CMSC 330: Organization of
Programming Languages

Functional Programming with Lists

CMSC330 Summer 2018

Lists in OCaml

 The basic data structure in OCaml

— Lists can be of arbitrary length
* Implemented as a linked data structure

— Lists must be homogeneous
* All elements have the same type

* Operations
— Construct lists
— Destruct them via pattern matching

Constructing Lists

Syntax

« [] isthe empty list (pronounced “nil”)

« el::e2prepends element el tolist e2
— Operator : : is pronounced "cons" (both from LISP)
— el is the head, e2 is the tall

« [el;e2;..;en] Iis syntactic sugar for

el::e2::..::en::[]
Examples
3::[] (* The list [3] *)

2::(3::11) (* The list [2; 3] ¥*)
[1; 2; 3] (* The list 1::(2::(3::[1)) *)

Constructing Lists

Evaluation
« [] Is avalue

« To evaluate el: :e2, evaluate el to a value v1,
evaluate e2 to a (list) value v2, and return vi::v2

— Actually, OCaml’s language description permits evaluating e2
first; the evaluation order is unspecified. This doesn’t matter if
there are no side effects; more on this later.

Consequence of the above rules:

« Toevaluate [el;..;en], evaluate el to a value v1,,
evaluate en to a value vn, and return [v1;...; vn]

Examples

let y
val y

¥ let x

val x

¥ let =z

val z

let m

val z

= [1; 1+1; 1+1+1] ;;

int list = [1; 2; 3]

= 4::y ;;

int list = [4; 1; 2; 3]

= 5::y ;.

int list = [5; 1; 2; 3]

= “hello”::"bob”::[]1;;

string list = [“hello”; “bob”]

Typing List Construction

Polymorphic type:

Nil: like a generic type in Java

[1: (ajlist
l.e., empty list has type t 1list for any type t

cons:
If el: tand e2: tlistthenel::e2: tlist

With parens for clarity:
Ifel: tand e2:(tlist)then(el::e2):(tlist)

Examples

let x [1;"world"] ;;

This expression has type string but an expression
was expected of type int

let m = [[1];[2;3]];;
val y : int 1list 1list = [[1];, [2; 3]]

let vy = 0::[1;2;3] ;;
val y : int 1list = [0; 1; 2; 3]

let w = [1;2]::y ;;
This expression has type int list but is here
used with type int list list

* The left argument of :: is an element, the right is a list
« Can you construct a list y such that [1;2]::y makes sense?

Lists are Immutable

* No way to mutate (change) an element of a list
 Instead, build up new lists out of old, e.g., using ::

let x = [1;2;3;4]
let y = 5::x
let z = 6::x

X

' 5/’
Z /
/>6

11

Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

. array

. list

. 1nt list

. float 1list

o w »

12

Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

. array

. list

. 1nt list

. float 1l1list

o w »

13

Quiz 2

What is the type of the following expression?

31::[3]

. 1nt
. 1nt list
.1nt list list

. @rror

o w »

14

Quiz 2

What is the type of the following expression?

31::[3]

. 1nt
. 1nt list
.1nt list list

. @rror

O Q w »

15

Quiz 3

What is the type of the following expression?

[[[]; [1; [1.3;2.4]]]

. 1nt list
. float list 1list
. float 1list l1list 1list

. @rror

o w »

16

Quiz 3

What is the type of the following expression?

[[[]; [1; [1.3;2.4]]]

. 1nt list
. float list 1list
. float 1list l1list 1list

. @rror

o Q w P

17

Quiz 4

What is the type of the following definition?

let £ x = x::(0::[1)

. int -> int

. 1nt list

. int list -> int 1list
. int -> 1int list

o w »

18

Quiz 4

What is the type of the following definition?

let £ x = x::(0::[1)

. int -> int

. 1nt list

. int list -> int 1list
. int -> 1int list

o w »

19

Pattern Matching

* To pull lists apart, use the match construct
« Syntax

match e with
pl -> el

pn -> en

« pl...pn are patterns made up of [], : :, constants, and
pattern variables (which are normal OCaml variables)

« el...en are branch expressions in which pattern variables
In the corresponding pattern are bound

20

match e with

Pattern Matching Semantics |, ;: - <

| ..
| pn -> en

Evaluate e to a value v

If p1 matches v, then evaluate el to v and return v1

Else if pn matches v, then evaluate en to vn and return vn
Else, no patterns match: raise Match failure exception

(When evaluating branch expression ei, any pattern variables in pi
are bound in ei, i.e., they are in scope)

21

Pattern Matching Example

let is empty 1 =
match 1 with
[] -> true
| (h::t) -> false

» Example runs
* is empty [] (* evaluates to true *)
* is empty [1] (* evaluates to false ¥*)
* is empty [1;2] (* evaluates to false ¥*)

22

Pattern Matching Example (cont.)

let hd 1 =
match 1 with
(h::t) -> h

 Example runs
—hd [1;2;3] (* evaluates to 1 *)
—hd [2;3] (* evaluates to 2 *)
—hd [3] (* evaluates to 3 *)
—hd [] (* Exception: Match failure ¥*)

23

Quiz 5

To what does the following expression evaluate?

match [“zar”;%“doz”] with
[] -> “kitteh”
| h::t -> h

A. “zar”
B. “doz”
C. “kitteh”

D. [1]

24

Quiz 5

To what does the following expression evaluate?

match [“zar”;%“doz”] with
[] -> “kitteh”
| h::t -> h

A. “zar”
B. “"doz”
C. “kitteh”

D. [1]

25

"Deep” pattern matching

* You can nest patterns for more precise matches

a.

