CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
- **Parser** converts tokens into an **AST** (abstract syntax tree) using **context free grammars**
Scanning (“tokenizing”)

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp `[a-zA-Z_][a-zA-Z0-9_]*`
- Simplest case: a token is just a string
 - `type token = string`
 - But representation might be more full featured
- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

type token = string

let tokenize (s:string) = ...
(* returns token list *)

;;

let tokenize s =
 let l = String.length s in
 let rec tok sidx slen =
 if sidx >= l then ("",sidx)
 else if String.get s sidx = ' ' then
 tok (sidx+1) 1
 else if (sidx+slen) >= l then
 (String.sub s sidx slen,l)
 else if String.get s (sidx+slen) = ' ' then
 (String.sub s sidx slen, sidx+slen)
 else
 tok sidx (slen+1) in
 let rec alltoks idx =
 let (t,idx') = tok idx 1 in
 if t = "" then []
 else t::alltoks idx' in
 alltoks 0

tokenize "this is a string" =
["this"; "is"; "a"; "string"]
More Interesting Scanner

```ocaml
type token =
    Tok_Num of char
  | Tok_Sum
  | Tok_END

let tokenize (s:string) = ...
  (* returns token list *)
;;
```

```
let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
  let rec tok pos s =
    if pos >= String.length s then
      [Tok_END]
    else
      if (Str.string_match re_num s pos) then
        let token = Str.matched_string s in
        (Tok_Num token.[0])::(tok (pos+1) s)
      else if (Str.string_match re_add s pos) then
        Tok_Sum::(tok (pos+1) s)
      else
        raise (IllegalExpression "tokenize")
    in
  tok 0 str
```

```
tokenize "1+2" =
  [Tok_Num '1';
   Tok_Sum;
   Tok_Num '2';
   Tok_END]
```

Uses \texttt{Str} library module for regexps
Implementing Parsers

• Many efficient techniques for parsing
 • I.e., for turning strings into parse trees
 • Examples
 ➢ LL(k), SLR(k), LR(k), LALR(k)…
 ➢ Take CMSC 430 for more details

• One simple technique: recursive descent parsing
 • This is a top-down parsing algorithm

• Other algorithms are bottom-up
Top-Down Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for

{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing (Intuition)

\[E \rightarrow \text{id} = n | \{ L \} \]
\[L \rightarrow E ; L | \varepsilon \]

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)
- Example grammar
 - $S \rightarrow aA, A \rightarrow Bc, B \rightarrow b$
- Example parse
 - $abc \Rightarrow aBc \Rightarrow aA \Rightarrow S$
 - Derivation happens in reverse
- Something to look forward to in CMSC 430
- Complicated to use; requires tool support
 - *Bison*, *yacc* produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table

- Shift-reduce parsers handle more grammars
 - Error messages may be confusing

- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

- **Goal**
 - Determine if we can produce the string to be parsed from the grammar's start symbol

- **Approach**
 - Recursively replace nonterminal with RHS of production
 - At each step, we'll keep track of two facts
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

- At each step, 3 possible cases
 - If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error
Parsing Example

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

- Here \(n \) is an integer and \(\text{id} \) is an identifier

- One input might be
 - \(\{ x = 3; \{ y = 4; \}; \} \)
 - This would get turned into a list of tokens
 \(\{ x = 3 ; \{ y = 4 ; \} ; \} \)
 - And we want to turn it into a parse tree
Parsing Example (cont.)

E → id = n | { L }
L → E ; L | ε

{x = 3 ; { y = 4 ; } ; }
Recursive Descent Parsing (cont.)

- Key step
 - Choosing which production should be selected

- Two approaches
 - Backtracking
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing (what we will do)
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

Motivating example

• The lookahead is x
• Given grammar $S \rightarrow xyz \mid abc$
 ➢ Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
• Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 ➢ Select $S \rightarrow A$, since A can derive string beginning with x

In general

• Choose a production that can derive a sentential form beginning with the lookahead
• Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

• First(γ), for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to
• We’ll use this to decide what production to apply

Examples

• Given grammar $S \rightarrow xyz \mid abc$
 - First(xyz) = \{ x \}, First(abc) = \{ a \}
 - First(S) = First(xyz) U First(abc) = \{ x, a \}
• Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - First(x) = \{ x \}, First(y) = \{ y \}, First(A) = \{ x, y \}
 - First(z) = \{ z \}, First(B) = \{ z \}
 - First(S) = \{ x, y, z \}
Calculating First(γ)

