
CMSC 330: Organization of
Programming Languages

Ownership, References, and Lifetimes

in Rust

CMSC330 Summer 2018 Copyright © 2018 Michael Hicks, the University of
Maryland. Some material based on https://doc.rust-
lang.org/book/second-edition/index.html

2

Memory: the Stack and the Heap

• The stack

– constant-time, automatic (de)allocation

– Data size and lifetime must be known at compile-time

• Function parameters and locals of known (constant) size

• The heap

– Dynamically sized data, with non-fixed lifetime

• Slightly slower to access than stack; i.e., via a pointer

– GC: automatic deallocation, adds space/time overhead

– Manual deallocation (C/C++): low overhead, but non-

trivial opportunity for devastating bugs
• Dangling pointers, double free – instances of memory corruption

3

Memory Management Errors

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();
free(x);
x = 5; / oops! */

}

• May try to free something twice (double free)
{ int *x = ...malloc(); free(x); free(x); }
• This may corrupt the memory management data structures

– E.g., the memory allocator maintains a free list of space on
the heap that’s available

GC-less Memory Management, Safely

• Rust’s heap memory managed without GC
• Type checking ensures no dangling pointers

or double frees

– unsafe idioms are disallowed

– memory leaks not prevented (not a safety problem)

• Key features of Rust that ensure safety:

ownership and lifetimes
– Data has a single owner. Immutable aliases OK, but

mutation only via owner or single mutable reference

– How long data is alive is determined by a lifetime

4

Rules of Ownership

1. Each value in Rust has a variable that’s its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value will

be dropped (freed)

5

String: Dynamically sized, mutable data

• s’s contents allocated on the heap
– Pointer to data is internal to the String object
– When appending to s, the old data is freed and new

data is allocated
• s is the owner of this data

– When s goes out of scope, its drop method is called,
which frees the data

• No garbage collection! 6

{
let mut s = String::from("hello");
s.push_str(", world!"); //appends to s
println!("{}", s); //prints hello, world!

} //s’s data is freed by calling s.drop()

namespace
(like Java package)

7

Transferring Ownership

• Heap allocated data is copied by reference

– Both x and y point to the same underlying data

• A move leaves only one owner: y

let x = String::from("hello");
let y = x; //x moved to y

x’s data

y’s data

println!("{}, world!", y); //ok
println!("{}, world!", x); //fails

Avoids double
free()!

"hello"

Deep Copying Retains Ownership

• Make clones (copies) to avoid ownership loss

• Primitives copied automatically
– i32, char, bool, f32, tuples of these types, etc.

• These have the Copy trait; more on traits later

8

let x = String::from("hello");
let y = x.clone(); //x no longer moved
println!("{}, world!", y); //ok
println!("{}, world!", x); //ok

let x = 5;
let y = x;
println!("{} = 5!", y); //ok
println!("{} = 5!", x); //ok

Ownership and Function Calls

• On a call, ownership passes from:
– argument to called function’s parameter
– returned value to caller’s receiver

9

fn main() {
let s1 = String::from(“hello”);
let s2 = id(s1); //s1 moved to arg
println!(“{}”,s2); //id’s result moved to s2
println!(“{}”,s1); //fails
}
fn id(s:String) -> String {
s // s moved to caller, on return
}

References and Borrowing
• Create an alias by making a reference

– An explicit, non-owning pointer to the original value
– Called borrowing. Done with & operator

• References are immutable by default

10

fn main() {
let s1 = String::from(“hello”);
let len = calc_len(&s1); //lends pointer
println!(“the length of ‘{}’ is {}”,s1,len);
}
fn calc_len(s: &String) -> usize {
s.push_str(“hi”); //fails! refs are immutable
s.len() // s dropped; but not its referent
}

A. x
B. y
C. z
D. w

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y;
\\ HERE

}

11

Quiz 1: Owner of s data at HERE ?

A. x
B. y
C. z
D. w

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y;
\\ HERE

}

12

Quiz 1: Owner of s data at HERE ?

Rules of References

1. At any given time, you can have either but not
both of
– One mutable reference
– Any number of immutable references

2. References must always be valid (pointed-to
value not dropped)

13

Borrowing and Mutation
• Make immutable references to mutable values

– Shares read-only access through owner and
borrowed references

• Same for immutable values
– Mutation disallowed on original value until borrowed

reference(s) dropped

14

{ let mut s1 = String::from(“hello”);
{ let s2 = &s1;
println!("String is {} and {}",s1,s2); //ok
s1.push_str(" world!"); //disallowed

} //drops s2
s1.push_str(" world!"); //ok
println!("String is {}",s1);}//prints updated s1

Mutable references
• To permit mutation via a reference, use &mut

– Instead of just &
– But only OK for mutable variables

15

let mut s1 = String::from(“hello”);
{ let s2 = &s1;
s2.push_str(“ there”);//disallowed; s2 immut

} //s2 dropped
let mut s3 = &mut s1; //ok since s1 mutable
s3.push_str(“ there”); //ok since s3 mutable
println!(”String is {}”,s3); //ok

A. “Hello!”
B. “Hello! World!”
C. Error
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

16

Quiz 2: What does this evaluate to?

