
CMSC 330: Organization of
Programming Languages

Ruby Regular Expressions

1CMSC 330 - Summer 2018

String Processing in Ruby

Earlier, we motivated scripting languages using
a popular application of them: string processing
The Ruby String class provides many useful
methods for manipulating strings
• Concatenating them, grabbing substrings, searching

in them, etc.
A key feature in Ruby is its native support for
regular expressions
• Very useful for parsing and searching
• First gained popularity in Perl

2CMSC 330 - Summer 2018

String Operations in Ruby

• "hello".index("l", 0)
Ø Return index of the first occurrence of string in s, starting at n

• "hello".sub("h", "j")
Ø Replace first occurrence of "h" by "j" in string
Ø Use gsub ("global" sub) to replace all occurrences

• "r1\tr2\t\tr3".split("\t")
Ø Return array of substrings delimited by tab

Consider these three examples again
• All involve searching in a string for a certain pattern
• What if we want to find more complicated patterns?

Ø Find first occurrence of "a" or "b"
Ø Split string at tabs, spaces, and newlines

3CMSC 330 - Summer 2018

Regular Expressions

A way of describing patterns or sets of strings
• Searching and matching
• Formally describing strings

Ø The symbols (lexemes or tokens) that make up a language

Common to lots of languages and tools
• awk, sed, perl, grep, Java, OCaml, C libraries, etc.

Ø Popularized (and made fast) as a language feature in Perl

Based on some really elegant theory
• Future lecture

4CMSC 330 - Summer 2018

Example Regular Expressions in Ruby

/Ruby/
• Matches exactly the string "Ruby"
• Regular expressions can be delimited by /�s
• Use \ to escape /�s in regular expressions

/(Ruby|OCaml|Java)/
• Matches either "Ruby", "OCaml", or "Java"

/(Ruby|Regular)/ or /R(uby|egular)/
• Matches either "Ruby" or "Regular"
• Use ()�s for grouping; use \ to escape ()�s

5CMSC 330 - Summer 2018

Using Regular Expressions

Regular expressions are instances of Regexp
• We�ll see use of a Regexp.new later

Basic matching using =~ method of String

Can use regular expressions in index, search, etc.

line = gets # read line from standard input
if line =~ /Ruby/ then # returns nil if not found
puts "Found Ruby"

end

offset = line.index(/(MAX|MIN)/) # search starting from 0
line.sub(/(Perl|Python)/, "Ruby") # replace
line.split(/(\t|\n|)/) # split at tab, space,

newline

6CMSC 330 - Summer 2018

Repetition in Regular Expressions

/(Ruby)*/
• {"", "Ruby", "RubyRuby", "RubyRubyRuby", ...}
• * means zero or more occurrences

/Ruby+/
• {"Ruby", "Rubyy", "Rubyyy", ... }
• + means one or more occurrence
• so /e+/ is the same as /ee*/

/(Ruby)?/
• {"", "Ruby"}
• ? means optional, i.e., zero or one occurrence

8CMSC 330 - Summer 2018

Repetition in Regular Expressions

/(Ruby){3}/
• {�RubyRubyRuby�}
• {x} means repeat the search for exactly x occurrences

/(Ruby){3,}/
• {�RubyRubyRuby�, �RubyRubyRubyRuby�, …}
• {x,} means repeat the search for at least x occurrences

/(Ruby){3, 5}/
• {�RubyRubyRuby�, �RubyRubyRubyRuby�,
�RubyRubyRubyRubyRuby�}

• {x, y} means repeat the search for at least x
occurrences and at most y occurrences

9CMSC 330 - Summer 2018

Watch Out for Precedence

/(Ruby)*/ means {"", "Ruby", "RubyRuby", ...}
/Ruby*/ means {"Rub", "Ruby", "Rubyy", ...}
In general
• * {n} and + bind most tightly
• Then concatenation (adjacency of regular expressions)
• Then |

Best to use parentheses to disambiguate
• Note that parentheses have another use, to extract

matches, as we’ll see later

10CMSC 330 - Summer 2018

Character Classes
/[abcd]/
• {"a", "b", "c", "d"} (Can you write this another way?)