- b matches lists with at least one element
Matches [1;2;3], bindingatolandbto [2;3]

: : [1 matches lists with exactly one element

Matches [1], bindingato 1
Could also write patterna: : [] as [a]

: :b: : [] matches lists with exactly two elements

Matches [1;2], bindingatolandbto 2
Could also write pattern a: :b: : [] as [a;b]

: :b: :c: :d matches lists with at least three elements

Matches [1;2;3], bindingatol,bto2,cto3,anddto []
Cannot write pattern as [a;b;c] : :d (why?)

26

Pattern Matching — Wildcards

* An underscore is a wildcard pattern
— Matches anything
— But doesn’t add any bindings

— Useful to hold a place but discard the value
* i.e., when the variable does not appear in the branch expression

* |n previous examples
— Many values of h or t ignored
— Can replace with wildcard

27

Pattern Matching — Wildcards (cont.)

 Code using
- let 1s empty 1 = match 1 with
[] > true | (::) -> false
— let hd 1 = match 1 with (h::) -> h
—let t1 1 = match 1 with (::t) -> t
» Qutputs

- 1is empty[1l] (* evaluates to false ¥*)
- 1is empty[] (* evaluates to true ¥*)

—hd [1;2;3] (* evaluates to 1 *)
- tl [1;2;3] (* evaluates to [2;3] *)
—hd [1] (* evaluates to 1 *)

~ £l [1] (* evaluates to [] *)

Pattern Matching — An Abbreviation

- let £ p = e, Where pis a pattern
— Is shorthand for let £ x = match x with p -> e

 Examples
—let hd (h::) =
- let t1l (_::t) =
- let £ (x::y::)
- let g [x; y]
« Useful if there’s only one acceptable input

N ¢ 5

X +y

X +y

29

match e with

Pattern Matching Typing | pl > o1

| ...
 If eand p1, ..., pn each have type ta || p? => en

 and el, ..., en each have type tb
* Then entire match expression has type tb

« Examples
type: ‘a list -> ‘a o type: int list -> int
let hd 1 = la = alist let rec sum 1 =
match rth
a0l
tb = ¢

ta = int list tb = int

30

Polymorphic Types

* The sum function works only for int 1ists

« But the hd function works for any type of list
- hd [1; 2; 3] (* returns 1 *)
_ hd ["a" ; "b" ; "c"] (* returns "a" *)

« OCaml gives such functions polymorphic types
—hd : 'a 1list -> 'a

— this says the function takes a list of any element type
'a, and returns something of that same type

* These are basically generic types in Java
— 'a list islike List<T>

31

Examples Of Polymorphic Types

* let t1 (_::t) = ¢
t1 [1; 2; 3];;
- : int list = [2; 3]
t1 [1.0; 2.01;;
- : float list = [2.0]
(* t1 : 'a list -> 'a list *)

e let fst x y = x
£st 1 “hello”;;
- :int =1
£st [1; 2] 1;;
- : int list = [1; 2]
(* £fst : 'a -> 'b -> 'a *)

Examples Of Polymorphic Types

let hds
hds [1

(x::) (y::) = =x::y::[1]
;2] [3; 41

- : int list = [1; 3]

hds [“kitty”] [“cat”];;

- : string list = [“kitty”; “cat”]
hds [“kitty”] [3; 4] --typeerror

(* hds: 'a list -> 'a list -> 'a list *)
let eqxy=x =y (* let eq x y =
#eql 2;;

- : bool = false

eq “hello” “there”;;

- : bool

= false

eq “hello” 1 --typeerror

(* eq :

'a -> "a -> bool *)

(x =y) *)

33

Quiz 6

What is the type of the following function?

let £ x y =
if x =y then 1 else 0

. 'a -> ‘b -> int
. 'a -> ‘a -> int
. 'a =-> ‘a -> bool

. 1nt

o Q o »

34

Quiz 6

What is the type of the following function?

let £ x y =
if x =y then 1 else 0

. 'a -> ‘b -> int
. ‘a -> ‘a -> int
. 'a =-> ‘a -> bool

. 1nt

o Q o P»

35

Pattern matching is AWESOME

1. You can’t forget a case

— Compiler issues inexhaustive pattern-match warning

2. You can’t duplicate a case

— Compiler issues unused match case warning

3. You can’t get an exception
— Can’t do something like List.hd []

4. Pattern matching leads to elegant, concise,
beautiful code

37

Lists and Recursion

Lists have a recursive structure
— And so most functions over lists will be recursive

let rec length 1 = match 1 with
[] -> 0
| (_::t) -> 1 + (length t)

— This is just like an inductive definition
« The length of the empty list is zero
« The length of a nonempty list is 1 plus the length of the tail

— Type of length?

e ‘a list -> int

40

More Examples

. sum 1 (* sum of elts in 1 ¥*)
let rec sum 1 = match 1 with
[1] -> O

| (x::xs8) -> x + (sum xs)

* negate 1 (* negate elements in list ¥*)
let rec negate 1 = match 1 with
[1 -> [

| (x::xs) -> (-x) :: (negate xs)

. last 1 (* last element of 1 *)
let rec last 1 = match 1 with
[x] -> x

| (x::xs) -> last xs

41

More Examples (cont.)

(* return a list containing all the elements in the
list 1 followed by all the elements in list m *)

e append 1 m
let rec append 1 m = match 1 with
[] > m

| (x::xs) -> x:: (append xs m)

e rev 1l (* reverse list; hint: use append *)
let rec rev 1 = match 1 with

[1 -> [

| (x::xs) -> append (rev xs) [x]

« rev takes O(n?) time. Can you do better?

42

