
CMSC 330: Organization of
Programming Languages

Lambda Calculus

1CMSC 330 Summer 2018

100 years ago

Albert Einstein proposed
special theory of relativity in
1905
• In the paper On the

Electrodynamics of Moving
Bodies

2CMSC 330 Summer 2018

Prioritätsstreit, “priority dispute”

3

General Theory of Relativity
• Einstein's field equations

presented in Berlin: Nov 25, 1915
• Published: Dec 2,1915

CMSC 330 Summer 2018

Prioritätsstreit, “priority dispute”

General Theory of Relativity
• Einstein's field equations

presented in Berlin: Nov 25, 1915
• Published: Dec 2,1915

4

• David Hilbert's equations
presented in Gottingen:
Nov 20, 1915

• Published: March 6, 1916

CMSC 330 Summer 2018

Entscheidungsproblem “decision problem”

5

Is there an algorithm to determine if a
statement is true in all models of a theory?

CMSC 330 Summer 2018

Entscheidungsproblem “decision problem“

6CMSC 330 Summer 2018

Turing Machine

7CMSC 330 Summer 2018

8

Turing Completeness

Turing machines are the most powerful
description of computation possible
• They define the Turing-computable functions

A programming language is Turing complete if
• It can map every Turing machine to a program
• A program can be written to emulate a Turing machine
• It is a superset of a known Turing-complete language

Most powerful programming language possible
• Since Turing machine is most powerful automaton

CMSC 330 Summer 2018

9

Programming Language Expressiveness

So what language features are needed to express

all computable functions?

• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience

• Multi-argument functions foo (a, b, c)

Ø Use currying or tuples

• Loops while (a < b) …

Ø Use recursion

• Side effects a := 1

Ø Use functional programming pass “heap” as an argument to

each function, return it when with function’s result

CMSC 330 Summer 2018

Mini C

Sum n = 1+2+3+4+5…n in Mini C

int add1(int n){return n+1;}

int sub1(int n){return n-1;}

int add(int a,int b){

if(b == 0) return a;

else return add(add1(a),sub1(b));

}

int sum(int n){

if(n == 1) return 1;

else return add(n, sum(sub1(n)));

}

int main(){

printf("%d\n",sum(5));

}
10

You only have:
• If statement
• Plus 1
• Minus 1
• functions

CMSC 330 Summer 2018

11

Lambda Calculus (λ-calculus)

Proposed in 1930s by
• Alonzo Church

(born in Washingon DC!)
Formal system
• Designed to investigate functions & recursion
• For exploration of foundations of mathematics

Now used as
• Tool for investigating computability
• Basis of functional programming languages

Ø Lisp, Scheme, ML, OCaml, Haskell…

CMSC 330 Summer 2018

12

Lambda Calculus Syntax

A lambda calculus expression is defined as

e ::= x variable
| λx.e abstraction (fun def)
| e e application (fun call)

Ø This grammar describes ASTs; not for parsing (ambiguous!)
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it! Nothing but higher-order functions

CMSC 330 Summer 2018

13

Why Study Lambda Calculus?

It is a �core� language

• Very small but still Turing complete

But with it can explore general ideas

• Language features, semantics, proof systems,

algorithms, …

Plus, higher-order, anonymous functions (aka

lambdas) are now very popular!

• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), … (and functional languages like

OCaml, Haskell, F#, …)

CMSC 330 Summer 2018

14

Three Conventions

Scope of λ extends as far right as possible
• Subject to scope delimited by parentheses
• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative
• x y z is (x y) z
• Same rule as OCaml

As a convenience, we use the following “syntactic
sugar” for local declarations
• let x = e1 in e2 is short for (λx.e2) e1

CMSC 330 Summer 2018

15

OCaml Lambda Calc Interpreter

e ::= x
| λx.e
| e e

y
λx.x
λx.λy.x y
(λx.λy.x y) λx.x x

type id = string
type exp = Var of id
| Lam of id * exp
| App of exp * exp

Var “y”
Lam (“x”, Var “x”)
Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))

App
(Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))),
Lam (“x”, App (Var “x”, Var “x”)))

CMSC 330 Summer 2018

Quiz #1

16

A. True
B. False

CMSC 330 Summer 2018

λx.(y z) and λx.y z are equivalent

Quiz #1

λx.(y z) and λx.y z are equivalent

17

A.True
B. False

CMSC 330 Summer 2018

Quiz #2

What is this term’s AST?

λx.x x

18

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

CMSC 330 Summer 2018

Quiz #2

What is this term’s AST?

λx.x x

19

A. App (Lam (“x”, Var “x”), Var “x”)
B. Lam (Var “x”, Var “x”, Var “x”)
C. Lam (“x”, App (Var “x”,Var “x”))
D. App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

CMSC 330 Summer 2018

Quiz #3

This term is equivalent to which of
the following?

λx.x a b

20

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Summer 2018

Quiz #3

This term is equivalent to which of
the following?

λx.x a b

21

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

CMSC 330 Summer 2018

22

Lambda Calculus Semantics
Evaluation: All that’s involved are function calls
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• (λx.e1) e2 → e1[x:=e2]

Ø e1[x:=e2] is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formals with actuals
• Instead of using environment to map formals to actuals

• We allow reductions to occur anywhere in a term
Ø Order reductions are applied does not affect final value!

