CMSC 330: Organization of Programming Languages

Lambda Calculus
100 years ago

Albert Einstein proposed special theory of relativity in 1905

- In the paper *On the Electrodynamics of Moving Bodies*
Prioritätsstreit, “priority dispute”

General Theory of Relativity

- Einstein's field equations presented in Berlin: Nov 25, 1915
- Published: Dec 2, 1915
General Theory of Relativity

- Einstein's field equations presented in Berlin: Nov 25, 1915
- Published: Dec 2, 1915

- David Hilbert's equations presented in Gottingen: Nov 20, 1915
- Published: March 6, 1916
Is there an algorithm to determine if a statement is true in all models of a theory?
 Entscheidungsproblem "decision problem"

Algorithm, formalised

Alonzo Church: Lambda calculus
An unsolvable problem of elementary number theory, Bulletin the American Mathematical Society, May 1935

Kurt Gödel: Recursive functions
Stephen Kleene, General recursive functions of natural numbers, Bulletin the American Mathematical Society, July 1935

Alan M. Turing: Turing machines
On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, received 25 May 1936
Turing Machine
Turing Completeness

- Turing machines are the most powerful description of computation possible
 - They define the Turing-computable functions

- A programming language is **Turing complete** if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language

- Most powerful programming language possible
 - Since Turing machine is most powerful automaton
Programming Language Expressiveness

So what language features are needed to express all computable functions?

• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience

• Multi-argument functions foo (a, b, c)
 ➢ Use currying or tuples

• Loops while (a < b) ...
 ➢ Use recursion

• Side effects a := 1
 ➢ Use functional programming pass “heap” as an argument to each function, return it when with function’s result
Sum $n = 1+2+3+4+5\ldots n$ in Mini C

```c
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){
    if(b == 0) return a;
    else return add( add1(a),sub1(b));
}
int sum(int n){
    if(n == 1) return 1;
    else return add(n, sum(sub1(n)));}
int main(){
    printf("%d\n",sum(5));
}
```
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washington DC!)

- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics

- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…
Lambda Calculus Syntax

- A lambda calculus expression is defined as

 \[e ::= \ x \quad \text{variable} \]

 \[| \ \lambda x . e \quad \text{abstraction (fun def)} \]

 \[| \ e \ e \quad \text{application (fun call)} \]

- This grammar describes ASTs; not for parsing (ambiguous!)
- Lambda expressions also known as lambda terms

 - \(\lambda x . e \) is like \(\text{fun } x \rightarrow e \) in OCaml

That's it! Nothing but higher-order functions
Why Study Lambda Calculus?

- It is a “core” language
 - Very small but still Turing complete
- But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, …
- Plus, higher-order, anonymous functions (aka *lambda*ds) are now very popular!
 - C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), … (and functional languages like OCaml, Haskell, F#, …)
Three Conventions

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - $\lambda x. \lambda y. x \ y$ is same as $\lambda x. (\lambda y. (x \ y))$

- Function application is left-associative
 - $x \ y \ z$ is $(x \ y) \ z$
 - Same rule as OCaml

- As a convenience, we use the following “syntactic sugar” for local declarations
 - $\text{let } x = e1 \text{ in } e2$ is short for $(\lambda x. e2) \ e1$
OCaml Lambda Calc Interperter

\[
\begin{align*}
 &e ::= x \\
 &| \lambda x. e \\
 &| e e
\end{align*}
\]

\[
\begin{align*}
 y &\quad \text{Var "y"} \\
 \lambda x. x &\quad \text{Lam ("x", Var "x")} \\
 \lambda x. \lambda y. x y &\quad \text{Lam ("x", (Lam("y", App (Var "x", Var "y"))))} \\
 (\lambda x. \lambda y. x y) \lambda x. x &\quad \text{App (Lam("x", Lam("y", App (Var"x", Var"y")))), Lam ("x", App (Var "x", Var "x")))}
\end{align*}
\]

\[
\begin{align*}
 &\text{type id = string} \\
 &\text{type exp = Var of id} \\
 &| \text{Lam of id * exp} \\
 &| \text{App of exp * exp}
\end{align*}
\]
Quiz #1

\[\lambda x. (y \ z) \text{ and } \lambda x. y \ z \text{ are equivalent} \]

