
CMSC 330: Organization of 
Programming Languages

Rust Basics

CMSC330 Summer 2018 Copyright © 2018 Michael Hicks, the University of
Maryland. Some material based on https://doc.rust-
lang.org/book/second-edition/index.html



2

Organization

• It turns out that a lot of Rust has direct 
analogues in OCaml
– So we will introduce its elements with comparisons

let rec fact n =
if n = 0 then 1
else
let x = fact (n-1) in
n * x

let rec fact n =
if n = 0 then 1
else
let x = fact (n-1) in
n * x

let rec fact n =
if n = 0 then 1
else

let x = fact (n-1) in
n * x



3

Factorial in Rust (recursively)

let rec fact n =
if n = 0 then 1
else

let x = fact (n-1) in
n * x

rec by default parm, return
types explicit

block
(expression)

local var
type inferred

physical eq
(no built-in
structural eq)

rec 

OCaml

Rust

fn fact(n:i32) -> i32 
{

if n == 0 { 1 }
else {

let x = fact(n-1);
n * x

}
}



4

Running factorial
• Rust programs start at main

– As in C and Java

– Prints   fact(6) = 720

• Aside: command-line args via env::args

fn main() {
let res = fact(6);
println!(“fact(6) = {}”,res);

}

on call: arg
parens required

format string
string conversion



Block Expressions block

• Syntax
– { stmt* e? }

• i.e., zero or more statements (separated by semi-colons) 
followed by an optional final expression

• Evaluation
– Evaluate each stmt; result is evaluation of e

• Or () if e is absent

• Type checking
– Must type check each stmt, extending environment 

of subsequent stmts with added let-bindings
– Final type is the type of e

• Or unit if e is absent
5



If Expressions (not Statements)

• Syntax
– if e block1 block2

• e is the guard
• block1 and block2 are the true/false branches

• Evaluation
– Evaluate e to v
– Result is evaluation of block1 if v is true; or 
block2 if v is false

• Type checking
– e : bool
– block1 : t and block2 : t for some t

6



7

Functions

• Syntax
– fn f(parms) [-> t] block
– f is the function name
– parms are formal parameters, including their types

• Zero or more; have form x1:t1, …, xn:tn
– t is the return type

• May be omitted if function returns unit value ()
– block is the body, which is a block expression



Let Statements
• Syntax

– let [mut]? x[:t]? = e;
• Keyword is mut optional
• Type t is optional; often can be inferred if missing

• Evaluation
– Evaluate e to v; set x to v within the defining scope
– x is immutable unless mut keyword is present

• Type checking
– If type t given, then e : t required

• Else e should have some type t, which is inferred
– x:t assumed in rest of scope; immutability enforced

8



9

Let Statement Usage Examples
{
let x = 37;
let y = x + 5;
y

}//42

{
let x = 37;
let x = x + 5;
x

}//42

{
let x = 37;
x = x + 5;//err
x

}

{
let mut x = 37;
x = x + 5;
x

}//42

{ //err:
let x:u32 = -1;
let y = x + 5;
y

}

{
let x:i16 = -1;
let y:i16 = x+5;
y

}//4

Redefining a 
variable shadows
it (like OCaml)

Assigning to a 
variable only 
allowed if mut

Type annotations 
must be 
consistent (may 
override defaults)



A. 6
B. 7
C. 5
D. Error

{ let x = 6;  
let y = "hi";    
if x == 5 { y } else { 5 };
7

}

10

Quiz 1: What does this evaluate to?



A. 6
B. 7
C. 5
D. Error – if and else have incompatible types

{ let x = 6;  
let y = "hi";    
if x == 5 { y } else { 5 };
7

}

11

Quiz 1: What does this evaluate to?



A. 6
B. true
C. false
D. error

{ let x = 6;  
let y = 4;    
let x = 8;      
x == 10-y

}

12

Quiz 2: What does this evaluate to?



A. 6
B. true
C. false
D. error

{ let x = 6;  
let y = 4;    
let x = 8;      
x == 10-y

}

13

Quiz 2: What does this evaluate to?



