CMSC 330: Organization of Programming Languages

CMSC 330 Summer 2018

Recall: Front End Scanner and Parser

- Scanner / lexer / tokenizer converts program source into tokens (keywords, variable names, operators, numbers, etc.) with regular expressions
- Parser converts tokens into an AST (abstract syntax tree) using context free grammars

Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser's CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*
- Simplest case: a token is just a string
 - type token = string
 - But representation might be more full featured
- Scanner typically ignores/eliminates whitespace

Simple Scanner in OCaml

```
type token = string
let tokenize (s:string) = ...
  (* returns token list *)
;;
```

tokenize "this is a string" =
 ["this"; "is"; "a"; "string"]

```
let tokenize s =
 let 1 = String.length s in
 let rec tok sidx slen =
   if sidx >= 1 then ("",sidx)
   else if String.get s sidx = ' ' then
     tok (sidx+1) 1
   else if (sidx+slen) >= 1 then
      (String.sub s sidx slen,1)
   else if String.get s (sidx+slen) = ' ' then
      (String.sub s sidx slen, sidx+slen)
   else
     tok sidx (slen+1) in
 let rec alltoks idx =
   let (t, idx') = tok idx 1 in
   if t = "" then []
   else t::alltoks idx' in
 alltoks 0
```

More Interesting Scanner

```
type token =
                                               tokenize "1+2'' =
    Tok Num of char
                                                  [Tok Num '1';
   Tok Sum
                                                   Tok Sum;
    Tok END
                                                   Tok Num '2';
                                                   Tok END]
let tokenize (s:string) = ...
   (* returns token list *)
;;
              let re num = Str.regexp "[0-9]" (* single digit *)
              let re add = Str.regexp "+"
              let tokenize str =
              let rec tok pos s =
                                                                   Uses Str
                if pos >= String.length s then
                                                                   library
                   [Tok END]
                else
                                                                   module
                  if (Str.string match re num s pos) then
                    let token = \overline{S}tr.matched string s in
                                                                   for
                      (Tok Num token.[0])::(tok (pos+1) s)
                                                                   regexps
                  else if (Str.string match re add s pos) then
                    Tok Sum:: (tok (pos+1) s)
                  else
                    raise (IllegalExpression "tokenize")
               in
               tok 0 str
```

Implementing Parsers

- Many efficient techniques for parsing
 - I.e., for turning strings into parse trees
 - Examples
 - LL(k), SLR(k), LR(k), LALR(k)...
 - > Take CMSC 430 for more details
- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm
- Other algorithms are bottom-up

Top-Down Parsing (Intuition)

$$\begin{split} & E \rightarrow id = n \mid \{ L \} \\ & L \rightarrow E ; L \mid \epsilon \end{split}$$

(Assume: id is variable name, n is integer)

Show parse tree for { x = 3 ; { y = 4 ; } ; }

Bottom-up Parsing (Intuition)

 $E \rightarrow id = n | \{L\}$ $L \rightarrow E ; L | \epsilon$

Show parse tree for { x = 3 ; { y = 4 ; } ; }

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different

BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)
- Example grammar
 - $S \rightarrow aA, A \rightarrow Bc, B \rightarrow b$
- Example parse
 - $abc \Rightarrow aBc \Rightarrow aA \Rightarrow S$
 - Derivation happens in reverse
- Something to look forward to in CMSC 430
- Complicated to use; requires tool support
 - Bison, yacc produce shift-reduce parsers from CFGs

Tradeoffs

Recursive descent parsers

- Easy to write
 - The formal definition is a little clunky, but if you follow the code then it's almost what you might have done if you weren't told about grammars formally
- Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two

Recursive Descent Parsing

- Goal
 - Determine if we can produce the string to be parsed from the grammar's start symbol
- Approach
 - Recursively replace nonterminal with RHS of production
- At each step, we'll keep track of two facts
 - What tree node are we trying to match?
 - What is the lookahead (next token of the input string)?
 > Helps guide selection of production used to replace nonterminal

Recursive Descent Parsing (cont.)

