CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata

How do regular expressions work?

- What we've learned
- What regular expressions are
- What they can express, and cannot
- Programming with them
- What's next: how they work
- A great computer science result

Languages and Machines

A Few Questions About REs

- How are REs implemented?
- Implementing a one-off RE is not so hard
> How to do it in general?
- What are the basic components of REs?
- Can implement some features in terms of others
> E.g., e+ is the same as ee*
- What does a regular expression represent?
- Just a set of strings
> This observation provides insight on how we go about our implementation
- ... next comes the math !

Definition: Alphabet

- An alphabet is a finite set of symbols
- Usually denoted Σ
- Example alphabets:
- Binary: $\Sigma=\{0,1\}$
- Decimal: $\quad \Sigma=\{0,1,2,3,4,5,6,7,8,9\}$
- Alphanumeric: $\Sigma=\{0-9, a-z, A-Z\}$

Definition: String

- A string is a finite sequence of symbols from Σ
- ε is the empty string ("" in Ruby)
- $|\mathrm{s}|$ is the length of string s
> |Hello| = 5, |દ| = 0
- Note
$>\varnothing$ is the empty set (with 0 elements)
> $\varnothing \neq\{\varepsilon\} \neq \varepsilon$
- Example strings over alphabet $\Sigma=\{0,1\}$ (binary):
- 0101
- 0101110
- ε

Definition: String concatenation

- String concatenation is indicated by juxtaposition

$$
\begin{aligned}
& \mathrm{s}_{1}=\text { super } \\
& \mathrm{s}_{2}=\text { hero }
\end{aligned}
$$

$$
\mathrm{s}_{1} \mathrm{~s}_{2}=\text { superhero }
$$

-Sometimes also written $\mathrm{s}_{1} \cdot \mathrm{~s}_{2}$

- For any string s, we have $s \varepsilon=\varepsilon s=s$
- You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
$>$ If $\mathrm{s}_{1}=$ super from $\Sigma_{1}=\{\mathrm{s}, \mathrm{u}, \mathrm{p}, \mathrm{e}, \mathrm{r}\}$ and $\mathrm{s}_{2}=$ hero from $\Sigma_{2}=$ $\{\mathrm{h}, \mathrm{e}, \mathrm{r}, \mathrm{o}\}$, then $\mathrm{s}_{1} \mathrm{~s}_{2}=$ superhero from $\Sigma_{3}=\{\mathrm{e}, \mathrm{h}, \mathrm{o}, \mathrm{p}, \mathrm{r}, \mathrm{s}, \mathrm{u}\}$

Definition: Language

- A language L is a set of strings over an alphabet
- Example: All strings of length 1 or 2 over alphabet $\Sigma=$ $\{a, b, c\}$ that begin with a
- $L=\{a, a a, a b, a c\}$
- Example: All strings over $\Sigma=\{a, b\}$
- $L=\{\varepsilon, a, b, a a, b b, a b, b a, ~ a a a, b b a, a b a, b a a, \ldots\}$
- Language of all strings written Σ^{*}
- Example: All strings of length 0 over alphabet Σ
- $L=\left\{s \mid s \in \Sigma^{*}\right.$ and $\left.|s|=0\right\}$
"the set of strings s such that s is from Σ^{*} and has length 0 "

$$
=\{\varepsilon\} \neq \varnothing
$$

Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,9,(),-$,
- Give an example element of this language (123) 456-7890
- Are all strings over the alphabet in the language? No
- Is there a Ruby regular expression for this language?

$$
八(\backslash d\{3,3\} \backslash) \backslash d\{3,3\}-\backslash d\{4,4\} /
$$

- Example: The set of all valid Ruby programs
- Later we'll see how we can specify this language
- (Regular expressions are useful, but not sufficient)

Operations on Languages

- Let Σ be an alphabet and let L, L_{1}, L_{2} be languages over Σ
- Concatenation $L_{1} L_{2}$ is defined as
- $L_{1} L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- Union is defined as
- $L_{1} \cup L_{2}=\left\{x \mid x \in L_{1}\right.$ or $\left.x \in L_{2}\right\}$
- Kleene closure is defined as
- $L^{*}=\{x \mid x=\varepsilon$ or $x \in L$ or $x \in \operatorname{LL}$ or $x \in \operatorname{LLL}$ or $\ldots\}$

Quiz 1: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}
\end{aligned}
$$

> A. a
> B. abd
> C. ε
> D.d

Quiz 1: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}
\end{aligned}
$$

> A.a
> B. abd
> C. ε
> D.d

Quiz 2: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1} \mathrm{~L}_{2}{ }^{*}
\end{aligned}
$$

Quiz 2: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1} \mathrm{~L}_{2}{ }^{*}
\end{aligned}
$$

Regular Expressions: Grammar

- Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R
$R::=\varnothing \quad$ The empty language
| ε
The empty string
A symbol from alphabet Σ
The concatenation of two regexps
The union of two regexps
The Kleene closure of a regexp

Regular Languages

- Regular expressions denote languages. These are the regular languages
- aka regular sets
- Not all languages are regular
- Examples (without proof):
> The set of palindromes over Σ
$>\left\{a^{n} b^{n} \mid n>0\right\} \quad\left(a^{n}=\right.$ sequence of $\left.n a^{\prime} s\right)$
- Almost all programming languages are not regular
- But aspects of them sometimes are (e.g., identifiers)
- Regular expressions are commonly used in parsing tools

Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows

regular expression	denotes language
\varnothing	\varnothing
ε	$\{\varepsilon\}$
each symbol $\sigma \in \Sigma$	$\{\sigma\}$

Constants

Semantics: Regular Expressions (2)

- Let A and B be regular expressions denoting languages L_{A} and L_{B}, respectively. Then:

regular expression	denotes language
$A B$	$L_{A} L_{B}$
$A \mid B$	$L_{A} \cup L_{B}$
A^{*}	$L_{A}{ }^{*}$

Operations

- There are no other regular expressions over Σ

Terminology etc.