A. “Hello!”
B. “Hello! World!”
C. Error; s2 is not mut
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

17

Quiz 2: What does this evaluate to?

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

18

Quiz 3: What is printed?

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

19

Quiz 3: What is printed?

Ownership and Mutable References

• Can make only one mutable reference
• Doing so blocks use of the original

– Restored when reference is dropped

20

let mut s1 = String::from(“hello”);
{ let s2 = &mut s1; //ok
let s3 = &mut s1; //fails: second borrow
s1.push_str(“ there”); //fails: second borrow

} //s2 dropped; s1 is first-class owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

implicit borrow
(self is a reference)

Immutable and Mutable References

• Cannot make a mutable reference if immutable
references exist
– Holders of an immutable reference assume the

object will not change from under them!

21

let mut s1 = String::from(“hello”);
{ let s2 = &s1; //ok: s2 is immutable
let s3 = &s1; //ok: multiple imm. refs allowed
let s4 = &mut s1; //fails: imm ref already

} //s2-s4 dropped; s1 is owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

Aside: Generics and Polymorphism

• Rust has support like that of Java and OCaml

– Example: The std library defines Vec<T> where T
can be instantiated with a variety of types

• Vec<char> is a vector of characters

• Vec<&str> is a vector of string slices

• You can define polymorphic functions, too

– Rust:

– Java:

– Ocaml:

• More later…
22

fn id<T>(x:T) -> T { x }

let id x = x

static <T> T id(T x) { return x; }

Dangling References

• References must always be to valid memory
– Not to memory that has been dropped

– Rust type checker will disallow this using a concept
called lifetimes

• A lifetime is a type-level parameter that names the scope in
which the data is valid

23

fn main() {
let ref_invalid = dangle();
println!(“what will happen … {}”,ref_invalid);

}
fn dangle() -> &String {
let s1 = String::from(“hello”);
&s1

} // bad! s1’s value has been dropped

Lifetimes: Preventing Dangling Refs

• Another way to view our prior example

• The Rust type checker observes that x goes out
of scope while r still exists
– A lifetime is a type variable that identifies a scope
– r’s lifetime ‘a exceeds x’s lifetime ‘b

24

{
let r; // deferred init
{
let x = 5;
r = &x;

}
println!(“r: {}”,r); //fails

}

x’s lifetime ‘b
r’s lifetime ‘a

Issue:
r ⟵ x but ‘a ≰ ‘b

Lifetimes and Functions

• Lifetime of a reference not always visible
– E.g., when passed as an argument to a function

– What could go wrong here?

25

fn longest(x:&str, y:&str) -> &str {
if x.len() > y.len() { x } else { y }

}

{ let x = String::from(“hi”);
let z;
{ let y = String::from(“there”);
z = longest(&x,&y); //will be &y

} //drop y, and thereby z
println!(“z = {}”,z);//yikes!

}

String slice
(more later)

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

{ let mut s = &String::from("dog");
{

let y = String::from("hi");
s = &y;

}
println!("s: {}",s);

}

26

Quiz 4: What is printed?

27

Quiz 4: What is printed?

{ let mut s = &String::from("dog");
{

let y = String::from("hi");
s = &y;

}
println!("s: {}",s);

}

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

Lifetime Parameters
• Each reference of type t has a lifetime parameter

– &t (and &mut t) – lifetime is implicit
– &’a t (and &’a mut t) – lifetime ‘a is explicit

• Where do the lifetime names come from?
– When left implicit, they are generated by the compiler
– Global variables have lifetime ‘static

• Lifetimes can also be generic

– Thus: x and y must have the same lifetime, and the
returned reference shares it

28

fn longest<‘a>(x:&‘a str, y:&‘a str) -> &‘a str {
if x.len() > y.len() { x } else { y }

}

Lifetimes FAQ

• When do we use explicit lifetimes?
– When more than one var/type needs the same

lifetime (like the longest function)

• How does lifetime subsumption work?
– If lifetime ‘a is longer than ‘b, we can use ‘a where
‘b is expected; can require this with ‘b: ‘a.

• Permits us to call longest(&x,&y) when x and y have
different lifetimes, but one outlives the other

– Just like subtyping/subsumption in OO programming

• Can we use lifetimes in data definitions?
– Yes; we will see this later when we define structs,
enums, etc.

29

Recap: Rules of References

1. At any given time, you can have either but not
both of
– One mutable reference
– Any number of immutable references

2. References must always be valid
– A reference must never outlive its referent

30

