CMSC 330: Organization of Programming Languages

Lambda Calculus

100 years ago

- Albert Einstein proposed special theory of relativity in 1905
- In the paper On the

Electrodynamics of Moving Bodies

Prioritätsstreit, "priority dispute"

General Theory of Relativity

- Einstein's field equations presented in Berlin: Nov 25, 1915
- Published: Dec 2,1915

Prioritätsstreit, "priority dispute"

General Theory of Relativity

- Einstein's field equations presented in Berlin: Nov 25, 1915
- Published: Dec 2,1915
- David Hilbert's equations presented in Gottingen: Nov 20, 1915
- Published: March 6, 1916

Entscheidungsproblem "decision problem"

Is there an algorithm to determine if a statement is true in all models of a theory?

Entscheidungsproblem "decision problem"

Turing Machine

Turing Completeness

- Turing machines are the most powerful description of computation possible
- They define the Turing-computable functions
- A programming language is Turing complete if
- It can map every Turing machine to a program
- A program can be written to emulate a Turing machine
- It is a superset of a known Turing-complete language
- Most powerful programming language possible
- Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
- What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
- Multi-argument functions foo (a, b, c)
> Use currying or tuples
- Loops
> Use recursion
- Side effects
> Use functional programming pass "heap" as an argument to each function, return it when with function's result

Mini C

You only have:

- If statement
- Plus 1
- Minus 1
- functions

```
Sum n = 1+2+3+4+5...n in Mini C
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){
    if(b == 0) return a;
    else return add( add1(a),sub1(b));
}
int sum(int n){
    if(n == 1) return 1;
    else return add(n, sum(sub1(n)));
}
int main(){
    printf("%d\n",sum(5));
}
```


Lambda Calculus (λ-calculus)

- Proposed in 1930s by
- Alonzo Church (born in Washingon DC!)
- Formal system

- Designed to investigate functions \& recursion
- For exploration of foundations of mathematics
- Now used as
- Tool for investigating computability
- Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

Lambda Calculus Syntax

- A lambda calculus expression is defined as
e ::= x
| 入x.e
e e
variable
abstraction (fun def)
application (fun call)
> This grammar describes ASTs; not for parsing (ambiguous!)
> Lambda expressions also known as lambda terms
- $\lambda x . e$ is like (fun x-> e) in OCaml

That's it! Nothing but higher-order functions

Why Study Lambda Calculus?

- It is a "core" language
- Very small but still Turing complete
- But with it can explore general ideas
- Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
- C++ (C++11), PHP (PHP 5.3.0), C\# (C\# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F\#, ...)

Three Conventions

- Scope of λ extends as far right as possible
- Subject to scope delimited by parentheses
- $\lambda x . \lambda y . x y$ is same as λx. $(\lambda y .(x y))$
- Function application is left-associative
- $x y z$ is ($x y$) z
- Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
- let $x=e 1$ in e2 is short for ($\lambda x . e 2$) e1

OCaml Lambda Calc Interpreter

type id $=$ string

- e ::= X
| $\lambda x . e^{2}$
type exp $=$ Var of id
| Lam of id * exp
| App of exp * exp
$y \quad$ Var " y^{\prime}
λx Lx Lam ("x", Var "x")
$\lambda x . \lambda y . x y \operatorname{Lam}\left(" x ",\left(\operatorname{Lam}\left(" y ", A p p\left(\operatorname{Var} " x ", \operatorname{Var}{ }^{\prime \prime} y^{\prime \prime}\right)\right)\right)\right.$ ($\lambda x . \lambda y . x y$) $\lambda x . x \times$ App

```
(Lam("x", Lam("y" ,App (Var"x",Var"y"))),
    Lam ("x", App (Var "x", Var "x")))
```


Quiz \#1

$\lambda x .(y z)$ and $\lambda x . y z$ are equivalent

A. True
B. False

Quiz \#1

$\lambda x .(y z)$ and $\lambda x . y z$ are equivalent

A. True
B. False

Quiz \#2

What is this term's AST?
$\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$

```
type id = string
type exp =
    Var of id
    | Lam of id * exp
    | App of exp * exp
```

A. App (Lam ("x", Var "x"), Var "x")
B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x", Var "x"))
D. App (Lam ("x", App ("x", "x")))

Quiz \#2

What is this term's AST?
$\lambda \mathrm{x} . \mathrm{x} \mathrm{x}$

```
type id = string
type exp =
    Var of id
    | Lam of id * exp
    | App of exp * exp
```

A. App (Lam ("x", Var "x"), Var "x")
B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x", Var "x"))
D. App (Lam ("x", App ("x", "x")))

Quiz \#3

This term is equivalent to which of the following?

$$
\lambda x . x a b
$$

$$
\begin{aligned}
& \text { A. (} \lambda \mathrm{x} . \mathrm{x} \text {) (a b) } \\
& \text { B. (((גx. } x \text {) a) b) } \\
& \text { C. } \lambda x .(x \quad(a b)) \\
& \text { D. (} \lambda \mathrm{x} .((\mathrm{x} \mathrm{a}) \mathrm{b}))
\end{aligned}
$$

Quiz \#3

This term is equivalent to which of the following?