A. True
B. False
Quiz #1

\(\lambda x. (y \ z) \) and \(\lambda x. y \ z \) are equivalent

A. True
B. False
Quiz #2

What is this term’s AST?

\[\lambda x.x \ x \]

A. \text{App} (\text{Lam} ("x", \text{Var} "x"), \text{Var} "x")
B. \text{Lam} (\text{Var} "x", \text{Var} "x", \text{Var} "x")
C. \text{Lam} ("x", \text{App} (\text{Var} "x", \text{Var} "x"))
D. \text{App} (\text{Lam} ("x", \text{App} ("x", "x")))

\text{type id = string}
\text{type exp =}
\quad \text{Var of id}
\quad \text{Lam of id * exp}
\quad \text{App of exp * exp}
Quiz #2

What is this term’s AST?

\[\lambda x. x x \]

A. \text{App} (\text{Lam} ("x", \text{Var} "x"), \text{Var} "x")
B. \text{Lam} (\text{Var} "x", \text{Var} "x", \text{Var} "x")
C. \text{Lam} ("x", \text{App} (\text{Var} "x", \text{Var} "x"))
D. \text{App} (\text{Lam} ("x", \text{App} ("x", "x")))

\text{type id = string}
\text{type exp =}
 \ Var of id
 | \text{Lam of id * exp}
 | \text{App of exp * exp}
Quiz #3

This term is equivalent to which of the following?

\[\lambda x. x \ a \ b \]

A. \((\lambda x. x) \ (a \ b)\)
B. \(((\lambda x. x) \ a) \ b)\)
C. \(\lambda x. (x \ (a \ b))\)
D. \((\lambda x. ((x \ a) \ b))\)
Quiz #3

This term is equivalent to which of the following?

\[\lambda x. x \ a \ b \]

A. \((\lambda x. x) \ (a \ b)\)
B. \(((\lambda x. x) \ a) \ b)\)
C. \(\lambda x. \ (x \ (a \ b))\)
D. \((\lambda x. ((x \ a) \ b))\)
Lambda Calculus Semantics

- Evaluation: All that’s involved are function calls $(\lambda x. e_1) \ e_2$
 - Evaluate e_1 with x replaced by e_2

- This application is called **beta-reduction**
 - $(\lambda x. e_1) \ e_2 \rightarrow e_1[x:=e_2]$

 - $e_1[x:=e_2]$ is e_1 with occurrences of x replaced by e_2
 - This operation is called **substitution**
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur *anywhere* in a term
 - Order reductions are applied does not affect final value!

- When a term cannot be reduced further it is in **beta normal form**
Beta Reduction Example

\[(\lambda x.\lambda z. x \ z) \ y\]
\[\rightarrow (\lambda x. (\lambda z. (x \ z))) \ y\] // since \(\lambda\) extends to right
\[\rightarrow (\lambda x. (\lambda z. (x \ z))) \ y\] // apply \((\lambda x. e1) \ e2 \rightarrow e1[x:=e2]\)
\[\rightarrow (\lambda x. (\lambda z. (x \ z))) \ y\] // where \(e1 = \lambda z. (x \ z), \ e2 = y\)
\[\rightarrow \lambda z. (y \ z)\] // final result

Equivalent OCaml code

- \((\text{fun } x \rightarrow (\text{fun } z \rightarrow (x \ z))) \ y\) \(\rightarrow\) \(\text{fun } z \rightarrow (y \ z)\)
Beta Reduction Examples

- \((\lambda x.x) \ z \rightarrow z\)

- \((\lambda x.y) \ z \rightarrow y\)

- \((\lambda x.x \ y) \ z \rightarrow z \ y\)
 - A function that applies its argument to \(y\)
Beta Reduction Examples (cont.)

