CMSC 330: Organization of
Programming Languages

DFAs, and NFAs, and Regexps
(Oh my!)

CMSC330 Summer 2018

Types of Finite Automata

» Deterministic Finite Automata (DFA)

* Exactly one sequence of steps for each string
* All examples so far

» Nondeterministic Finite Automata (NFA)
* May have many sequences of steps for each string

* Accepts if any path ends in final state at end of string
* More compact than DFA

> But more expensive to test whether a string matches

Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above

Quiz 1: Which DFA matches this regexp?

b(b|at+b?)

D. None of the above

Comparing DFAs and NFAs

» NFAs can have more than one transition
leaving a state on the same symbol

OX
» DFAs allow only one transition per symbol
* |.e., transition function must be a valid function

* DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

» NFAs may have transitions with empty string label
* May move to new state without consuming character

e .
O—> e-transition

» DFA transition must be labeled with symbol
* DFA is a special case of NFA

DFA for (a|b)*abb

RE®

NFA for (a|b)*abb

» ba
* Has paths to either SO or S1
* Neither is final, so rejected

» babaabb

* Has paths to different states
* One path leads to S3, so accepts string

NFA for (ablaba)®

» aba
* Has paths to states S0, S1

» ababa
* Has paths to S0, S1

* Need to use g-transition

Comparing NFA and DFA for (ablaba)*

DFA

NFA Acceptance Algorithm Sketch

» When NFA processes a string s

* NFA must keep track of several “current states”
> Due to multiple transitions with same label
> e-tfransitions

* If any current state is final when done then accept s

» Example
* After processing “a”

Formal Definition

» A deterministic finite automaton (DFA) is a
S5-tuple (2, Q, qo, F, 0) where

* 2 is an alphabet
* Qis a nonempty set of states

* Qo € Q is the start state
* F c Qs the set of final states

* 0:Qx 2 — Q specifies the DFA's transitions
> What's this definition saying that o is?

» A DFA accepts s if it stops at a final state on s

Formal Definition: Example

e 2 =10, 1 1
* Q ={{so,}s1} \‘
° gy = SO -
e F={S1)
° symbol 0
5| 0] 1
¢ SO| SO| Sf
¢ s1| so| st

or as { (S0,0,50),(S0,1,S1),(S1,0,50),(S1,1,S1) }

Nondeterministic Finite Automata (NFA)

» An NFA is a 5-tuple (2, Q, qo, F, 8) where

* 2,Q, q0, F as with DFAs
* 0 € Qx(2u{e}) x Q specifies the NFA's transitions

* 2={a}

- Q={%1, S2, S3}

* (o= 31

« F={S3}

« 0={(51,a,51), ($1,a,S2), (S2,¢,S3) }

Example

» An NFA accepts s if there is at least one path via s
from the NFA'’s start state to a final state

Relating REs to DFAs and NFAs

» Regular expressions, NFAs, and DFAs accept
the same languages!

can
reduce

DFA NFA

can transform can reduce

RE

Reducing Regular Expressions to NFAs

» Goal: Given regular expression A, construct
NFA: <A>= (2, Q, qo, F, 0)

* Remember regular expressions are defined
recursively from primitive RE languages

* Invariant: |F| =1 in our NFAs
> Recall F = set of final states

» Will define <A> for base cases: 0 ,¢, 0
* Where o is a symbol in 2

» And for inductive cases: AB, A|B, A*

Reducing Regular Expressions to NFAs

» Base case: o

OO

<o0> = ({0}, {S0, S1}, SO, {S1}, {(SO, o, S1)})

Reduction

» Base case: ¢

Y

<g> = (@, {S0}, SO, {S0}, 9)

» Base case: @

=

<@> = (9, {S0, S1}, SO, {S1}, B)

Reduction: Concatenation

» Induction: AB

H_/H_/

<A>

* <A>= (2p, Qa, Qa, {fa}, Oa)
* = (2, Qg, s, {f}, OB)

