	
[image: image1.png]

	University of Maryland College Park

	
	Dept of Computer Science

	
	CMSC132 Fall 2008

	
	Midterm Key

First Name (PRINT): ___

Last Name (PRINT): ___

University ID: ___
Section/TAName: ___
I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions
· This exam is a closed-book and closed-notes exam.
· Total point value is 100 points, 50 minutes exam.
· Please use a pencil to complete the exam.
· PUNT RULE: For any question, you may write PUNT, and you will get ¼ of the points for the question (rounded down). If you feel totally lost on a question, you are encouraged to punt rather than write down an incorrect answer in hopes of getting some partial credit.
· WRITE NEATLY. If we cannot understand your answer, we will not grade it (i.e., 0 credit).
Grader Use Only

	#1
	Algorithmic Complexity
	(18)
	

	#2
	Program Correctness
	(10)
	

	#3
	Hashing
	(6)
	

	#4
	Language Features
	(22)
	

	#5
	Event-Driven Programming
	(4)
	

	#6
	Sets and Maps
	(20)
	

	#7
	Linear Data Structures
	(20)
	

	Honor
	Honors Problem
	(6)
	

	Total
	Total (100/106 Honors)
	(100/106)
	

Problem 1 (18 pts) Algorithmic Complexity

a. (6 pts) Calculate the asymptotic complexity of the code snippets below (using big-O notation) with

 respect to the problem size n.

1. for (int i=n; i<=n; i++) {

f(n) = O(
1
)

System.out.println("Hello");

 }

2. for (i=1; i<=n/4; i++) {

 f(n) = O(
n2
)

for (k= n/2; k<=n; k++) {

System.out.println("Hello");

}

 }

3. for (int i=1; i<=n; i=i*2) {

f(n) = O(nlog(n)
)

 for (int j=1; j<=n; j++) {

System.out.println("Hello");

 }

 }

b. (4 points) Give the asymptotic bound of the following functions:

1. n + log(n)

f(n) = O(
n
)
2. 2n4 + 14n + n2- 2n4

f(n) = O(
n2
)
c. (2 pts) List the following big-O expressions in order of asymptotic complexity (lowest complexity first)

 where k represents a constant.
O(nlog(n))

O(n)

O(1)

 O(log(n))
Answer: O(1)
O(log(n))
O(n)

O(nlog(n))
d. (2 pts) What is the asymptotic complexity of finding in an element in a sorted array if we use binary search?
 Answer: O(log(n))
e. (2 pts)

i. F (Critical sections are never found outside loops.
ii. T (Worst case analysis is more useful than best case analysis.
f. (2 pts) Give the complexity of an algorithm for problem size n whose running time:

i. Increases by a constant when n doubles

O(
log(n)
)

ii. Increases by four when n quadruples

O(
log(n)
)
\
Problem 2 (10 pts) Program Correctness and Exceptions
1. (2 pts) F (90% code coverage implies 90% of the code is correct.
2. (2 pts) T (Catching checked exceptions is not optional.

3. (2 pts) F (A finally block is executed only when an exception occurs.
4. (2 pts) F (Exceptions are not implicitly propagated to the caller.

5. (2 pts) F (Catching unchecked exceptions is mandatory.
Problem 3 (6 pts) Hashing

1. (2 pts) F (We always need to override the Object class hashCode and equals methods, otherwise we will not satisfy the Java Hash Code Contract.
2. (2 pts) F (If the hashCode() values of two objects are the same then the objects are equal.
3. (2 pts) T (A hashCode() method that returns a constant value (e.g., 20) is correct but not useful.
Problem 4 (22 pts) Java Language Features

1. (2 pts) T (Java methods are examples of procedural abstractions.
2. (2 pts) F (An interface in Java is an example of data abstraction.

3. (2 pts) F (The comparator interface defines the compareTo method.
4. (2 pts) T (An inner class has access to the private fields of the enclosing class.

5. (2 pts) F (In Java the following assignment is valid if class B extends class A.
ArrayList<A> k = new ArrayList();

6. (2 pts) F (A class implementing the Iterable interface must implement the methods hasNext(), next(), and remove().
7. (2 pts) F (All the methods in an abstract class must be abstract.
8. (2 pts) F (An abstract class may not define any instance variables.
9. (2 pts) Complete the following declaration so we have an ArrayList with objects that belong to the Printer class or are subtypes of this class.

 ArrayList< ? extends Printer> bList;

10. (2 pts) Complete the following declaration so we have an ArrayList with objects that can be of any type.

 ArrayList<?> cList;

11. (2 pts) The Runnable interface defines a single method with the following signature: void run();
 Complete the following assignment where x is assigned an object that implements the Runnable interface

 and the method run() will print the message “Hello” (using System.out.println).

Answer: Runnable x = new Runnable() { void run() { System.out.println(“Hello”);}};
Problem 5 (4 pts) Event-Driven Programming
1. (2 pts) Briefly name (no need to explain/describe them) two of the three components of the MVC paradigm.