$\lambda x . x$ a b

$$
\begin{aligned}
& \text { A. (} \lambda \mathrm{x} . \mathrm{x} \text {) (ab) } \\
& \text { B. (((גx. } x \text {) a) b) } \\
& \text { C. } \lambda x \text {. }(x \text { (} a b)) \\
& \text { D. (} \lambda \mathrm{x} .((\mathrm{x} \mathrm{a}) \mathrm{b}))
\end{aligned}
$$

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls ($\lambda x . e 1$) e2
- Evaluate e 1 with x replaced by e2
- This application is called beta-reduction
- ($\lambda x . e 1$) e2 \rightarrow e1[x:=e2]
$>e 1[x:=e 2]$ is $e 1$ with occurrences of x replaced by e2
$>$ This operation is called substitution
- Replace formals with actuals
- Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

- ($\lambda x . \lambda z . x z) y$
$\rightarrow(\lambda x .(\lambda z .(x z))) y$

$\rightarrow \lambda z$.(y z)
// since λ extends to right
// apply ($\lambda x . e 1$) e2 $\rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
// where e1 = $\lambda z .(x z)$, e2 = y
// final result
- Equivalent OCaml code
- (fun x -> (fun z -> (x z))) y \rightarrow fun z -> (y z)

Beta Reduction Examples

- $(\lambda x . x) z \rightarrow z$
- ($\lambda x . y) z \rightarrow y$
- $(\lambda x . x y) z \rightarrow z y$
- A function that applies its argument to y

Beta Reduction Examples (cont.)

- $(\lambda x . x y)(\lambda z . z) \rightarrow \quad(\lambda z . z) y \rightarrow y$
- $(\lambda x . \lambda y . x y) z \rightarrow \lambda y . z y$
- A curried function of two arguments
- Applies its first argument to its second
- $(\lambda x . \lambda y . x y)(\lambda z . z z) x \rightarrow(\lambda y .(\lambda z . z z) y) x \rightarrow(\lambda z . z z) x \rightarrow x x$

Beta Reduction Examples (cont.)

$(\lambda x . x(\lambda y . y))(u r) \rightarrow$
$(\lambda x .(\lambda w . x w))(y z) \rightarrow$

Beta Reduction Examples (cont.)

$(\lambda x . x(\lambda y . y))(u r) \rightarrow(u r)(\lambda y . y)$
$(\lambda x .(\lambda w . x w))(y z) \rightarrow(\lambda w .(y z) w)$

Quiz \#4

($\lambda \mathrm{x} . \mathrm{y}$) z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

Quiz \#4

($\lambda \mathrm{x} . \mathrm{y}$) z can be beta-reduced to

A. y
B. $y \mathrm{z}$
C. z
D. cannot be reduced

Quiz \#5

Which of the following reduces to $\lambda z . z$?
a) $(\lambda y, \lambda z, x) z$
b) $(\lambda z . \lambda x . z) y$
c) $(\lambda y, y)(\lambda x . \lambda z, z) w$
d) $(\lambda y, \lambda x, z) z(\lambda z . z)$

Quiz \#5

Which of the following reduces to $\lambda z . z$?
a) $(\lambda y, \lambda z, x) z$
b) $(\lambda z . \lambda x . z) y$
c) $(\lambda y . y)(\lambda x . \lambda z . z) w$
d) $(\lambda y . \lambda x . z) z(\lambda z . z)$

Static Scoping \& Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
- $(\lambda x . x(\lambda x . x)) z \rightarrow$?
$>$ The rightmost " x " refers to the second binding
- This is a function that
> Takes its argument and applies it to the identity function
- This function is "the same" as ($\lambda x . x$ ($\lambda y . y)$)
- Renaming bound variables consistently preserves meaning
$>$ This is called alpha-renaming or alpha conversion
- $E x . \lambda x \cdot x=\lambda y . y=\lambda z . z \quad \lambda y \cdot \lambda x . y=\lambda z \cdot \lambda x . z$

Quiz \#6

Which of the following expressions is alpha equivalent to (alpha-converts from)

($\lambda x . \lambda y . x y) y$

a) λy. y y
b) λz. y z
c) $(\lambda x . \lambda z . x z) y$
d) $(\lambda x \cdot \lambda y, x y) z$

Quiz \#6

Which of the following expressions is alpha equivalent to (alpha-converts from)

