CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC 330 Summer 2018

100 years ago

» Albert Einstein proposed
special theory of relativity in

1905

* In the paper On the
Electrodynamics of Moving
Bodies

CMSC 330 Summer 2018 2

Prioritatsstreit, “priority dispute”

General Theory of Relativity

. Einstein's field equations
presented in Berlin: Nov 25, 1915

. Published: Dec 2,1915

CMSC 330 Summer 2018 3

Prioritatsstreit, “priority dispute”

General Theory of Relativity

. Einstein's field equations
presented in Berlin: Nov 25, 1915

. Published: Dec 2,1915

 David Hilbert's equations
presented in Gottingen:

Nov 20, 1915
 Published: March 6, 1916

CMSC 330 Summer 2018 4

Entscheidungsproblem “decision problem”

Is there an algorithm to determine if a
statement is true in all models of a theory?

CMSC 330 Summer 2018 5

Entscheidungsproblem “decision problem®

Algorithm, formalised

n An unsolvable problem of elementary number theory, Bul-

Alonzo Church: Lambda calculus

letin the American Mathematical Society, May 1935

Kurt Giodel: Recursive functions

numbers, Bulletin the American Mathematical Society,

5»! b / July 1935

Alan M. Turing: Turing machines

)i Stephen Kleene, General recursive functions of natural
A

On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Math-
ematical Society, received 25 May 1936

CMSC 330 Summer 2018 6

Turing Machine

Inhinite | ape

10 0,01 1|1 0
VAN

Fead HWrite Head

_ontrol Unit

l e]

CMSC 330 Summer 2018

Turing Completeness

» Turing machines are the most powerful
description of computation possible

* They define the Turing-computable functions
» A programming language is Turing complete if
* |t can map every Turing machine to a program
* A program can be written to emulate a Turing machine

* |tis a superset of a known Turing-complete language

» Most powerful programming language possible
* Since Turing machine is most powerful automaton

CMSC 330 Summer 2018 8

Programming Language Expressiveness

» S0 what language features are needed to express
all computable functions?

* What's a minimal language that is Turing Complete?

» Observe: some features exist just for convenience

* Multi-argument functions foo (a, b, c)
> Use currying or tuples

* Loops while (a <Db) ...
> Use recursion
* Side effects a: =1

> Use functional programming pass “heap” as an argument to
each function, return it when with function’s result

CMSC 330 Summer 2018 9

Mini C

You only have:
e |f statement

e Plus 1
e Minus 1
 functions

CMSC 330 Summer 2018

Sumn =1+2+3+4+5...nin Mini C
int add1(int n){return n+1;}
int sub1(int n){return n-1;}
int add(int a,int b){
if(b == 0) return a;
else return add(add1(a),sub1(b));
}

int sum(int n){
if(n == 1) return 1;

else return add(n, sum(sub1(n)));

}

int main(){
printf("%d\n",sum(5));

10

» Proposed in 1930s by

Lambda Calculus (A-calculus)
* Alonzo Church
(born in Washingon DC!)

i/
» Formal system ‘

* Designed to investigate functions & recursion
* For exploration of foundations of mathematics

» Now used as
* Tool for investigating computability

-

* Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

CMSC 330 Summer 2018 11

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e ;=X variable
| Ax.e abstraction (fun def)
| ee application (fun call)

> This grammar describes ASTs; not for parsing (ambiguous!)
> Lambda expressions also known as lambda terms

e A\x.eislike (fun x -> e) in OCaml

That's it! Nothing but higher-order functions

CMSC 330 Summer 2018 12

Why Study Lambda Calculus?

» Itis a “core” language
* Very small but still Turing complete
» But with it can explore general ideas

* Language features, semantics, proof systems,
algorithms, ...

» Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!

e C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi
(since 2009), Objective C, Java 8, Swift, Python,
Ruby (Procs), ... (and functional languages like
OCaml, Haskell, F#, ...)

CMSC 330 Summer 2018 13

Three Conventions

» Scope of A extends as far right as possible

* Subject to scope delimited by parentheses
* AX. Ay.xX y is same as AX.(Ay.(x y))

» Function application is left-associative
* Xyzis(xy)z
* Same rule as OCaml

» As a convenience, we use the following “syntactic
sugar” for local declarations

* letx=e1ine2is short for (Ax.e2) e1

CMSC 330 Summer 2018 14

OCaml Lambda Calc Interpreter

type i1d = string

> €= X type exp = Var of id
| Ax.e | Lam of id * exp
| ee | App of exp * exp

y Var \\YII

AX_X Lam (\\xll , Var \\xll

AX.Ay_X y Lam (\\x// , (Lam(\\y// ,APP (Var W 77 , Var \\y//))))