- For a terminal a
 - $\text{First}(a) = \{ a \}$

- For a nonterminal N
 - If $N \rightarrow \varepsilon$, then add ε to $\text{First}(N)$
 - If $N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n$, then (note the α_i are all the symbols on the right side of one single production):
 - Add $\text{First}(\alpha_1 \alpha_2 \ldots \alpha_n)$ to $\text{First}(N)$, where $\text{First}(\alpha_1 \alpha_2 \ldots \alpha_n)$ is defined as
 - $\text{First}(\alpha_1)$ if $\varepsilon \notin \text{First}(\alpha_1)$
 - Otherwise $(\text{First}(\alpha_1) - \varepsilon) \cup \text{First}(\alpha_2 \ldots \alpha_n)$
 - If $\varepsilon \in \text{First}(\alpha_i)$ for all i, $1 \leq i \leq k$, then add ε to $\text{First}(N)$
First() Examples

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("{")= \{ "{" \}
First("}\")= \{ "}" \}
First(";")= \{ ",;" \}
First(E) = \{ id, ",{" \}
First(L) = \{ id, ",{", \varepsilon \}

\[E \rightarrow id = n \mid \{ L \} \mid \varepsilon \]
\[L \rightarrow E ; L \]

First(id) = \{ id \}
First("=") = \{ "=" \}
First(n) = \{ n \}
First("{")= \{ "{" \}
First("}\")= \{ "}" \}
First(";")= \{ ",;" \}
First(E) = \{ id, ",{", \varepsilon \}
First(L) = \{ id, ",{", ",;" \}

Quiz #1

Given the following grammar:

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #1

Given the following grammar:

```
S  ->  aAB
A  ->  CBC
B  ->  b
C  ->  cC  |  ε
```

What is $\text{First}(S)$?

A. $\{a\}$
B. $\{b, c\}$
C. $\{b\}$
D. $\{c\}$
Quiz #2

Given the following grammar:

```
S  ->  aAB
A  ->  CBC
B  ->  b
C  ->  cC | ε
```

What is First(B)?

A. {a}
B. {b}
C. {b, c}
D. {c}
Quiz #2

Given the following grammar:

What is $\text{First}(B)$?

A. $\{a\}$
B. $\{b\}$
C. $\{b,c\}$
D. $\{c\}$

$$
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \epsilon
$$
Quiz #3

Given the following grammar:

What is First(A)?

A. \{a\}
B. \{b\}
C. \{c\}
D. \{b, c\}
Quiz #3

Given the following grammar:

\[
\begin{align*}
S &\rightarrow aAB \\
A &\rightarrow CBC \\
B &\rightarrow b \\
C &\rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(A)?

A. \{a\}
B. \{b\}
C. \{c\}
D. \{b, c\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok` a
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we're trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

The body of `parse_N` for a nonterminal `N` does the following

- Let `N → β₁ | ... | βₖ` be the productions of `N`
 - Here `βᵢ` is the entire right side of a production- a sequence of terminals and nonterminals
- Pick the production `N → βᵢ` such that the lookahead is in `First(βᵢ)`
 - It must be that `First(βᵢ) ∩ First(βⱼ) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
- Suppose `βᵢ = α₁ α₂ ... αₙ`. Then call `parse_α₁(); ... ; parse_αₙ()` to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$

- Parser

  ```
  let parse_S () =
      if lookahead () = "x" then (* $S \rightarrow xyz$ *)
          (match_tok "x";
           match_tok "y";
           match_tok "z")
      else if lookahead () = "a" then (* $S \rightarrow abc$ *)
          (match_tok "a";
           match_tok "b";
           match_tok "c")
      else raise (ParseError "parse_S")
  ```
Another Example Parser

- **Given grammar** \(S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z \)

 - First(A) = \{ x, y \}, First(B) = \{ z \}

- **Parser:**

  ```ml
  let rec parse_S () =
    if lookahead () = "x" ||
    lookahead () = "y" then
      parse_A () (* S \rightarrow A *)
    else if lookahead () = "z" then
      parse_B () (* S \rightarrow B *)
    else raise (ParseError "parse_S")

  and parse_A () =
    if lookahead () = "x" then
      match_tok "x" (* A \rightarrow x *)
    else if lookahead () = "y" then
      match_tok "y" (* A \rightarrow y *)
    else raise (ParseError "parse_A")

  and parse_B () = ...
  ```
Example

\[E \rightarrow \text{id} = n \mid \{ \text{L} \} \]
\[\text{L} \rightarrow E ; \text{L} \mid \varepsilon \]