/[a-zA-Z0-9]/
• Any upper or lower case letter or digit

/[^0-9]/
• Any character except 0-9 (the ^ is like not and must

come first)
/[\t\n]/
• Tab, newline or space

/[a-zA-Z_\$][a-zA-Z_\$0-9]*/
• Java identifiers ($ escaped...see next slide)

11CMSC 330 - Summer 2018

Special Characters
. any character
^ beginning of line
$ end of line
\$ just a $
\d digit, [0-9]
\s whitespace, [\t\r\n\f\s]
\w word character, [A-Za-z0-9_]
\D non-digit, [^0-9]
\S non-space, [^\t\r\n\f\s]
\W non-word, [^A-Za-z0-9_]

12

Using /^pattern$/
ensures entire
string/line must
match pattern

CMSC 330 - Summer 2018

Potential Character Class Confusions

^

• Inside character classes: not
• Outside character classes: beginning of line

[]

• Inside regular expressions: character class

• Outside regular expressions: array

Ø Note: [a-z] does not make a valid array

()

• Inside character classes: literal characters ()

Ø Note /(0..2)/ does not mean 012

• Outside character classes: used for grouping

–

• Inside character classes: range (e.g., a to z given by [a-z])

• Outside character classes: subtraction

13CMSC 330 - Summer 2018

14

Summary

Let re represents an arbitrary pattern; then:
• /re/ – matches regexp re
• /(re1|re2)/ – match either re1 or re2
• /(re)*/ – match 0 or more occurrences of re
• /(re)+/ – match 1 or more occurrences of re
• /(re)?/ – match 0 or 1 occurrences of re
• /(re){2}/ – match exactly two occurrences of re
• /[a-z]/ – same as (a|b|c|...|z)
• / [^0-9]/ – match any character that is not 0, 1, etc.
• ^, $ – match start or end of string

CMSC 330 - Summer 2018

Try out regexps at rubular.com

15CMSC 330 - Summer 2018

Regular Expression Practice

Make Ruby regular expressions representing
• All lines beginning with a or b
• All lines containing at least two (only alphabetic) words

separated by white-space
• All lines where a and b alternate and appear at least

once
• An expression which would match both of these lines

(but not radically different ones)
Ø CMSC330: Organization of Programming Languages: Fall 2016
Ø CMSC351: Algorithms: Fall 2016

/^(a|b)/

/[a-zA-Z]+\s+[a-zA-Z]+/

/^((ab)+ a?)|((ba)+ b?)$/

16CMSC 330 - Summer 2018

A. 1
B. 2
C. 4
D. More than 4

/^Hello. Anyone awake?$/

How many different strings could this
regex match?

Quiz 1

17CMSC 330 - Summer 2018

A. 1
B. 2
C. 4
D. More than 4

/^Hello. Anyone awake?$/

How many different strings could this
regex match?

Quiz 1

18CMSC 330 - Summer 2018

Matches any character

e or nothing

A. ^[computer]$
B. ^(c|o|m|p|u|t|e|r)$
C. ^([comp]|[uter])$
D. ^c?o?m?p?u?t?e?r?$

Which regex is not equivalent to the others?

Quiz 2

19CMSC 330 - Summer 2018

A. ^[computer]$
B. ^(c|o|m|p|u|t|e|r)$
C. ^([comp]|[uter])$
D. ^c?o?m?p?u?t?e?r?$

Which regex is not equivalent to the others?

Quiz 2

20CMSC 330 - Summer 2018

A. “cmsc\d\d\d”
B. “cmsc330”
C. “hellocmsc330”
D. “cmsc330world”

Which string does not match the regex?

Quiz 3

/[a-z]{4}\d{3}/

21CMSC 330 - Summer 2018

A. “cmsc\d\d\d”
B. “cmsc330”
C. “hellocmsc330”
D. “cmsc330world”

Which string does not match the regex?

Quiz 3

/[a-z]{4}\d{3}/

22CMSC 330 - Summer 2018

Recall that without ^ and $, a regex will match any substring

Extracting Substrings based on R.E.�s
Method 1: Back References

Two options to extract substrings based on R.E.�s:

Use back references
• Ruby remembers which strings matched the

parenthesized parts of r.e.�s

• These parts can be referred to using special variables
called back references (named $1, $2,…)

25CMSC 330 - Summer 2018

Back Reference Example

Extract information from a report

Warning
• Despite their names, $1 etc are local variables

gets =~ /^Min: (\d+) Max: (\d+)$/
min, max = $1, $2

def m(s)
s =~ /(Foo)/
puts $1 # prints Foo

end
m("Foo")
puts $1 # prints nil

sets min = $1
and max = $2

26CMSC 330 - Summer 2018

Another Back Reference Example

Warning 2
• If another search is performed, all back references

are reset to nil

gets =~ /(h)e(ll)o/
puts $1
puts $2
gets =~ /h(e)llo/
puts $1
puts $2
gets =~ /hello/
puts $1

hello
h
ll
hello
e
nil
hello
nil

27CMSC 330 - Summer 2018

A. help

B. I

C. I’m

D. I’m stuck in a text editor

s = “help I’m stuck in a text editor”
s =~ /([A-Z]+)/
puts $1

What is the output of the following code?