(AX.AY.X Y) AX.X X Bpp
(LaI.[l (\\xll , LaIn (\\yll ’App (Var\\xll ’Var\\yll))) ,
LaI[l (\\xll , APP (Var \\xll , Var \\xll)))

CMSC 330 Summer 2018 15

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A. True
B. False

CMSC 330 Summer 2018 16

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A.True
B. False

CMSC 330 Summer 2018 17

Quiz #2

. . y type id = string
What is this term’s AST? /0 .o -

Var of id

| Lam of id * exp
AX.xX X | App of exp * exp

. App (Lam (“x”, Var “x”), Var “x”
. Lam (Var “x”, Var “x”, Var “x”

. Lam (“x”, App (Var “x”,Var “x”))
. APP (Lam (\\xll , App (\\xll , \\xll)))

OoOw >

CMSC 330 Summer 2018 18

Quiz #2

. . y type id = string
What is this term’s AST? /0 .o -

Var of id

| Lam of id * exp
AX.X X | App of exp * exp

. App (Lam (“x”, Var “x”), Var “x”
] Lam (Var \\x// , Var \\xll , Var \\xll)

. Lam (\\xll , App (Var \\x// ,Var \\x//))
. APP (Lam (“X”, APP (“x”, “x”)))

OoOwP

CMSC 330 Summer 2018 19

Quiz #3

This term is equivalent to which of
the following?

AX.X a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Summer 2018

20

Quiz #3

This term is equivalent to which of
the following?

AX.X a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Summer 2018

21

Lambda Calculus Semantics

» Evaluation: All that's involved are function calls
(Ax.e1) e2

* Evaluate e1 with x replaced by e2

» This application is called beta-reduction
* (Ax.e1) e2 — el[x:=e2]
> e1[x:=e2] is e1 with occurrences of x replaced by e2
> This operation is called substitution

- Replace formals with actuals
- Instead of using environment to map formals to actuals

* We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!

» When a term cannot be reduced further itis in
beta normal form

CMSC 330 Summer 2018 22

Beta Reduction Example

» (AX.AZX2Z2)Yy
— (AX.(Az.(x 2))) ¥ // since A extends to right

— (AX.(Az.(x 2))) ¥ /I apply (Ax.e1) e2 — el1[x:=e2]

M /| where e1 = Az.(x z),e2 =y

— Az.(y 2) // final result Parameters
* Formal

* Actual

» Equivalent OCaml code
* funx->(funz->(x2z))y — funz->(yz)

CMSC 330 Summer 2018 23

Beta Reduction Examples

» (AX.X)Zz — Z
» (AXY)z— Yy

» (AXXY)Z— zy

* A function that applies its argument to y

CMSC 330 Summer 2018

24

Beta Reduction Examples (cont.)

» (AXXY)(Az.2) > (Az.2)y —> Yy

* A curried function of two arguments
* Applies its first argument to its second

» (AXAY.XY) (AZ.2Z) X —(Ay.(Az.zz)y)Xx — (AZ.ZZ)X — XX

CMSC 330 Summer 2018 25

Beta Reduction Examples (cont.)

(AX.X (Ay.y)) (ur) —

(AX.(AW. X W)) (Y 2) —

CMSC 330 Summer 2018

26

Beta Reduction Examples (cont.)

(AX.X (Ay.y)) (Uur) — (ur) (Ay.y)

(AX.(AW. X W)) (Y 2) — (Aw. (Y Z) w)

CMSC 330 Summer 2018

27

Quiz #4

(Ax.y) z can be beta-reduced to

Z

o0 w>
N K K

. cannot be reduced

CMSC 330 Summer 2018

28

Quiz #4

(Ax.y) z can be beta-reduced to
A.y

B.y z

C.z

D. cannot be reduced

CMSC 330 Summer 2018

29

Quiz #5

Which of the following reduces to Az. z?

a) (Ay.Az. x)z

b) (Az.AX.Zz)y

c) (Ay.y)(AX.Az.z)w
(

d) (Ay.AXx.z)z (Az. 2)

CMSC 330 Summer 2018 30

Quiz #5

Which of the following reduces to Az. z?

a) (Ay.Az. x)z

b) (Az.AX.Zz)y

c) (AYy.y) (AX.Az.z)w
d) (Ay.AXx.z)z (Az. 2)

CMSC 330 Summer 2018 31

Static Scoping & Alpha Conversion

» Lambda calculus uses static scoping

» Consider the following
* (AX.X (AX.X))z — 7?
» The rightmost “x” refers to the second binding

* This is a function that
> Takes its argument and applies it to the identity function

» This function is “the same”™ as (Ax.x (Ay.y))

* Renaming bound variables consistently preserves meaning
> This is called alpha-renaming or alpha conversion

