CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
(Oh my!)
Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol.

DFAs allow only one transition per symbol:
- I.e., transition function must be a valid function.
- DFA is a special case of NFA.
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for \((a|b)^*abb\)
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states S0, S1

- **ababa**
 - Has paths to S0, S1
 - Need to use \(\epsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
NFA Acceptance Algorithm Sketch

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - Due to multiple transitions with same label
 - ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing "a"
 - NFA may be in states
 - S_1
 - S_2
 - S_3
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions

- What's this definition saying that δ is?

- A DFA accepts s if it stops at a final state on s
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

or as \{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}

<table>
<thead>
<tr>
<th>Input State</th>
<th>Symbol</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
<td>S0</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>0</td>
<td>S0</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>S1</td>
</tr>
</tbody>
</table>
An *NFA* is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma, Q, q_0, F\) as with DFAs
- \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{ (S1,a,S1), (S1,a,S2), (S2,\varepsilon,S3) \}\)

An NFA accepts a string \(s\) if there is at least one path via \(s\) from the NFA's start state to a final state.
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Goal: Given regular expression A, construct
NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$

- Remember regular expressions are defined recursively from primitive RE languages
- Invariant: $|F| = 1$ in our NFAs
 - Recall $F = \text{set of final states}$

Will define $<A>$ for base cases: $\sigma, \varepsilon, \emptyset$
- Where σ is a symbol in Σ

And for inductive cases: $AB, A|B, A^*$
Reducing Regular Expressions to NFAs

- Base case: σ

$$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$$
Reduction

- Base case: ε
 \[<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset) \]

- Base case: \emptyset
 \[<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset) \]
Reduction: Concatenation

- **Induction:** AB

 \[
 \langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)
 \]

 \[
 \langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)
 \]
Reduction: Concatenation

- Induction: AB

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\]
\[<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})\]
Reduction: Union

Induction: \(A|B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
Reduction: Union

- **Induction:** $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0, \epsilon, q_A), (S0, \epsilon, q_B), (f_A, \epsilon, S1), (f_B, \epsilon, S1)\})$
Reduction: Closure

- Induction: \(A^* \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\)
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\})$
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches \(a|b^* \) ?

A.

B.

C.

D.
Quiz 3: Which NFA matches $a|b^*$?

A.

B.

C.

D.
Draw NFAs for the regular expression \((0|1)^*110^*\)
Draw NFAs for the regular expression (ab*c|d*a|ab)d
Reduction Complexity

- Given a regular expression A of size n...

 \[\text{Size} = \# \text{ of symbols} + \# \text{ of operations} \]

- How many states does $<A>$ have?

 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Recap

- Finite automata
 - Alphabet, states…
 - $\langle \Sigma, Q, q_0, F, \delta \rangle$

- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
Reducing NFA to DFA

DFA → NFA

can reduce

DFA ← NFA

can reduce

RE
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the **subset** algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA \((\Sigma, Q, q_0, F_n, \delta)\)
 - Output
 - DFA \((\Sigma, R, r_0, F_d, \delta)\)
 - Using two subroutines
 - \(\varepsilon\)-closure\((\delta, p)\) (and \(\varepsilon\)-closure\((\delta, S)\))
 - move\((\delta, p, a)\) (and move\((\delta, S, a)\))
ε-transitions and ε-closure

- **We say** $p \xrightarrow{\varepsilon} q$
 - If it is possible to go from state p to state q by taking only ε-transitions in δ
 - If $\exists \ p, p_1, p_2, \ldots p_n, q \in Q$ such that
 - $\{p,\varepsilon,p_1\} \in \delta$, $\{p_1,\varepsilon,p_2\} \in \delta$, \ldots, $\{p_n,\varepsilon,q\} \in \delta$

- **ε-closure(δ, p)**
 - Set of states reachable from p using ε-transitions alone
 - Set of states q such that $p \xrightarrow{\varepsilon} q$ according to δ
 - ε-closure(δ, p) = $\{ q \mid p \xrightarrow{\varepsilon} q \text{ in } \delta \}$
 - ε-closure(δ, Q) = $\{ q \mid p \in Q, p \xrightarrow{\varepsilon} q \text{ in } \delta \}$
 - **Notes**
 - ε-closure(δ, p) always includes p
 - We write ε-closure(p) or ε-closure(Q) when δ is clear from context
ε-closure: Example 1

- Following NFA contains
 - $S_1 \xrightarrow{\epsilon} S_2$
 - $S_2 \xrightarrow{\epsilon} S_3$
 - $S_1 \xrightarrow{\epsilon} S_3$

