pointing from that vertex.

S

@/’

7

(%)

01 4 7 5 2 3 6

\% distTo[] edgeTol[]
0 0.0

1 5.0 0—-1

2 14.0 52

3 17.0 2—3

4 9.0 0—4

5 13.0 4—-5

6 25.0 2—6

7 8.0 0—-7

41

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
* Negate all weights.
* Find shortest paths.

* Negate weights in result

Key point. Topological sort algorithm works even with negative

weights.

longest paths input

.35
.37
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

o

OO OO OO0 OOOOOo

shortest paths input

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

-0

SUE
e
0

.35
37
28
32
.38
.26
.39
.29
.34
.40
.52
.58
.93

42

Longest paths in edge-weighted DAGs

Parallel job scheduling.

* Given a set of jobs with durations and precedence constraints,
schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the
constraints.

must complete

job duration e
0 41.0 1 7 9
1 51.0 2

2 50.0

3 36.0

4 38.0

5 45.0

6 21.0 3 8
7 32.0 3 8
8 32.0 2

9 29.0 4 ©

41 70 91 123 173

Parallel job scheduling solution

43

Critical path method

To solve a parallel job-scheduling problem, create edge-weighted
DAG:
* Source and sink vertices.
* Two vertices (begin and end) for each job.
* Three edges for each job.
> Begin to end (weighted by duration)
» Source to begin(0 weight)
» End to sink(0 weight)

One edge for each precedence constraint (0 weight).

job start job finish precedence constraint

\ il rd . @ 51 _— (zero weight

duration @ 32 D2 (5 —

>
>

®
X@ 36

O 29 /'@>_21> " "
@_> N : 38 O
C 45

44

Critical path method

Use longest path from the source to schedule each job.

0 41 70 91 123 173

Parallel job scheduling solution

41 > ()————
50
!
C) > \ 32 / 32 /@—>

duration \
critical path
®) P T P
> \3J ==
y. 4

\: 38 O

45

29

45

Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

SDT
SBDT
SACDT
SACET

COowx

46

Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

o0 w>
0]
>
O
O
_l

47

Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

COowx

48

Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

COowx

49