- $(\lambda x. x \; y) \; (\lambda z. z) \rightarrow (\lambda z. z) \; y \rightarrow y$

- $(\lambda x. \lambda y. x \; y) \; z \rightarrow \lambda y. z \; y$
 - A curried function of two arguments
 - Applies its first argument to its second

- $(\lambda x. \lambda y. x \; y) \; (\lambda z. z z) \; x \rightarrow (\lambda y. (\lambda z. z z) y) \; x \rightarrow (\lambda z. z z) \; x \rightarrow xx$
Beta Reduction Examples (cont.)

\[(\lambda x. x (\lambda y. y)) (u \ r) \rightarrow\]

\[(\lambda x. (\lambda w. x \ w)) (y \ z) \rightarrow\]
Beta Reduction Examples (cont.)

\[(\lambda x. x (\lambda y. y)) (u \ r) \rightarrow (u \ r) (\lambda y. y)\]

\[(\lambda x. (\lambda w. x w)) (y \ z) \rightarrow (\lambda w. (y \ z) w)\]
Quiz #4

\((\lambda x. y) \, z\) can be beta-reduced to

A. \(y\)
B. \(y \, z\)
C. \(z\)
D. cannot be reduced
Quiz #4

$(\lambda x. y) \, z$ can be beta-reduced to

A. y
B. $y \, z$
C. z
D. cannot be reduced
Quiz #5

Which of the following reduces to $\lambda z. z$?

a) $(\lambda y. \lambda z. x) z$
b) $(\lambda z. \lambda x. z) y$
c) $(\lambda y. y) (\lambda x. \lambda z. z) w$
d) $(\lambda y. \lambda x. z) z (\lambda z. z)$
Quiz #5

Which of the following reduces to \(\lambda z. z \)?

a) \((\lambda y. \lambda z. x) \ z\)

b) \((\lambda z. \lambda x. z) \ y\)

c) \((\lambda y. y) \ (\lambda x. \lambda z. z) \ w\)

d) \((\lambda y. \lambda x. z) \ z \ (\lambda z. z)\)
Lambda calculus uses **static scoping**

Consider the following

- \((\lambda x.x \ (\lambda x.x)) \ z \rightarrow ?\)
 - The rightmost “x” refers to the second binding

- This is a function that
 - Takes its argument and applies it to the identity function

This function is “the same” as \((\lambda x.x \ (\lambda y.y))\)

- Renaming bound variables consistently preserves meaning
 - This is called alpha-renaming or alpha conversion

- Ex. \(\lambda x.x = \lambda y.y = \lambda z.z\) \quad \lambda y.\lambda x.y = \lambda z.\lambda x.z\)
Quiz #6

Which of the following expressions is alpha equivalent to (alpha-converts from)

\[(\lambda x. \lambda y. x y) \ y\]

a) \(\lambda y. \ y \ y\)
b) \(\lambda z. \ y \ z\)
c) \((\lambda x. \lambda z. x \ z) \ y\)
d) \((\lambda x. \lambda y. x \ y) \ z\)
Quiz #6

Which of the following expressions is alpha equivalent to (alpha-converts from)

\((\lambda x. \lambda y. x y) \; y\)

a) \(\lambda y. y \; y\)
b) \(\lambda z. y \; z\)
c) \((\lambda x. \lambda z. x \; z) \; y\)
d) \((\lambda x. \lambda y. x \; y) \; z\)
Defining Substitution

- Use recursion on structure of terms
 - $x[x:=e] = e$ // Replace x by e
 - $y[x:=e] = y$ // y is different than x, so no effect
 - $(e_1 e_2)[x:=e] = (e_1[x:=e]) (e_2[x:=e])$
 // Substitute both parts of application
 - $(\lambda x.e')[x:=e] = \lambda x.e'$
 - In $\lambda x.e'$, the x is a parameter, and thus a local variable that is different from other x’s. Implements static scoping.
 - So the substitution has no effect in this case, since the x being substituted for is different from the parameter x that is in e'
 - $(\lambda y.e')[x:=e] = ?$
 - The parameter y does not share the same name as x, the variable being substituted for
 - Is $\lambda y.(e' [x:=e])$ correct? No…
Variable capture

How about the following?