Reduction: Concatenation

» Induction: AB

H_/H_/

<A>

* <A>= (2p, Qa, Qa, {fa}, Oa)

* = (2, Qg, gs, {fz}, OB)
* <AB>= (ZpU 2g, Qa U Qg, ga, {fs}, 04 U s U {(fa,€,98)})

Reduction: Union

» Induction: A|B »@
930

* <A>= (2, Qa, qa, {fa}, Oa)
* = (2, Qg, s, {f}, OB)

Reduction: Union

» Induction: A|B @ @
\ €

* <A>= (2, Qa, qa, {fa}, Oa)

* = (2, Qg, OB, {fs}, Os)
e <AIB>= (55U g Qu U Qg U {S0,81}, SO, {S1},

0a U 0g U {(S0,£,q4), (SO,€,98), (fa€,51), (f8,€,51)})

Reduction: Closure

» Induction: A*

oSS

* <A>= (2, Qa, qa, {fa}, Oa)

Reduction: Closure

» Induction: A*

* <A>= (2a, Qa, 9a, {fa}, On)
e <A*> = (X, QU {S0,S1}, SO, {S1},
O U {(fa,£,S1), (S0,£,0,), (S0,£,S1), (S1,£,S0)})

Quiz 2: Which NFA matches a* ?

Quiz 2: Which NFA matches a* ?

Quiz 3: Which NFA matches a|b* ?

A.

Quiz 3: Which NFA matches a|b* ?

RE — NFA

Draw NFAs for the regular expression (0|1)*110*

RE — NFA

Draw NFAs for the regular expression (ab*c|d*alab)d

Reduction Complexity

» Given a regular expression A of size n...
Size = # of symbols + # of operations

» How many states does <A> have?
* Two added for each |, two added for each *
* O(n)
* That's pretty good!

Recap

» Finite automata » Reducing RE to NFA
* Alphabet, states... * Concatenation
°* (2,Q, qo, F, 0)

» Types

* Deterministic (DFA)

Reducing NFA to DFA

can
reduce

DFA NFA

can reduce

RE

Reducing NFA to DFA

» NFA may be reduced to DFA
* By explicitly tracking the set of NFA states

» |Intuition
e Build DFA where

> Each DFA state represents a set of NFA “current states”
» Example

(
S1, S2, S3
NFA 5 DFA

CMSC 33C * 34

Algorithm for Reducing NFA to DFA

» Reduction applied using the subset algorithm
* DFA state is a subset of set of all NFA states

» Algorithm
* |Input
> NFA (Z, Q, qo, Fn, d)
* Qutput
> DFA (£, R, ro, Fq, 8)
* Using two subroutines

> €-closure(o, p) (and e-closure(d, S))
> move(d, p, a) (and move(9, S, a))

35

e-transitions and s-closure

» We say p & q

* Ifitis possible to go from state p to state q by taking only
e-transitions in 0

* If 3 p, p1, P2, ... Pn, 9 € Q such that
> {p,E,p1} € O, {p1,€,p2} €90, ..., {pn,E,q} €O

» €-closure(0, p)
* Set of states reachable from p using e-transitions alone

> Set of states q such that p €> q according to &
> e-closure(d, p)={q|p&qind}
> e-closure(d, Q) ={q|peQ,p&>qind}
* Notes
> £-closure(d, p) always includes p
> We write e-closure(p) or e-closure(Q) when 0 is clear from context

CMSC 330 36

e-closure: Example 1

» Following NFA contains
¢ S15 82
e S2 &, S3

e S1&, S3
> Since S1 £ S2 and S2 & S3

» £-closures

* e-closure(S1)= {S1,S2,S3}
* g-closure(S2) = {S2,S3)

(
(
* g-closure(S3) = {83}
* e-closure({S1,52})= {S1,S2,S3}uU{S2,S3}

e-closure: Example 2

» Following NFA contains
* S15 83
e S3&, 82

e S1 &, 82
> Since S1 £ S3 and S3 & S2 &

» £-closures

e-closure Algorithm: Approach

» Input: NFA (2, Q, qo, F,, 0), State Set R
» Output: State Set R’

