	
[image: image1.png]

	University of Maryland College Park

	
	Dept of Computer Science

	
	CMSC132 Spring 2009

	
	Midterm

First Name (PRINT): ___

Last Name (PRINT): ___

University ID: ___
Section/TAName: ___
I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Your signature: ___

Instructions
· This exam is a closed-book and closed-notes exam.
· Total point value is 100 points, 50 minutes exam.
· Please use a pencil to complete the exam.
· PUNT RULE: For any question, you may write PUNT, and you will get ¼ of the points for the question (rounded down). If you feel totally lost on a question, you are encouraged to punt rather than write down an incorrect answer in hopes of getting some partial credit.
· WRITE NEATLY. If we cannot understand your answer, we will not grade it (i.e., 0 credit).
Grader Use Only

	#1
	Algorithmic Complexity
	(18)
	

	#2
	Program Correctness
	(10)
	

	#3
	Hashing
	(6)
	

	#4
	Language Features
	(22)
	

	#5
	Event-Driven Programming
	(4)
	

	#6
	Sets and Maps
	(20)
	

	#7
	Linear Data Structures
	(20)
	

	Honor
	Honors Problem
	(6)
	

	Total
	Total (100/106 Honors)
	(100/106)
	

Problem 1 (18 pts) Algorithmic Complexity

1. (6 pts) Calculate the asymptotic complexity of the code snippets below (using big-O notation) with

 respect to the problem size n.

a. for (int i=0; i<=n; i=i+ n) {

f(n) = O(

)

System.out.println("Hello");

 }

b. for (i=1; i<=10; i++) {

 f(n) = O(

)

for (k= n/2; k<=n; k++) {

System.out.println("Hello");

}

 }

c. for (int i=1; i<=n; i=i*2) {

f(n) = O(

)

 for (int j=1; j<=20; j++) {

System.out.println("Hello");

 }

 }

2. (4 points) Give the asymptotic bound of the following functions:

a. n + nlog(n) - n/2

f(n) = O(

)

b. 8n4 + n + n2+ 6n4

f(n) = O(

)
3. (2 pts) List the following big-O expressions in order of asymptotic complexity (lowest complexity first)
O(nlog(n))

O(n)

O(1)

 O(log(n))
4. (2 pts) Say you have an array of integers.
a. What property must the data have in order for you to apply binary search?
b. How about linear search?
5. (2 pts) Give the complexity of an algorithm for problem size n whose running time:

a. Increases by a constant when n doubles

O(

)

b. Does not change when n quadruples

O(

)

6. (2 pts) What is a critical section?

Problem 2 (10 pts) Program Correctness and Exceptions
The function other() throws a checked exception named MyException

1. (6 pts) Modify the following code fragment so the exception MyException is handled by a catch clause. Display the message “Something went wrong when calling other” using System.out.println.
 public void doWork() {

int x = 10;

other(x);

 }
2. (2 pts) Modify the provided code fragment so we do not need to handle the exception in function doWork.
3. (2 pts) Modify the following code fragment so it throws an IllegalArgumentException if a negative value is provided as argument.

 public int checkingValue(int y) {

int x = y + 100;

return x;

}

Problem 3 (6 pts) Hashing

1. (1 pt) T or F (We always need to override the Object class hashCode and equals methods, otherwise
 we will not satisfy the Java Hash Code Contract.
2. (1 pt) T or F (Through hashing we could have a search operation that has O(1) algorithmic complexity.
3. (1 pt) T or F (The Java Hash Code Contract is not violated when two objects that are not considered the
 same (according to the equals method) have the same hash code value.
4. (1 pt) T or F (A collision occurs when two entries are assigned to the same hash table entry.

5. (1 pt) T or F (Two objects that have different hash code values might be the same.

6. (1 pt) T or F (A good hash function distributes values well.
Problem 4 (22 pts) Java Language Features

1. (2 pts) T or F (Java methods are examples of procedural abstractions.
2. (2 pts) T or F (An interface in Java is an example of data abstraction.