Quiz 4

28CMSC 330 - Summer 2018

A. help

B. I

C. I’m

D. I’m stuck in a text editor

s = “help I’m stuck in a text editor”
s =~ /([A-Z]+)/
puts $1

What is the output of the following code?

Quiz 4

29CMSC 330 - Summer 2018

A. afraid
B. Why
C. 6
D. 7

“Why was 6 afraid of 7?” =~ /\d\s(\w+).*(\d)/
puts $2

What is the output of the following code?

Quiz 5

30CMSC 330 - Summer 2018

A. afraid
B. Why
C. 6
D. 7

“Why was 6 afraid of 7?” =~ /\d\s(\w+).*(\d)/
puts $2

What is the output of the following code?

Quiz 5

31CMSC 330 - Summer 2018

Method 2: String.scan

Also extracts substrings based on regular
expressions
Can optionally use parentheses in regular
expression to affect how the extraction is done
Has two forms that differ in what Ruby does with
the matched substrings
• The first form returns an array
• The second form uses a code block

Ø We’ll see this later

32CMSC 330 - Summer 2018

First Form of the Scan Method

str.scan(regexp)
• If regexp doesn't contain any parenthesized subparts,

returns an array of matches
Ø An array of all the substrings of str which matched

Ø Note: these strings are chosen sequentially from as yet
unmatched portions of the string, so while �330 Fall� does match
the regular expression above, it is not returned since �330� has
already been matched by a previous substring.

s = "CMSC 330 Fall 2007"
s.scan(/\S+ \S+/)
returns array ["CMSC 330", "Fall 2007"]

33CMSC 330 - Summer 2018

s.scan(/\S{2}/)
=> ["CM", "SC", "33", "Fa", "ll", "20", "07"]

First Form of the Scan Method (cont.)
• If regexp contains parenthesized subparts, returns an

array of arrays
Ø Each sub-array contains the parts of the string which

matched one occurrence of the search

Ø Each sub-array has the same number of entries as the
number of parenthesized subparts

Ø All strings that matched the first part of the search (or $1 in
back-reference terms) are located in the first position of each
sub-array

s = "CMSC 330 Fall 2007"
s.scan(/(\S+) (\S+)/) # [["CMSC", "330"],

["Fall", "2007"]]

34CMSC 330 - Summer 2018

Practice with Scan and Back-references
> ls -l
drwx------ 2 sorelle sorelle 4096 Feb 18 18:05 bin
-rw------- 1 sorelle sorelle 674 Jun 1 15:27 calendar
drwx------ 3 sorelle sorelle 4096 May 11 2006 cmsc311
drwx------ 2 sorelle sorelle 4096 Jun 4 17:31 cmsc330
drwx------ 1 sorelle sorelle 4096 May 30 19:19 cmsc630
drwx------ 1 sorelle sorelle 4096 May 30 19:20 cmsc631

Extract just the file or directory name from a line using

• scan

• back-references

name = line.scan(/\S+$/) # [�bin�]

if line =~ /(\S+$)/
name = $1 # �bin�

end
35CMSC 330 - Summer 2018

Quiz 6

A. 3
B. 4
C. 5
D. 6

s = “Hello World”
t = s.scan(/\w{2}/).length
puts t

What is the output of the following code?

36CMSC 330 - Summer 2018

Quiz 6
What is the output of the following code?

A. 3
B. 4
C. 5
D. 6

s = “Hello World”
t = s.scan(/\w{2}/).length
puts t

37CMSC 330 - Summer 2018

Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]
B. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]
C. [“To”,”be,”]
D. [“to”,”be!”]

s = “To be, or not to be!”
a = s.scan(/(\S+) (\S+)/)
puts a.inspect

What is the output of the following code?

38CMSC 330 - Summer 2018

Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]
B. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]
C. [“To”,”be,”]
D. [“to”,”be!”]

s = “To be, or not to be!”
a = s.scan(/(\S+) (\S+)/)
puts a.inspect

What is the output of the following code?

39CMSC 330 - Summer 2018

Second Form of the Scan Method

Can take a code block as an optional argument

str.scan(regexp) { |match| block }
• Applies the code block to each match
• Short for str.scan(regexp).each { |match| block }
• The regular expression can also contain

parenthesized subparts

40CMSC 330 - Summer 2018

Example of Second Form of Scan

Sums up three columns of numbers

sum_a = sum_b = sum_c = 0
while (line = gets)
line.scan(/(\d+)\s+(\d+)\s+(\d+)/) { |a,b,c|
sum_a += a.to_i
sum_b += b.to_i
sum_c += c.to_i

}
end
printf("Total: %d %d %d\n", sum_a, sum_b, sum_c)