» Algorithm
LetR'=R /[start states
Repeat
LetR =R’ /[continue from previous

LetR"=R u{q|p e R, (p,sq) e d} // new g-reachable states

Until R = R’ // stop when no new states

This algorithm computes a fixed point
see note linked from project description

CMSC 330 Spring 2018 39

e-closure Algorithm Example

» Calculate s-closure(5.{S1})

(s1) (s1) 4

LetR'=R
{81} {S1) 82} Reepeat
Let R=R’
{$1,82} {S1,82,83} |‘elR=RuldalpeR (p.ed) <)

{S1, S2, S3} {S1, S2, S3)

CMSC 330 Spring 2018 40

Calculating move(p,a)

» move(d,p,a)

* Set of states reachable from p using exactly one
transition on a
» Set of states q such that {p, a,q} € &

> move(d,p,a)={q|{p,a, q}ed}
> move(d,Q,a)={q|peQ,{p,a,qled}
- i.e., can “lift” move() to start from a set of states Q

* Notes:
> move(d,p,a) is @ if no transition (p,a,q) € 0, for any q
> We write move(p,a) or move(R,a) when d clear from context

CMSC 330 +

move(a,p) : Example 1

» Following NFA
e 2={a,b}

move(a,p) : Example 2

» Following NFA
e > = { a, b }

{
S1,b)= {83} move({S1,S2},a) = {S2,S3}
{

NFA — DFA Reduction Algorithm (“subset”)

» Input NFA (Z, Q, qo, F,, ©), Output DFA (2, R, ry, Fy4, &)
» Algorithm

Let ro = e-closure(d,qo), add it to R

While 3 an unmarked state r ¢ R
Mark r
Foreacha e X
Let E = move(d,r,a)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd' =06 u{r, a, e}

Let Fa ={r|3ds e rwith s € Fn}

oM 290
» L | _),"_.

/| DFA start state

/[process DFA stater
/| each state visited once
/| for each letter a

/[states reached via a

/[states reached via ¢

/I if state e is new

// add e to R (unmarked)
/[add transition r—e

[/l final if include state in Fn

44

NFA — DFA Example 1

e Start = e-closure(0,51) = { {S1,53} } NFA

e R={{S1,53}}
e r < R={S1,S3)
* move(0,{S1,53},a) = {S2}
> e = e-closure(5,{S2}) = {S2} €

> R=RuU {S2}} = {{S1,S3}, {S2} } DEA

> 5 =5 U{{S1,S3), a, {sz}}
+ move(5.{S1,S3}.b)

NFA — DFA Example 1 (cont.)

* R={{S1,83}, {S2}}
*reR= {82}
* move(0,{S2},a)=0
e move(d,{S2},b) = {S3}
> e = g-closure(d,{S3}) = {S3}
> R=R U {{S3}} = {{S1,S3}, {S2}, {S3} } DEA

> 8 =8 U {{S2), b, {S31

 Move(i3) (2 3()
* Mark {S3}, exit loop &

NFA — DFA Example 1 (cont.)
* Move({S3},a) =9
* Fq={{S1,83}, {S3}} DFA

* R ={{S1,S3}, {S2}, {S3}} NFA
e Move({S3},b) =@

> Since S3 € Fn : 0
(B3

NFA — DFA Example 2

» NFA » DFA

48

Quiz 4: Which DFA is equiv to this NFA?

Quiz 4: Which DFA is equiv to this NFA?