- Regexps apply operations to symbols
- Generates a set of strings (i.e., a language)
> (Formal definition shortly)
- Examples
$>\mathrm{a} \rightarrow\{\mathrm{a}\}$
$>\mathrm{a} \mid \mathrm{b} \rightarrow\{\mathrm{a}\} \cup\{\mathrm{b}\}=\{\mathrm{a}, \mathrm{b}\}$
$>a^{*} \rightarrow\{\varepsilon\} \cup\{a\} \cup\{a a\} \cup \ldots=\{\varepsilon, a, a a, \ldots\}$
- If $s \in$ language L generated by a RE r, we say that r accepts, describes, or recognizes string s

Precedence

- Order in which operators are applied is:
- Kleene closure * > concatenation > union |
- $a b|c=(a b)| c \rightarrow\{a b, c\}$
- $a b^{*}=a\left(b^{*}\right) \rightarrow\{a, a b, a b b \ldots\}$
- $a\left|b^{*}=a\right|\left(b^{*}\right) \rightarrow\{a, \varepsilon, b, b b, b b b \ldots\}$
- We use parentheses () to clarify
- E.g., a(b|c), (ab)*, (a|b)*
- Using escaped \backslash (if parens are in the alphabet

Ruby Regular Expressions

- Almost all of the features we've seen for Ruby REs can be reduced to this formal definition
- /Ruby/ - concatenation of single-symbol REs
- /(Ruby|Regular)/ - union
- /(Ruby)*/ - Kleene closure
- /(Ruby)+/ - same as (Ruby)(Ruby)*
- /(Ruby)?/ - same as ($\varepsilon \mid($ Ruby)) (// is ε)
- /[a-z]/ - same as (a|b|c|...|z)
- / [^0-9]/ - same as (a|b|c|...) for a,b,c,... $\in \Sigma-\{0 . .9\}$
- ^, \$ - correspond to extra symbols in alphabet

Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
- A "machine" for recognizing a regular language
"String"

"String"

Finite Automaton

Elements

- States S
(start, final)
- Alphabet Σ
- Transition edges δ

Finite Automaton Transition on 1

- States S (start, final)
- Alphabet Σ
- Transition edges ठ
- Machine starts in start or initial state
- Repeat until the end of the string s is reached
- Scan the next symbol $\sigma \in \Sigma$ of the string s
- Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Finite Automaton: States

- Start state
- State with incoming transition from no other state
- Can have only one start state

- Final states
- States with double circle
- Can have zero or more final states

- Any state, including the start state, can be final

Finite Automaton: Example 1

001011
Accepted?
Yes

Finite Automaton: Example 2

001010
Accepted?
No

Quiz 3: What Language is This?

A. All strings over $\{0,1\}$
B. All strings over $\{1\}$
C. All strings over $\{0,1\}$ of length 1
D. All strings over $\{0,1\}$ that end in 1

Quiz 3: What Language is This?

A. All strings over $\{0,1\}$
B. All strings over $\{1\}$
C. All strings over $\{0,1\}$ of length 1
D. All strings over $\{0,1\}$ that end in 1 regular expression for this language is $(011)^{* 1}$

Finite Automaton: Example 3

string	state at end	accepts $?$
aabcc		

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
aabcc	S2	Y

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
acca		

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
acca	S3	N

(a,b,c notation shorthand for three self loops)

Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

What language does this FA accept?

$$
a^{*} b^{*} c^{*}
$$

S3 is a dead state a nonfinal state with no transition to another state

Finite Automaton: Example 4

Language?
a*b*c* again, so FAs are not unique

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

is short for
- Language?

- Strings over $\{0,1,2,3\}$ with alterrialırig everı and odd digits, beginning with odd digit

Finite Automaton: Example 5

- Description for each state
- SO = "Haven't seen anything yet" OR "Last symbol seen was a b"
- S1 = "Last symbol seen was an a"
- S 2 = "Last two symbols seen were $\mathrm{ab} "$
- S3 = "Last three symbols seen were abb"

Finite Automaton: Example 5

- Language as a regular expression?
- (a|b)*abb

Quiz 5

Over $\Sigma=\{a, b\}$, this FA accepts only:
A. A string that contains a single a.
B. Any string in $\{a, b\}$.
C. A string that starts with b followed by a's.
D. Zero or more b's, followed by one or more a's.

Quiz 5

Over $\Sigma=\{a, b\}$, this FA accepts only:
A. A string that contains a single a.
B. Any string in $\{a, b\}$.
C. A string that starts with b followed by a's.
D. Zero or more b's, followed by one or more a's.

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing two consecutive Os followed by two consecutive 1s
- That accepts strings with an odd number of 1 s
- That accepts strings containing an even number of 0 s and any number of 1 s
- That accepts strings containing an odd number of 0 s and odd number of 1 s
- That accepts strings that DO NOT contain odd number of 0 s and an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings with an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings with an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an even number of 0 s and any number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an even number of 0 s and any number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing two consecutive Os followed by two consecutive 1s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing two consecutive 0 s followed by two consecutive 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings end with two consecutive 0 s followed by two consecutive 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings end with two consecutive Os followed by two consecutive 1s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an odd number of 0 s and odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an odd number of 0 s and odd number of 1 s

4 states:

Os 1s
e e
$\begin{array}{ll}0 & e \\ \text { e } & 0 \\ 0 & 0\end{array}$

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings that DO NOT contain odd number of 0 s and an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings that DO NOT contain odd number of 0 s and an odd number of 1 s

Flip each state