 ➢ Since $S_1 \xrightarrow{\epsilon} S_2$ and $S_2 \xrightarrow{\epsilon} S_3$

- **ε-closures**
 - ϵ-closure(S_1) = \{ S_1, S_2, S_3 \}
 - ϵ-closure(S_2) = \{ S_2, S_3 \}
 - ϵ-closure(S_3) = \{ S_3 \}
 - ϵ-closure(\{ S_1, S_2 \}) = \{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \}
\(\varepsilon \)-closure: Example 2

Following NFA contains
- \(S1 \xrightarrow{\varepsilon} S3 \)
- \(S3 \xrightarrow{\varepsilon} S2 \)
- \(S1 \xrightarrow{\varepsilon} S2 \)

Since \(S1 \xrightarrow{\varepsilon} S3 \) and \(S3 \xrightarrow{\varepsilon} S2 \)

\(\varepsilon \)-closures
- \(\varepsilon \)-closure(\(S1 \)) = \{ \(S1, S2, S3 \) \}
- \(\varepsilon \)-closure(\(S2 \)) = \{ \(S2 \) \}
- \(\varepsilon \)-closure(\(S3 \)) = \{ \(S2, S3 \) \}
- \(\varepsilon \)-closure(\{ \(S2, S3 \) \}) = \{ \(S2 \) \} \cup \{ \(S2, S3 \) \}
ε-closure Algorithm: Approach

Input: NFA (Σ, Q, q₀, Fₙ, δ), State Set R
Output: State Set R’

Algorithm

Let R’ = R // start states

Repeat

Let R = R’ // continue from previous
Let R’ = R ∪ {q | p ∈ R, (p, ε, q) ∈ δ} // new ε-reachable states

Until R = R’ // stop when no new states

This algorithm computes a fixed point
• see note linked from project description
ε-closure Algorithm Example

Calculate ϵ-closure(δ, {S_1})

- R: {S_1}
- R': {S_1}
- R: {S_1}
- R': {S_1, S_2}
- R: {S_1, S_2}
- R': {S_1, S_2, S_3}
- R: {S_1, S_2, S_3}
- R': {S_1, S_2, S_3}

Let $R' = R$
Repeat
 Let $R = R'$
 Let $R' = R \cup \{q | p \in R, (p, \epsilon, q) \in \delta\}$
Until $R = R'$
Calculating \(\text{move}(p,a) \)

- \(\text{move}(\delta, p, a) \)
 - Set of states reachable from \(p \) using exactly one transition on \(a \)
 - Set of states \(q \) such that \(\{p, a, q\} \in \delta \)
 - \(\text{move}(\delta, p, a) = \{ q \mid \{p, a, q\} \in \delta \} \)
 - \(\text{move}(\delta, Q, a) = \{ q \mid p \in Q, \{p, a, q\} \in \delta \} \)
 - i.e., can “lift” \(\text{move}() \) to start from a set of states \(Q \)
 - Notes:
 - \(\text{move}(\delta, p, a) \) is \(\emptyset \) if no transition \((p,a,q) \in \delta \), for any \(q \)
 - We write \(\text{move}(p,a) \) or \(\text{move}(R,a) \) when \(\delta \) clear from context
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - move(S1, a) = \{ S2, S3 \}
 - move(S1, b) = \emptyset
 - move(S2, a) = \emptyset
 - move(S2, b) = \{ S3 \}
 - move(S3, a) = \emptyset
 - move(S3, b) = \emptyset

move({S1,S2},b) = \{ S3 \}
move(a,p) : Example 2

- Following NFA
 • $\Sigma = \{a, b\}$

- Move
 • $\text{move}(S1, a) = \{ S2 \}$
 • $\text{move}(S1, b) = \{ S3 \}$
 • $\text{move}(S2, a) = \{ S3 \}$
 • $\text{move}(S2, b) = \emptyset$
 • $\text{move}(S3, a) = \emptyset$
 • $\text{move}(S3, b) = \emptyset$

\[\text{move}\{\{S1,S2\},a\} = \{S2,S3\} \]
NFA \rightarrow DFA Reduction Algorithm ("subset")

- **Input** NFA (Σ, Q, q_0, F_n, δ), **Output** DFA (Σ, R, r_0, F_d, δ')