Actual Answer

NFA — DFA Example 3

» NFA » DFA

NFA — DFA Example

NFA — DFA Practice

NFA — DFA Practice

Analyzing the reduction

» Any string from {A} to either {D} or {CD}
* Represents a path from A to D in the original NFA

56

Subset Algorithm as a Fixed Point

» Input: NFA (2, Q, qo, F, 0)
» Qutput: DFA M
» Algorithm

Let qo’ = e-closure(d, qo)
Let F'={qo’} ifgqo’ N F# @, or @ otherwise

Let M’ = (2, {qo’}, qo’, F’, @) // starting approximation of
DFA

Repeat
LetM =M /[current DFA approx
For each q € states(M),a € 2 // for each DFA state q and letter a
Let s = e-closure(d, move(d, q, a)) // new subset from g
Let F'={s}ifs N F# @, or @ otherwise, // subset contains final?
M =M u (0, {s}, 0, F, {(q, a, s)}) // update DFA
Until M =M // reached fixed point

CMSC 330 Spring 2018 57

Redux: DFA to NFA Example 1

® Qo = e-closure(d,51) = {S1,53}
o F' ={{S1,S3}}since {S1,S3} N {S3}# @ NFA

o M'={2,{{S1,S3}}, {S1,S3}, {{S1,S3}}, © }
Q qo’ F o}

CMSC 330 Spring 2018 58

Redux: DFA to NFA Example 1 (cont)

o M'={2, {{S1,S3}}, {S1,S3}, {{S1,S3}}, 0 }

® g ={S1, S3}
® 2 =a
® s = {S2}

» since move(d,{S1, S3},a) = {S2}
» and e-closure(d,{S2}) = {S2}

o F =¢

> Since {S2} N {S3} =0
> where s = {S2} and F = {S3}

o ={2 {{S1.53}{S2}} {51953} {{S1.53}})} }
, £

qo’ 5

CMSC 330 Spring 2018 59

Redux: DFA to NFA Example 1 (cont)

o M ={2, {{S1,S3},{S2}}, {S1,S3}, {{S1,S3}}, {({S1,S3},a,{S2})} }

® q = {S2}
® a=>5b
® s = {S3}

» since move(d,{S2},b) = {S3}
» and e-closure(d,{S3}) = {S3}
® F' ={{S3}}

> Since {S3} N {S3} = {S3}
> where s = {S3} and F = {S3}

o MI'=M U
(@, {{S3l, 0, {{S3}}, {({S2}b,[S3N}

={2, {8103 {020{33}}, {01 03} {1, 03, (O3}
Q’ qo' F’ 5

CMSC 330 Spring 2018 60

Analyzing the Reduction

» Can reduce any NFA to a DFA using subset alg.

» How many states in the DFA?

* Each DFA state is a subset of the set of NFA states
* Given NFA with n states, DFA may have 2" states
> Since a set with n items may have 2" subsets
* Corollary
> Reducing a NFA with n states may be O(2")

CMSC 330 61

Reducing DFA to RE

can
reduce

DFA NFA

can transform can transform

RE

Reducing DFAs to REs

» General idea

* Remove states one by one, labeling transitions with
regular expressions

* When two states are left (start and final), the
transition label is the regular expression for the DFA

CMSC 330

ablba

63

DFA to RE example

Language over = {0,1} such that every string is a
multiple of 3 in binary

DFA to RE example

Language over = {0,1} such that every string is a
multiple of 3 in binary

1 New-Starting 0] 1
0 ‘ 1 State 0
£
& G L an U -
1 0 New-Final State @

|o.1(o1'o'1;'
—® —®

Staring State Frai Sute

0+1(01 0)1)

Other Topics

» Minimizing DFA
* Hopcroft reduction

» Complementing DFA
» Implementing DFA

66

Minimizing DFAs

» Every regular language is recognizable by a
unique minimum-state DFA

* Ignoring the particular names of states

» In other words

* For every DFA, there is a unique DFA with minimum
number of states that accepts the same language

67

J. Hopceroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

Minimizing DFA: Hopcroft Reduction

» Intuition

* Look to distinguish states from each other
> End up in different accept / non-accept state with identical input

» Algorithm

* Construct initial partition
> Accepting & non-accepting states
* |teratively split partitions (until partitions remain fixed)

> Split a partition if members in partition have transitions to
different partitions for same input

- Two states x, y belong in same patrtition if and only if for all
symbols in 2 they transition to the same partition

* Update transitions & remove dead states

CMSC 330 68

Splitting Partitions

» No need to split partition {S,T,U,V}
* All transitions on a lead to identical partition P2
* Even though transitions on a lead to different states

69

Splitting Partitions (cont.)