Answer: Any two of model, view, controller
2. (2 pts) What is an event listener?

Answer: Object with method that is called in response to an event.

Problem 6 (20 pts) Sets and Maps

The Accounts class maintains the deposits and withdrawals for customers of a bank. Each account is identified by the owner’s name.

public class Accounts {

Map<String, ArrayList<Double>> map;

public Accounts() {

// YOU MUST IMPLEMENT THIS METHOD

}

public void transaction(String customer, double amount) {

// YOU MUST IMPLEMENT THIS METHOD

}

public Set<String> getCustomers(double amount) {

// YOU MUST IMPLEMENT THIS METHOD

}

}

What You Must Implement

1. (2 pts) Implement a constructor for Accounts that creates an empty map.

Answer:

public Accounts() {

map = new HashMap<String, ArrayList<Double>>();

}
2. (9 pts) Implement the transaction method that adds the specified amount to the appropriate account. A map entry for the account must be created if one does not exist.

Answer:

public void transaction(String customer, double amount) {

ArrayList<Double> transactions = map.get(customer);

if (transactions == null) {

transactions = new ArrayList<Double>();

map.put(customer, transactions);

}

transactions.add(amount);

}
3. (9 pts) Implement the getCustomers method which returns a set with those customers whose balance is less than or equal to the specified amount parameter. We should be able to print the elements present in the returned set in sorted order.

Answer:

public Set<String> getCustomers(double amount) {

Set<String> result = new TreeSet<String>();

for (String customer : map.keySet()) {

double sum = 0;

for (Double entry : map.get(customer))

sum += entry;

if (sum <= amount)

result.add(customer);

}

return result;

}

You may find the following Map methods helpful:

· V get(Object key) - Returns the value to which this map maps the specified key.

· V put(K key,V value) - Associates the specified value with the specified key in this map.

· Set<K> keySet() - Returns a set view of the keys contained in this map.

· boolean isEmpty() - Returns true if this map contains no key-value mappings.
You may find the following Set methods helpful:

· boolean contains(Object o) - Returns true if this set contains the specified element.

· boolean add(E o) - Adds the specified element to this set if it is not already present

· V remove(Object key) - Removes the element from the set
· boolean isEmpty() - Returns true if this set contains no elements.

Use the next page to provide your answers

Problem 7 (20 pts) Linear Data Structures

Implement the methods below based on the following Java class definitions. You may not add any instance variables, static variables or auxiliary methods to the LinkedList class. In addition, you may not use the Java API LinkedList class.
public class LinkedList<T extends Comparable<T>> {

private class Node {

private T data;

private Node next;

public Node(T data) {

this.data = data;

next = null;

}

}

private Node head;

public LinkedList() { /* YOU MUST IMPLEMENT THIS METHOD */ }

public boolean isEmpty() { /* YOU MUST IMPLEMENT THIS METHOD */ }

public ArrayList<T> getElemsInRange(T lower, T upper) { /* YOU MUST IMPLEMENT THIS METHOD */ }

public boolean delete(T targetElement) { /* YOU MUST IMPLEMENT THIS METHOD */ }

}

1. (2 pts) Implement a constructor that defines an empty list.
Answer:

 public LinkedList() {

head = null;

}

2. (2 pts) Implement the method isEmpty that returns true if the list is empty.
Answer:

public boolean isEmpty() {

return head == null ? true : false;

}

3. (8 pts) Implement the method getElemsInRange that returns the elements in the range defined by lower and upper (that includes lower and upper). You may assume that lower is less than or equal to upper. Keep in mind that the list is not sorted. If the list is empty the method will return an empty ArrayList.
 Answer:

public ArrayList<T> getElemsInRange(T lower, T upper) {

ArrayList<T> result = new ArrayList<T>();

Node curr = head;

while (curr != null) {

if (curr.data.compareTo(lower) >= 0 && curr.data.compareTo(upper) <= 0)

result.add(curr.data);

curr = curr.next;

}

return result;

}

4. (8 pts) Implement the method delete that removes the first instance of targetElement from the list. The method will return true if the element is deleted; false otherwise.
 Answer:

public boolean delete(T targetElement) {

if (head == null)

return false;

Node prev = null, curr = head;

while (curr != null) {

if (curr.data.equals(targetElement)) {

if (curr == head)

head = head.next;

else

prev.next = curr.next;

return true;

} else {

prev = curr;

curr = curr.next;

}

}

return false;

}

NOTE: Only Honors Section Students Will Receive Credit

 (6 pts) Honors Section

1. (3 pts) What are the advantages and disadvantages of using a linked list rather than an array?
Answer:

Advantage: Insertion and removals are more efficient

Disadvantage: Indexing is not efficient
2. (3 pts) Describe the properties a good hash function should have.
Answer: Fast to compute, distribute values well.

PAGE
2

_1146486588.bin