°* EX.AXX=Ay.y=Az.z Ay.AX.y = Az.AX.z

CMSC 330 Summer 2018 32

Quiz #6

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XYy)y

a)Ay.yy
b)Az.y z
C) (AX.Az. x2Z)y
d) (AX. Ay. xXy) z

CMSC 330 Summer 2018

Quiz #6

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XYy)y

a)Ay.yy
b)Az.y z
C) (AX.Az. X 2)y
d) (AX. Ay. xXy) z

CMSC 330 Summer 2018

34

Defining Substitution

» Use recursion on structure of terms
¢ X[x:=e]=e // Replace x by e
y[x:=e] =y /1 y is different than x, so no effect
(e1 e2)[x:=e] = (e1[x:=€e]) (e2[x:=¢€])
// Substitute both parts of application
(Ax.e")[x:=e] = Ax.e’

> In Ax.e’, the x is a parameter, and thus a local variable that is
different from other x’ s. Implements static scoping.

> S0 the substitution has no effect in this case, since the x being
substituted for is different from the parameter x that is in €’

(A\y.e’)[x:=e] =7
> The parameter y does not share the same name as x, the

variable being substituted for
> Is Ay.(e’ [x:=€]) correct? No...

CMSC 330 Summer 2018 35

Variable capture

» How about the following?
* (AXAYy.XYy)y — 7

* When we replace y inside, we don’ t want it to be

captured by the inner binding of y, as this violates
static scoping

° le,, (AXAYXY)YFAYYyYy

» Solution

* (AX.Ay.xYy)is “the same” as (AX.Az.x z)
> Due to alpha conversion

* So alpha-convert (AX.Ay.x y) y to (AX.Az.x z) y first
> Now (AX.Az.Xz)y — Az.y z

CMSC 330 Summer 2018 36

Completing the Definition of Substitution

» Recall: we need to define (Ay.e’)[x:=€]

* \We want to avoid capturing (free) occurrences of y in e
* Solution: alpha-conversion!

» Change y to a variable w that does not appearine’ ore
(Such a w is called fresh)

» Replace all occurrences of y in e’ by w.

» Then replace all occurrences of x in e’ by el

» Formally:
(Ay.e”)[x:=e] = Aw.((e" [y:=w]) [x:=€e]) (w is fresh)

CMSC 330 Summer 2018 37

Beta-Reduction, Again

» Whenever we do a step of beta reduction
* (Ax.e1) e2 — el[x:=e2]
* \We must alpha-convert variables as necessary

* Sometimes performed implicitly (w/o showing
conversion)

» Examples

* (AAYXY)Y=(AXAzXxZ2)y > ANzyz Iy — z
* (AX.X (Ax.X))z=(Ay.y (AX.X))z —> z (AXx.X) /I x>y

CMSC 330 Summer 2018

38

OCaml Implementation: Substitution

(* substitute e for y in m-- m|y:.=e] %)

let rec subst m y e

match m with
var x ->

if vy = x then e (* substitute *)
else m (* don’t subst *)

| App (el,e2) ->

App (subst el y e, subst e2 y e)
| Lam (x,e0) -> ..

CMSC 330 Summer 2018 39

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- m|y:.=e] %)

let rec subst m y e match m with ..

Lam ->
| .a (x,e0) Shadowing blocks
1f y = x then m substitution

else if not (List.mem x (fvs e)) then

Lam (x, subst e0 y e) Safe: no capture possible

else |\ight capture; need to a-convert
let z = newvar() in (* fresh *)

let e0' = subst e0 x (Var z) in

Lam (z,subst e0' y e)

CMSC 330 Summer 2018 40

OCaml Impl: Reduction

let rec reduce e =

match e with Straight B rule

App (Lam (x,e), e2) -> subst e x e2

| App (el,e2) ->
let el' = reduce el in Reduce lhs of app
if el' !'= el then App(el',6e2)

else App (el,reduce e2) Reduce rhs of app

| Lam (x,e) -> Lam (x, reduce e)

| _ > e Reduce function body

nothing to do

CMSC 330 Summer 2018 41

Quiz #7

Beta-reducing the following term produces what
result?

(AX. X AY.y X) Yy

vy (Az.z y)
Z (Ay.y z)
. Y (Ay.yy)
yy

o0 W

CMSC 330 Summer 2018

42

Quiz #7

Beta-reducing the following term produces what
result?

(AX. X AY.y X) Yy

A. y(Az.zy)
B. z (Ay.y z)

C. y(Ay.yy)
D. yy

CMSC 330 Summer 2018

43

Quiz #8

Beta reducing the following term produces what
result?

AX.(AYy.yy)w z

a)AX. ww z
b))\x W Z

C) W
)

d Does not reduce

CMSC 330 Summer 2018

44

Quiz #8

Beta reducing the following term produces what
result?

AX.(AYy.yy)w z

a) AX. ww z

b) AX. W Z

C)WZ

d) Does not reduce

CMSC 330 Summer 2018

45