3. (2 pts) T or F (The Comparable interface defines a compareTo method.
4. (2 pts) T or F (An inner class can ONLY access private fields of the enclosing class.
5. (2 pts) T or F (An nested class (inner class declared using static) instance can exist without an outer
 class instance.
6. (2 pts) T or F (If a class implements the Iterable interface it has a method called iterator().
7. (2 pts) T or F (The following variable declaration is illegal, assuming Goal is an abstract class.
Goal mainGoal;

8. (2 pts) T or F (We are not allowed to define constructors in abstract classes.
9. (2 pts) Complete the following declaration so we have an ArrayList with objects that belong to the Book class or are subtypes of this class.

 ArrayList<

> bList;

10. (2 pts) Complete the following declaration so we have an ArrayList with objects that can be of any type.

 ArrayList<

> cList;

11. (2 pts) The TA interface defines a single method with the following signature: public void assist();
 Complete the following assignment where x is assigned an object that implements the TA interface

 and the method assist() will print (using System.out.println) the message “Holding office hours”.
TA x =
Problem 5 (4 pts) Event-Driven Programming
1. (2 pts) Briefly name (no need to explain/describe them) two of the three components of the MVC paradigm.

2. (2 pts) What is an event listener?

Problem 6 (20 pts) Sets and Maps

The PurchaseOrders class keeps tracks of orders placed by customers. Each order is identified by unique number.
public class PurchaseOrders {

Map<Integer, Set<String>> map;

public PurchaseOrders() {

// YOU MUST IMPLEMENT THIS METHOD

}

public void addToOrder(Integer orderNumber, String item) {

// YOU MUST IMPLEMENT THIS METHOD

}

public Set<Integer> getOrdersWithItem(String item) {

// YOU MUST IMPLEMENT THIS METHOD

}

}

What You Must Implement

1. (2 pts) Implement a constructor for PurchaseOrders that creates an empty map.
2. (9 pts) Implement the addToOrder method that adds the specified item to the appropriate order. A map entry for the order must be created if one does not exist.
3. (9 pts) Implement the getOrdersWithItem method which returns a set of order numbers that includes the specified item. We should be able to print the elements present in the returned set in sorted order.
You may find the following Map methods helpful:

· V get(Object key) - Returns the value to which this map maps the specified key.

· V put(K key,V value) - Associates the specified value with the specified key in this map.

· Set<K> keySet() - Returns a set view of the keys contained in this map.

· boolean isEmpty() - Returns true if this map contains no key-value mappings.
You may find the following Set methods helpful:

· boolean contains(Object o) - Returns true if this set contains the specified element.

· boolean add(E o) - Adds the specified element to this set if it is not already present

· V remove(Object key) - Removes the element from the set
· boolean isEmpty() - Returns true if this set contains no elements.

Use the next page to provide your answers

Problem 7 (20 pts) Linear Data Structures

Implement the methods below based on the following Java class definitions. You may not add any instance variables, static variables or auxiliary methods to the LinkedList class. In addition, you may not use the Java API LinkedList class.
public class LinkedList<T extends Comparable<T>> {

private class Node {

private T data;

private Node next;

public Node(T data) {

this.data = data;

next = null;

}

}

private Node head; /* List head pointer */

public LinkedList() { // YOU MUST IMPLEMENT THIS METHOD }

public String toString() { // YOU MUST IMPLEMENT THIS METHOD }

public void removeLargerOrEqualTo(T elem) {// YOU MUST IMPLEMENT THIS METHOD }

}

1. (2 pts) Implement a constructor that defines an empty list.

2. (6 pts) Implement the method toString that returns a string with the data elements of the list. You can assume the type T defines the appropriate toString() method.
3. (12 pts) Implement the method removeLargerOrEqualTo which removes elements from the list that are larger than or equal to the parameter.

NOTE: HONORS PROBLEM ON THE REVERSE SIDE

NOTE: Only Honors Section Students Will Receive Credit

 (6 pts) Honors Section

1. (2 pts) In which situation would you use a linked list rather than an array?
2. (2 pts) What does it mean for a problem to be an NP problem?
3. (2 pts) When would you use an abstract class rather than an interface?

PAGE
4

_1146486588.bin