When a term cannot be reduced further it is in
beta normal form

CMSC 330 Summer 2018

23

Beta Reduction Example

(λx.λz.x z) y
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
// where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
• Formal
• Actual

CMSC 330 Summer 2018

24

Beta Reduction Examples

(λx.x) z →

(λx.y) z →

(λx.x y) z →
• A function that applies its argument to y

z

y

z y

CMSC 330 Summer 2018

25

Beta Reduction Examples (cont.)

(λx.x y) (λz.z) →

(λx.λy.x y) z →
• A curried function of two arguments
• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x → xx

CMSC 330 Summer 2018

Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) →

26CMSC 330 Summer 2018

Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)

27CMSC 330 Summer 2018

Quiz #4

(λx.y) z can be beta-reduced to

28

A. y
B. y z
C.z
D. cannot be reduced

CMSC 330 Summer 2018

Quiz #4

(λx.y) z can be beta-reduced to

29

A. y
B. y z
C.z
D. cannot be reduced

CMSC 330 Summer 2018

Quiz #5

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

30CMSC 330 Summer 2018

Quiz #5

Which of the following reduces to λz. z?

a) (λy. λz. x) z
b) (λz. λx. z) y
c) (λy. y) (λx. λz. z) w
d) (λy. λx. z) z (λz. z)

31CMSC 330 Summer 2018

32

Static Scoping & Alpha Conversion

Lambda calculus uses static scoping

Consider the following
• (λx.x (λx.x)) z → ?

Ø The rightmost �x� refers to the second binding

• This is a function that
Ø Takes its argument and applies it to the identity function

This function is �the same� as (λx.x (λy.y))
• Renaming bound variables consistently preserves meaning

Ø This is called alpha-renaming or alpha conversion

• Ex. λx.x = λy.y = λz.z λy.λx.y = λz.λx.z

CMSC 330 Summer 2018

Quiz #6
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

33CMSC 330 Summer 2018

Quiz #6
Which of the following expressions is alpha
equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

34CMSC 330 Summer 2018

Defining Substitution
Use recursion on structure of terms
• x[x:=e] = e // Replace x by e
• y[x:=e] = y // y is different than x, so no effect
• (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])

// Substitute both parts of application
• (λx.e�)[x:=e] = λx.e�

Ø In λx.e�, the x is a parameter, and thus a local variable that is
different from other x�s. Implements static scoping.

Ø So the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in e�

• (λy.e�)[x:=e] = ?
Ø The parameter y does not share the same name as x, the

variable being substituted for
Ø Is λy.(e�[x:=e]) correct? No…

35CMSC 330 Summer 2018

36

Variable capture

How about the following?
• (λx.λy.x y) y → ?
• When we replace y inside, we don�t want it to be

captured by the inner binding of y, as this violates
static scoping

• I.e., (λx.λy.x y) y ≠ λy.y y

Solution
• (λx.λy.x y) is �the same� as (λx.λz.x z)

Ø Due to alpha conversion

• So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first
Ø Now (λx.λz.x z) y → λz.y z

CMSC 330 Summer 2018

Completing the Definition of Substitution

Recall: we need to define (λy.e�)[x:=e]
• We want to avoid capturing (free) occurrences of y in e
• Solution: alpha-conversion!

Ø Change y to a variable w that does not appear in e� or e
(Such a w is called fresh)

Ø Replace all occurrences of y in e� by w.
Ø Then replace all occurrences of x in e� by e!

Formally:
(λy.e�)[x:=e] = λw.((e� [y:=w]) [x:=e]) (w is fresh)

37CMSC 330 Summer 2018

38

Beta-Reduction, Again

Whenever we do a step of beta reduction
• (λx.e1) e2 → e1[x:=e2]
• We must alpha-convert variables as necessary
• Sometimes performed implicitly (w/o showing

conversion)

Examples
• (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
• (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y

CMSC 330 Summer 2018

OCaml Implementation: Substitution
(* substitute e for y in m-- *)
let rec subst m y e =

match m with
Var x ->

if y = x then e (* substitute *)
else m (* don’t subst *)

| App (e1,e2) ->
App (subst e1 y e, subst e2 y e)

| Lam (x,e0) -> …

39

m[y:=e]

CMSC 330 Summer 2018

OCaml Impl: Substitution (cont’d)
(* substitute e for y in m-- *)
let rec subst m y e = match m with …

| Lam (x,e0) ->
if y = x then m
else if not (List.mem x (fvs e)) then

Lam (x, subst e0 y e)
else

let z = newvar() in (* fresh *)
let e0' = subst e0 x (Var z) in
Lam (z,subst e0' y e)

40

Shadowing blocks
substitution

Safe: no capture possible
Might capture; need to α-convert

CMSC 330 Summer 2018

m[y:=e]

OCaml Impl: Reduction
let rec reduce e =

match e with
App (Lam (x,e), e2) -> subst e x e2

| App (e1,e2) ->
let e1' = reduce e1 in
if e1' != e1 then App(e1',e2)
else App (e1,reduce e2)

| Lam (x,e) -> Lam (x, reduce e)
| _ -> e

41

Straight β rule

Reduce lhs of app

Reduce rhs of app

nothing to do

Reduce function body

CMSC 330 Summer 2018

Quiz #7

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y

42

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

CMSC 330 Summer 2018

Quiz #7

Beta-reducing the following term produces what
result?

(λx.x λy.y x) y

43

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

CMSC 330 Summer 2018

Quiz #8
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

44CMSC 330 Summer 2018

Quiz #8
Beta reducing the following term produces what
result?

λx.(λy. y y) w z

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

45CMSC 330 Summer 2018