- **Algorithm**

 Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R
 // DFA start state

 While \exists an unmarked state $r \in R$
 // process DFA state r
 Mark r
 // each state visited once
 For each $a \in \Sigma$
 // for each letter a
 Let $E = \text{move}(\delta, r, a)$
 Let $e = \varepsilon$-closure(δ, E)
 If $e \notin R$
 // states reached via a
 Let $R = R \cup \{e\}$
 // states reached via ε
 // if state e is new
 Let $\delta' = \delta' \cup \{r, a, e\}$
 // add transition $r \rightarrow e$
 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
 // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(δ, S1) = { {S1, S3} }
- R = { {S1, S3} }
- $r \in R = \{S1, S3\}$
- move(δ, {S1, S3}, a) = {S2}
 - $e = \varepsilon$-closure(δ, S2) = {S2}
 - $R = R \cup \{S2\} = \{S1, S3\}, \{S2\}$
 - $\delta' = \delta' \cup \{S1, S3\}, a, \{S2\}$
- move(δ, {S1, S3}, b) = \emptyset
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1, S3\}, \{S2\} \} \)
- \(r \in R = \{S2\} \)
- \(\text{move}(\delta, \{S2\}, a) = \emptyset \)
- \(\text{move}(\delta, \{S2\}, b) = \{S3\} \)
 - \(e = \varepsilon\text{-closure}(\delta, \{S3\}) = \{S3\} \)
 - \(R = R \cup \{\{S3\}\} = \{\{S1, S3\}, \{S2\}, \{S3\}\} \)
 - \(\delta' = \delta' \cup \{\{S2\}, b, \{S3\}\} \)
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1,S3\}, \{S2\}, \{S3\} \} \)
- \(r \in R = \{S3\} \)
- \(\text{Move}(\{S3\},a) = \emptyset \)
- \(\text{Move}(\{S3\},b) = \emptyset \)
- \(\text{Mark } \{S3\}, \text{ exit loop} \)
- \(F_d = \{\{S1,S3\}, \{S3\}\} \)
 - Since \(S3 \in F_n \)
- Done!
NFA \rightarrow DFA Example 2

NFA

DFA

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:

$S_0 \xrightarrow{a} S_1 \xrightarrow{b} S_2$

$\varepsilon \xrightarrow{a} S_1, S_0$

$S_0 \xrightarrow{a} S_1 \xrightarrow{b} S_2, S_0 \xrightarrow{a} S_1, S_0$
NFA \rightarrow DFA Example 3

- **NFA**

- **DFA**

$$R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}$$
NFA → DFA Example
NFA → DFA Practice
NFA \rightarrow DFA Practice
Analyzing the reduction

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA

NFA

DFA
Subset Algorithm as a Fixed Point

Input: NFA \((\Sigma, Q, q_0, F, \delta)\)

Output: DFA \(M'\)

Algorithm

Let \(q_0' = \varepsilon\)-closure\(\delta, q_0\)

Let \(F' = \{q_0'\}\) if \(q_0' \cap F \neq \emptyset\), or \(\emptyset\) otherwise

Let \(M' = (\Sigma, \{q_0\}, q_0', F', \emptyset)\) \hspace{1cm} // starting approximation of DFA

Repeat

Let \(M = M'\) \hspace{1cm} // current DFA approx

For each \(q \in \text{states}(M), a \in \Sigma\) \hspace{1cm} // for each DFA state \(q\) and letter \(a\)

Let \(s = \varepsilon\)-closure\(\delta, \text{move}(\delta, q, a)\) \hspace{1cm} // new subset from \(q\)

Let \(F' = \{s\}\) if \(s \cap F \neq \emptyset\), or \(\emptyset\) otherwise, // subset contains final?

\(M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, a, s)\})\) \hspace{1cm} // update DFA

Until \(M' = M\) \hspace{1cm} // reached fixed point
Redux: DFA to NFA Example 1

- $q_0' = \varepsilon$-closure$(\delta, S1) = \{S1, S3\}$
- $F' = \{\{S1, S3\}\}$ since $\{S1, S3\} \cap \{S3\} \neq \emptyset$

$M' = \{ \Sigma, \{\{S1, S3\}\}, \{S1, S3\}, \{\{S1, S3\}\}, \emptyset \}$

Diagram:

DFA:
- Q'
- q_0'
- F'
- δ'

NFA:
- ε

States:
- $S1$
- $S2$
- $S3$
Redux: DFA to NFA Example 1 (cont)