First(\(E\)) = \{ id, "{" \}

Parser:

let rec parse_\(E\) () =
 if lookahead () = "id" then
 (* \(E \rightarrow \text{id} = n\) *)
 (match_tok "id";
 match_tok "=";
 match_tok "n")
 else if lookahead () = "{" then
 (* \(E \rightarrow \{ \text{L} \}\) *)
 (match_tok "{";
 parse_\(L\) ()
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_\(L\) () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* \(L \rightarrow E ; \text{L}\) *)
 (parse_\(E\) ()
 match_tok ";";
 parse_\(L\) ()
 else
 (* \(L \rightarrow \varepsilon\) *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar
 - \(S \rightarrow xyz \)
 - \(S \rightarrow abc \)

- String “xyz”

```
parse_S ()
match_tok “x” / \ 
match_tok “y” x y z
match_tok “z”
```

- Grammar
 - \(S \rightarrow A \mid B \)
 - \(A \rightarrow x \mid y \)
 - \(B \rightarrow z \)

- String “x”

```
parse_S ()
parse_A ()
match_tok “x” x
```
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use
- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ϵ
 - Possible infinite recursion
- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar $E \rightarrow ab \mid ac$

- $\text{First}(ab) = a$
- $\text{First}(ac) = a$

Parser cannot choose between RHS based on lookahead!

Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and

- $\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon$ or \emptyset

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

- Given grammar
 - $A \to x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta$

- Rewrite grammar as
 - $A \to xL \mid \beta$
 - $L \to \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$

- Repeat as necessary

- Examples
 - $S \to ab \mid ac \Rightarrow S \to aL \quad L \to b \mid c$
 - $S \to abcA \mid abB \mid a \Rightarrow S \to aL \quad L \to bcA \mid bB \mid \epsilon$
 - $L \to bcA \mid bB \mid \epsilon \Rightarrow L \to bL’ \mid \epsilon \quad L’ \to cA \mid B$
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to choose between productions

- Example
 - Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```ocaml
let parse_E () =
  match tok "a"; (* common prefix *)
  if lookahead () = "+" then (* $E \rightarrow a+b$ *)
    (match tok "+";
     match tok "b")
  else if lookahead () = "*" then (* $E \rightarrow a*b$ *)
    (match tok "*";
     match tok "b")
  else () (* $E \rightarrow a$ *)
```
Left Recursion

- Consider grammar $S \rightarrow Sa \mid \varepsilon$
 - Try writing parser

    ```
    let rec parse_S () =
    if lookahead () = "a" then
      (parse_S ();
       match_tok "a") (* S → Sa *)
    else ()
    ```

- Body of parse_S () has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

- Consider grammar $S \rightarrow aS \mid \epsilon$
 - Try writing parser

```plaintext
let rec parse_S () =
  if lookahead () = “a” then
    (match_tok “a”;
     parse_S ()); (* S → aS *)
  else ()
```

- Will `parse_S()` infinite loop?
 - Invoking `match_tok` will advance lookahead, eventually stop
- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- **Given grammar**
 - $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta$
 - β must exist or no derivation will yield a string

- **Rewrite grammar as (repeat as needed)**
 - $A \rightarrow \beta L$
 - $L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \epsilon$

- **Replaces left recursion with right recursion**

- **Examples**
 - $S \rightarrow Sa \mid \epsilon \quad \Rightarrow \quad S \rightarrow L \quad L \rightarrow aL \mid \epsilon$
 - $S \rightarrow Sa \mid Sb \mid c \quad \Rightarrow \quad S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \epsilon$
What Does the following code parse?

```ocaml
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. $S \rightarrow axyq$
B. $S \rightarrow a \mid q$
C. $S \rightarrow aaxy \mid qq$
D. $S \rightarrow axy \mid q$
Quiz #4

What Does the following code parse?

```ocaml
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

What Does the following code parse?

```
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
     match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
    if lookahead () = "a" then
        (match tok "a";
        parse_S ()
    else if lookahead () = "q" then
        (match tok "q";
        match tok "p")
    else
        raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
Can recursive descent parse this grammar?

S -> aB\text{a}
B -> bC
C -> \varepsilon \mid Cc

A. Yes
B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.
Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language

• Note that grammars describe trees
 ➢ So do OCaml datatypes, as we have seen already

• \[E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E) \]
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`

 ➢ AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

  ```ml
  let rec parse_S () =
  if lookahead () = "a" then
    let n1 = match_tok "a" in
    let n2 = parse_A () in
    Node(n1,n2)
  else raise ParseError "parse_S"
  ```

```plaintext
S  /
   /
  a  A
  |   
  ```
The Compilation Process

source program → Compiler → target program

Lexing → Parsing → AST → Intermediate Code Generation → Optimization

regexps DFAs CFGs PDAs

(may not actually be constructed)