- \((\lambda x.\lambda y.x\ y)\ y \rightarrow ?\)
- When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
- I.e., \((\lambda x.\lambda y.x\ y)\ y \neq \lambda y.y\ y\)

Solution

- \((\lambda x.\lambda y.x\ y)\) is “the same” as \((\lambda x.\lambda z.x\ z)\)
 - Due to alpha conversion
- So alpha-convert \((\lambda x.\lambda y.x\ y)\ y\) to \((\lambda x.\lambda z.x\ z)\ y\) first
 - Now \((\lambda x.\lambda z.x\ z)\ y \rightarrow \lambda z.y\ z\)
Completing the Definition of Substitution

Recall: we need to define \((\lambda y.e')[x:=e]\)

- We want to avoid capturing (free) occurrences of \(y\) in \(e\)
- Solution: alpha-conversion!
 - Change \(y\) to a variable \(w\) that does not appear in \(e'\) or \(e\)
 (Such a \(w\) is called fresh)
 - Replace all occurrences of \(y\) in \(e'\) by \(w\).
 - Then replace all occurrences of \(x\) in \(e'\) by \(e\).

Formally:

\[(\lambda y.e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e]) \quad (w \text{ is fresh})\]
Beta-Reduction, Again

Whenever we do a step of beta reduction

- \((\lambda x. e_1) e_2 \rightarrow e_1[x:=e_2]\)
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)

Examples

- \((\lambda x.\lambda y. x \ y) \ y = (\lambda x.\lambda z. x \ z) \ y \rightarrow \lambda z. y \ z \quad // \ y \rightarrow z\)
- \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda y. y \ (\lambda x. x)) \ z \rightarrow z \ (\lambda x. x) \quad // \ x \rightarrow y\)
OCaml Implementation: Substitution

(* substitute e for y in m-- m[y:=e] *)

let rec subst m y e =
 match m with
 | Var x ->
 if y = x then e (* substitute *)
 else m (* don’t subst *)
 | App (e1,e2) ->
 App (subst e1 y e, subst e2 y e)
 | Lam (x,e0) -> ...
OCaml Impl: Substitution (cont’d)

(* substitute e for y in m-- m[y:=e] *)

let rec subst m y e = match m with ...

| Lam (x,e0) ->
 if y = x then m
 else if not (List.mem x (fvs e)) then
 Lam (x, subst e0 y e)
 else
 Might capture; need to α-convert
 let z = newvar() in (* fresh *)
 let e0' = subst e0 x (Var z) in
 Lam (z,subst e0' y e)
let rec reduce e =
 match e with
 | App (Lam (x,e), e2) -> subst e x e2
 | App (e1,e2) ->
 let e1' = reduce e1 in
 if e1' != e1 then App(e1',e2)
 else App (e1,reduce e2)
 | Lam (x,e) -> Lam (x, reduce e)
 | _ -> e

Straight β rule
Reduce lhs of app
Reduce rhs of app
Reduce function body
nothing to do
Quiz #7

Beta-reducing the following term produces what result?

\[(\lambda x.x \ \lambda y.y \ x) \ y\]

A. \(y \ (\lambda z.z \ y)\)
B. \(z \ (\lambda y.y \ z)\)
C. \(y \ (\lambda y.y \ y)\)
D. \(y \ y\)
Quiz #7

Beta-reducing the following term produces what result?

$$(\lambda x.x \ \lambda y.y \ x) \ y$$

A. $y \ (\lambda z.z \ y)$
B. $z \ (\lambda y.y \ z)$
C. $y \ (\lambda y.y \ y)$
D. $y \ y$
Quiz #8

Beta reducing the following term produces what result?

\[\lambda x. (\lambda y. y y) \, w \, z \]

a) \(\lambda x. w \, w \, z \)
b) \(\lambda x. w \, z \)
c) \(w \, z \)
d) Does not reduce
Quiz #8

Beta reducing the following term produces what result?

\[\lambda x. (\lambda y. y y) w z \]

a) \(\lambda x. w w z \)

b) \(\lambda x. w z \)

c) \(w z \)

d) Does not reduce