- \(M' = \{ \Sigma, \{\{S1,S3\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \emptyset \} \)
 - \(q = \{S1, S3\} \)
 - \(a = a \)
 - \(s = \{S2\} \)
 - since move(\(\delta,\{S1, S3\}, a\)) = \{S2\}
 - and \(\varepsilon\)-closure(\(\delta,\{S2\}\)) = \{S2\}
 - \(F' = \emptyset \)
 - Since \(\{S2\} \cap \{S3\} = \emptyset\)
 - where \(s = \{S2\}\) and \(F = \{S3\}\)

- \(M' = M' \cup (\emptyset, \{\{S2\}\}, \emptyset, \emptyset, \{(\{S1,S3\},a,\{S2\})\}) \)
- \(= \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{(\{S1,S3\},a,\{S2\})\} \} \)
Redux: DFA to NFA Example 1 (cont)

- \(M' = \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{(\{S1,S3\}, a, \{S2\})\} \} \)
 - \(q = \{S2\} \)
 - \(a = b \)
 - \(s = \{S3\} \)
 - since move(\(\delta\), \(\{S2\}\), \(b\)) = \(\{S3\}\)
 - and \(\varepsilon\)-closure(\(\delta\), \(\{S3\}\)) = \(\{S3\}\)
 - \(F' = \{\{S3\}\} \)
 - Since \(\{S3\} \cap \{S3\} = \{S3\}\)
 - where \(s = \{S3\}\) and \(F = \{S3\}\)

- \(M' = M' \cup \)
 ((\(\emptyset\), \(\{S3\}\), \(\emptyset\), \(\{S3\}\), \((\{S2\}, b, \{S3\}\))
 = \{ \Sigma, \{\{S1,S3\},\{S2\},\{S3\}\}, \{S1,S3\}, \{\{S1,S3\},\{S3\}\}, \{(\{S1,S3\}, a, \{S2\}\), \((\{S2\}, b, \{S3\})\} \})
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)
Reducing DFA to RE

- DFA can reduce to NFA
- RE can transform to DFA
- RE can transform to NFA
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary
DFA to RE example

Language over $\Sigma = \{0, 1\}$ such that every string is a multiple of 3 in binary

$(0 + 1(0 1^* 0)1)^*$
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

Intuition
- Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

Algorithm
- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
- Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S, T, U, V\}
 - All transitions on \text{a} lead to identical partition P2
 - Even though transitions on \text{a} lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- DFA

- Initial partitions
 - Accept \{ R \} = P_1
 - Reject \{ S, T \} = P_2

- Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P_2
 - move(T,a) = T ∈ P_2
 - move(S,b) = R ∈ P_1
 - move(T,b) = R ∈ P_1
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - **Accept** \(\{ R \} \) = \(P_1 \)
 - **Reject** \(\{ S, T \} \) = \(P_2 \)

- **Split partition?** → Yes, different partitions for B
 - \(\text{move}(S,a) \) = \(T \in P_2 \)
 - \(\text{move}(S,b) \) = \(T \in P_2 \)
 - \(\text{move}(T,a) \) = \(T \in P_2 \)
 - \(\text{move}(T,b) \) = \(R \in P_1 \)

DFA already minimal
Minimizing DFA: Example 3
Minimizing DFA: Example 3

Diagram:

- Start state: s0
- States: s0, s1, s2
- Transitions:
 - s0 -> s1 on b
 - s0 -> s2 on a
 - s1 -> s2 on a, b
 - s2 -> s1 on a, b

Diagram after minimization:

- Start state: s0
- States: s0, s1
- Transitions:
 - s0 -> s1 on a, b
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

Algorithm

- Add explicit transitions to a dead state
- Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

Note this only works with DFAs

- Why not with NFAs?
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {

 symbol = getchar();

 switch (cur_state) {
 case 0: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 }
 break;

 case 1: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 }
 break;

 default: printf("unknown state; I'm confused\n");
 }
 break;
}

It's easy to build a program which mimics a DFA
Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:

let \(q = q_0\)

while (there exists another symbol \(s\) of the input string)

\[q := \delta(q, s); \]

if \(q \in F\) then

accept

else reject

• \(q\) is just an integer
• Represent \(\delta\) using arrays or hash tables
• Represent \(F\) as a set
Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice

- So there’s the initial overhead
 - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of \((\Sigma, Q_A, q_A, \{f_A\}, \delta_A)\), the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Summary of Regular Expression Theory

- **Finite automata**
 - DFA, NFA

- **Equivalence of RE, NFA, DFA**
 - RE \rightarrow NFA
 - Concatenation, union, closure
 - NFA \rightarrow DFA
 - ϵ-closure & subset algorithm

- **DFA**
 - Minimization, complement
 - Implementation