Pattern: Conditional Initialization
• Initialization expressions in let statements are 

arbitrary expressions
– Thus can be dynamically determined

14

fn foo(cond:bool) -> i32 {
let num = if cond { 5 } else { 6 };
num+1

}

foo(false) == 7
foo(true)  == 6



15

Using Mutation

• Mutation is useful when performing iteration
– As in C and Java 

locals
mutable

infinite loop
(break out)

fn fact(n: u32) -> u32 {
let mut x = n;
let mut a = 1;
loop {

if x <= 1 { break; }
a = a * x;
x = x - 1;

}
a

}



Other Looping Constructs

• While loops
– while e block

• For loops
– for pat in e block

• More later – e.g., for iterating through collections

• These (and loop) are expressions
– They return the final computed value

• unit, if none
– break may take an expression argument, which is 

the final result of the loop

16



A. 1
B. 6
C. 0
D. error

let mut x = 1;
for i in 1..6 {
let x = x + 1;        

}    
x

17

Quiz 3: What does this evaluate to?



A. 1
B. 6
C. 0
D. error

let mut x = 1;
for i in 1..6 {
let x = x + 1;        

}    
x

18

Quiz 3: What does this evaluate to?



Data: Scalar Types
• Integers

– i8, i16, i32, i64, isize
– u8, u16, u32, u64, usize

• Characters (unicode)
– char

• Booleans
– bool = { true, false }

• Floating point numbers
– f32, f64

• Note: arithmetic operators (+, -, etc.) overloaded

19

Defaults (from inference)

Machine word size



Compound Data: Tuples and Arrays
• Tuples

– n-tuple type (t1,…,tn)
• unit () is just the 0-tuple

– n-tuple expression(e1,…,en)
– Accessed by pattern matching or like a record field

• Arrays
– constant length

• Thus, not as useful as Vec<t> type, discussed later
– array type [t]

• And type [t;n] where n is the array’s (constant) length
– array expression has Ruby-like syntax [e1,…,en]

20



fn dist(s:(f64,f64),e:(f64,f64)) -> f64 {
let (sx,sy) = s;
let ex = e.0;
let ey = e.1;
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy).sqrt()

}

21

Compound Data: Tuples

let dist s e =
let (sx,sy) = s in
let (ex,ey) = e in
let dx = ex -. sx in
let dy = ey -. sy in
sqrt (dx *. dx +. dy *. dy)

tuple type

accessor

Rust
pattern

method invocation

OCaml



fn dist2((sx,sy):(f64,f64),(ex,ey):(f64,f64)) -> f64 {
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy).sqrt()

}

22

Compound Data: Tuples

let dist (sx,sy) (ex,ey) = 
let dx = ex -. sx in
let dy = ey -. sy in
sqrt (dx *. dx +. dy *. dy) OCaml

Rust

Can include patterns in parameters directly, too

We’ll see Rust structs later. They generalize tuples.



Arrays
• Standard operations

– Creating an array (can be mutable or not)
• But must be of fixed length

– Indexing an array
– Assigning at an array index

23

let nums = [1,2,3];
let strs = ["Monday","Tuesday","Wednesday"];
let x = nums[0]; // 1
let s = strs[1]; // "Tuesday"
let mut xs = [1,2,3];
xs[0] = 1; // OK, since xs mutable
let i = 4;
let y = nums[i]; //fails (panics) at run-time



Array Iteration

• Rust provides a way to iterate over a collection
– Including arrays

– a.iter() produces an iterator, like a Java iterator
• This is a method call, a la Java. More about these later

– The special for syntax issues the .next() call until 
no elements are left

• No possibility of running out of bounds

24

let a = [10, 20, 30, 40, 50]; 
for element in a.iter() {
println!("the value is: {}", element); 

}



fn f(n:[u32]) -> u32 {
n[0]

} 

25

Quiz 4: Will this function type check?

A. Yes
B. No



A. Yes
B. No – because 

array length not 
known

fn f(n:[u32]) -> u32 {
n[0]

} 

26

Quiz 4: Will this function type check?



Fun Fact

• The original Rust compiler was written in OCaml

– Betrays the sentiments of the language’s designers!

• Now the Rust compiler is written in … Rust

– How is this possible? Through a process called 

bootstrapping:

• The first Rust compiler written in Rust is compiled by the 

Rust compiler written in OCaml

• Now we can use the binary from the Rust compiler to 

compile itself

• We discard the OCaml compiler and just keep updating the 

binary through self-compilation

• So don’t lose that binary! J

27