» Need to split partition {S,T,U} into {S,T}, {U}
* Transitions on a from S, T lead to partition P2
* Transition on a from U lead to partition P3

Resplitting Partitions

» Need to reexamine partitions after splits
* Initially no need to split partition {S, T,U}
* After splitting partition {X,Y} into {X}, {Y} we need to split
partition {S,T,U} into {S, T}, {U}

Minimizing DFA: Example 1

>

>

DFA

Initial partitions

Split partition

72

Minimizing DFA: Example 1

» DFA

» Initial partitions

* Accept {R} = P1
* Reject {S T} = P2

» Split partition? _, Not required, minimization done
° move(S,a) =T e P2 — mOve(S,b) =R € P1

¢ move(T,a) — T = P2 — move (Tab) — R = P']

Minimizing DFA: Example 2

Minimizing DFA: Example 2

» DFA

. - DFA
» Initial partitions already
* Accept {R} = P1 minimal
* Reject {S T} = P2
» Split partition? _, ves, different partitions for B
° move(S,a) =T e P2 — mOve(S,b) =T e P2

¢ move(T,a) — T = P2 — move (Tab) — R € P']

Minimizing DFA: Example 3

a

Minimizing DFA: Example 3

Complement of DFA

» Given a DFA accepting language L

* How can we create a DFA accepting its complement?

* Example DFA
> 2 = {a,b}

d

lo@B O

b

Complement of DFA

» Algorithm

* Add explicit transitions to a dead state
* Change every accepting state to a non-accepting state
& every non-accepting state to an accepting state

» Note this only works with DFAs
* Why not with NFAs?

Implementing DFAs (one-off)

cur_state = 0;
while (1) {

It'S easy tO bUiId symbol = getchar();
a program WhiCh | switen (cur_state) ¢

I " case 0: switch (symbol) {
mImICS a DFA case '0': cur_state = 0; break;

case 'l': cur_state = 1; break;
case '\n': printf("rejected\n"); return
default: printf ("rejected\n"); return

\ 1)
break;

@ : switch (symbol) {
case '0': cur_state = 0; break;

0 case 'l': cur_state = 1; break;
case '\n': printf("accepted\n"); return 1;
default: printf ("rejected\n"); return 0;
0 1 }

break;

default: printf ("unknown state; I'm confused\n");
break;

Implementing DFAs (generic)

More generally, use generic table-driven DFA
given components (2, Q, qo, F, 0) of a DFA:

letq = qo
while (there exists another symbol s of the input string)

q:=95(q, s);
if g € F then
accept

else reject

* ¢ is just an integer
* Represent 6 using arrays or hash tables
* Represent F as a set

81

Running Time of DFA

» How long for DFA to decide to accept/reject string s?

* Assume we can compute 8(q, ¢) in constant time
* Then time to process s is O(|s])
» Can’t get much faster!

» Constructing DFA for RE A may take O(2/Al) time

* But usually not the case in practice

» So there’s the initial overhead
* But then processing strings is fast

Regular Expressions in Practice

» Regular expressions are typically “"compiled” into
tables for the generic algorithm

* Can think of this as a simple byte code interpreter

* Butreally just a representation of (Z, Qa, ga, {fa}, 0a),
the components of the DFA produced from the RE

» Regular expression implementations often have
extra constructs that are non-regular
* |.e., can accept more than the regular languages

* Can be useful in certain cases
* Disadvantages
> Nonstandard, plus can have higher complexity

CMSC 330 %

Summary of Regular Expression Theory

» Finite automata
* DFA, NFA
» Equivalence of RE, NFA, DFA
* RE — NFA
» Concatenation, union, closure

* NFA — DFA

> e-closure & subset algorithm
» DFA
* Minimization, complement
° Implementation