12 34 23
19 77 87
11 98 3
2 45 0

input file:
will be read line by line, but
column summation is desired

converts the string
to an integer

41CMSC 330 - Summer 2018

Standard Library: File

Lots of convenient methods for IO
File.new("file.txt", "rw") # open for rw access
f.readline # reads the next line from a file
f.readlines # returns an array of all file lines
f.eof # return true if at end of file
f.close # close file
f << object # convert object to string and write to f
$stdin, $stdout, $stderr # global variables for standard UNIX IO

By default stdin reads from keyboard, and stdout and stderr both
write to terminal

File inherits some of these methods from IO

42CMSC 330 - Summer 2018

Exceptions

Use begin...rescue...ensure...end
• Like try...catch...finally in Java

begin
f = File.open("test.txt", "r")
while !f.eof
line = f.readline
puts line

end
rescue Exception => e
puts "Exception:" + e.to_s +
" (class " + e.class.to_s + ")�

ensure
f.close if f != nil

end

Class of exception
to catch

Local name
for exception

Always happens

43CMSC 330 - Summer 2018

Command Line Arguments

Stored in predefined global constant ARGV

Example
• If

Ø Invoke test.rb as �ruby test.rb a b c�
• Then

Ø ARGV[0] = �a�
Ø ARGV[1] = �b�
Ø ARGV[2] = �c�

44CMSC 330 - Summer 2018

Practice: Amino Acid counting in DNA

Write a function that will take a filename and read
through that file counting the number of times
each group of three letters appears so these
numbers can be accessed from a hash.

(assume: the number of chars per line is a multiple of 3)

gcggcattcagcacccgtatactgttaagcaatccagatttttgtgtataacataccggc
catactgaagcattcattgaggctagcgctgataacagtagcgctaacaatgggggaatg
tggcaatacggtgcgattactaagagccgggaccacacaccccgtaaggatggagcgtgg
taacataataatccgttcaagcagtgggcgaaggtggagatgttccagtaagaatagtgg
gggcctactacccatggtacataattaagagatcgtcaatcttgagacggtcaatggtac
cgagactatatcactcaactccggacgtatgcgcttactggtcacctcgttactgacgga

45CMSC 330 - Summer 2018

Practice: Amino Acid counting in DNA

def countaa(filename)
file = File.new(filename, "r")
lines = file.readlines
hash = Hash.new
lines.each{ |line|

acids = line.scan(/.../)
acids.each{ |aa|

if hash[aa] == nil
hash[aa] = 1

else
hash[aa] += 1

end
}

}
end

initialize
the hash, or
you will get
an error when
trying to
index into an
array with a
string

get the
file
handle

array of
lines
from the
file

for each
line in
the file

for each
triplet
in the
line

get an array
of triplets
in the line

46CMSC 330 - Summer 2018

Comparisons

Sorting requires ability to compare two values
Ruby comparison method <=>

Ø -1 = less
Ø 0 = equals
Ø +1 = greater

Examples
• 3 <=> 4 returns -1
• 4 <=> 3 returns +1
• 3 <=> 3 returns 0

47CMSC 330 - Summer 2018

Sorting

Two ways to sort an Array
• Default sort (puts values in ascending order)

Ø [2,5,1,3,4].sort # returns [1,2,3,4,5]

• Custom sort (based on value returned by code block}
Ø [2,5,1,3,4].sort { |x,y| y <=> x } # returns [5,4,3,2,1]
Ø Where -1 = less, 0 = equals, +1 = greater
Ø Code block return value used for comparisons

48CMSC 330 - Summer 2018

Ruby Summary

Interpreted
Implicit declarations
Dynamically typed
Built-in regular expressions
Easy string manipulation
Object-oriented
• Everything (!) is an object

Code blocks
• Easy higher-order programming!
• Get ready for a lot more of this...

Makes it
quick to
write small
programs

Hallmark of
scripting
languages

49CMSC 330 - Summer 2018

Other Scripting Languages

Perl and Python are also popular scripting
languages
• Also are interpreted, use implicit declarations and

dynamic typing, have easy string manipulation
• Both include optional �compilation� for speed of

loading/execution
Will look fairly familiar to you after Ruby
• Lots of the same core ideas
• All three have their proponents and detractors
• Use whichever language you personally prefer

50CMSC 330 - Summer 2018

Example Perl Program

#!/usr/bin/perl
foreach (split(//, $ARGV[0])) {
if ($G{$_}) {
$RE .= "\\" . $G{$_};

} else {
$RE .= $N ? "(?!\\" .

join("|\\",values(%G)) . ')(\w)' : '(\w)';
$G{$_} = ++$N;

} }

51CMSC 330 - Summer 2018

Example Python Program

#!/usr/bin/python
import re
list = ("deep", "deer", "duck")
x = re.compile("^\S{3,5}.[aeiou]")
for i in list:
if re.match(x, i):
print I

else:
print

52CMSC 330 - Summer 2018