($\lambda x . \lambda y . x y) y$

a) λy. y y
b) $\lambda z . y z$
c) $(\lambda x . \lambda z . x z) y$
d) $(\lambda x . \lambda y . x y) z$

Defining Substitution

- Use recursion on structure of terms
- $x[x:=e]=e \quad / /$ Replace x by e
- $y[x:=e]=y \quad / / y$ is different than x, so no effect
- (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])
// Substitute both parts of application
- $\left(\lambda x . e^{\prime}\right)[x:=e]=\lambda x . e^{\prime}$
$>\operatorname{In} \lambda x . e^{\prime}$, the x is a parameter, and thus a local variable that is different from other x ' s . Implements static scoping.
> So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e^{\prime}
- ($\left.\lambda \mathrm{y} . \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]=$?
> The parameter y does not share the same name as x , the variable being substituted for
> Is λy.(e' [x:=e]) correct? No...

Variable capture

- How about the following?
- ($\lambda x . \lambda y . x y) y \rightarrow$?
- When we replace y inside, we don't want it to be captured by the inner binding of y , as this violates static scoping
- I.e., ($\lambda x . \lambda y . x$ y) $y \neq \lambda y . y ~ y$
- Solution
- ($\lambda x . \lambda y . x y$) is "the same" as ($\lambda x . \lambda z . x z$)
> Due to alpha conversion
- So alpha-convert ($\lambda x . \lambda y . x$ y) y to ($\lambda x . \lambda z . x z)$ y first
> Now ($\lambda x . \lambda z . x z$) y $\rightarrow \lambda z . y z$

Completing the Definition of Substitution

- Recall: we need to define ($\lambda \mathrm{y} . \mathrm{e}^{\prime}$) $[\mathrm{x}:=\mathrm{e}]$
- We want to avoid capturing (free) occurrences of y in e
- Solution: alpha-conversion!
> Change y to a variable w that does not appear in e' or e (Such a w is called fresh)
> Replace all occurrences of y in e' by w.
> Then replace all occurrences of x in e' by e!
- Formally:
($\left.\lambda \mathrm{y} . \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]=\lambda \mathrm{w} .\left(\left(e^{\prime}[\mathrm{y}:=\mathrm{w}]\right)\right.$ [x:=e]) (wis fresh)

Beta-Reduction, Again

-Whenever we do a step of beta reduction

- ($\lambda x . e 1$) e2 \rightarrow e1[x:=e2]
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)
- Examples
- ($\lambda x \cdot \lambda y \cdot x y) y=(\lambda x \cdot \lambda z . x z) y \rightarrow \lambda z . y z \quad / / y \rightarrow z$
- $(\lambda x . x(\lambda x . x)) z=(\lambda y \cdot y(\lambda x . x)) z \rightarrow z(\lambda x . x) \quad / / x \rightarrow y$

OCaml Implementation: Substitution

(* substitute e for y in $m--\quad m[y:=e]$ *)
let rec subst m y $e=$
match m with
Var x ->
if $y=x$ then $e(*$ substitute *)
else m (* don't subst *)
| App (e1,e2) ->
App (subst el ye, subst en ye)
| Lam (x,e0) -> ...

OCaml Impl: Substitution (cont'd)

(* substitute e for y in $m--\quad m[y:=e]$
let rec subst $m y e=m a t c h m$ with ...
| Lam (x,e0) ->
if $y=x$ then m
else if not (List.mem x (fvs e)) then Lam (\mathbf{x}, subst $\mathbf{e 0} \mathbf{y} \mathbf{e}$) Safe: no capture possible else Might capture; need to α-convert
let $z=$ newvar() in (* fresh *)
let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

OCaml Impl: Reduction

let rec reduce e =

Quiz \#7

Beta-reducing the following term produces what result?

($\lambda x . x \lambda y . y x) y$

A. $y(\lambda z . z y)$
B. $z(\lambda y . y z)$
C. $y(\lambda y . y \mathrm{y})$
D. $\mathrm{y} y$

Quiz \#7

Beta-reducing the following term produces what result?

($\lambda x . x \lambda y . y x) y$

A. y ($\lambda z . z \mathrm{y})$
B. $z(\lambda y . y z)$
C. $y(\lambda y . y$ y)
D. $\mathrm{y} y$

Quiz \#8

Beta reducing the following term produces what result?

$$
\lambda x .(\lambda y . y \text { y) w z }
$$

a) $\lambda x . w w z$
b) $\lambda x \cdot w z$
c) $w z$
d) Does not reduce

Quiz \#8

Beta reducing the following term produces what result?

$$
\lambda x .(\lambda y . y y) w z
$$

a) $\lambda x . w w z$
b) $\lambda x \cdot w z$
c) $w z$
d) Does not reduce