- At each step, 3 possible cases
 - If we're trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we're trying to match a nonterminal
 > Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error

Parsing Example

- $E \rightarrow id = n | \{L\}$
- $L \to E \ ; \ L \mid \epsilon$
 - Here n is an integer and id is an identifier
- One input might be
 - { x = 3; { y = 4; }; }
 - This would get turned into a list of tokens
 { x = 3 ; { y = 4 ; } ; }
 - And we want to turn it into a parse tree

Parsing Example (cont.)

$$\begin{split} &E \rightarrow id = n \mid \{ \ L \ \} \\ &L \rightarrow E \ ; \ L \mid \epsilon \end{split}$$

{ x = 3 ; { y = 4 ; } ; } lookahead

Recursive Descent Parsing (cont.)

- Key step
 - Choosing which production should be selected
- Two approaches
 - Backtracking
 - > Choose some production
 - > If fails, try different production
 - Parse fails if all choices fail
 - Predictive parsing (what we will do)
 - > Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST

First Sets

- Motivating example
 - The lookahead is x
 - Given grammar $S \rightarrow xyz \mid abc$

> Select S \rightarrow xyz since 1st terminal in RHS matches x

• Given grammar $S \rightarrow A \mid B$ $A \rightarrow x \mid y$ $B \rightarrow z$

> Select S \rightarrow A, since A can derive string beginning with x

- In general
 - Choose a production that can derive a sentential form beginning with the lookahead
 - Need to know what terminal may be first in any sentential form derived from a nonterminal / production

First Sets

Definition

- First(γ), for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to
- We'll use this to decide what production to apply

Examples

- Given grammar $S \rightarrow xyz \mid abc$
 - > First(xyz) = { x }, First(abc) = { a }
 - > First(S) = First(xyz) U First(abc) = { x, a }
- Given grammar $S \rightarrow A \mid B$ $A \rightarrow x \mid y$ $B \rightarrow z$
 - > First(x) = { x }, First(y) = { y }, First(A) = { x, y }
 - > First(z) = { z }, First(B) = { z }
 - > First(S) = { x, y, z }

Calculating First(γ)

- For a terminal a
 - First(a) = { a }
- For a nonterminal N
 - If $N \rightarrow \epsilon$, then add ϵ to First(N)
 - If $N \rightarrow \alpha_1 \alpha_2 \dots \alpha_n$, then (note the α_i are all the symbols on the right side of one single production):
 - > Add First(α₁α₂ ... α_n) to First(N), where First(α₁ α₂ ... α_n) is defined as
 - First(α_1) if $\epsilon \notin First(\alpha_1)$
 - Otherwise $(First(\alpha_1) \epsilon) \cup First(\alpha_2 \dots \alpha_n)$
 - > If $\epsilon \in First(\alpha_i)$ for all i, $1 \le i \le k$, then add ϵ to First(N)

First() Examples

```
E \rightarrow id = n | \{L\}
L \rightarrow E; L \mid \epsilon
First(id) = \{ id \}
First("=") = { "=" }
First(n) = \{n\}
First("{")= { "{" }
First("}")= { "}" }
First(";")= { ";" }
First(E) = { id, "{" }
First(L) = { id, "{", \epsilon }
```

 $E \rightarrow id = n | \{L\} | \epsilon$ $L \rightarrow E ; L$ $First(id) = \{id\}$ First("=") = { "=" } $First(n) = \{n\}$ First("{")= { "{" } First("}")= { "}" } First(";")= { ";" } First(E) = { id, "{", ε } $First(L) = \{ id, "\{", ";" \} \}$ Quiz #1

Given the following grammar:

What is First(S)?

- A.{a}
- B.{b,c}
- C.{b}
- D.{C}

Quiz #1

Given the following grammar:

What is First(S)?
A. {a}
B. {b, c}
C. {b}
D. {c}

What is First(B)?

- A. {a}
- B. {b}

D. {C}

What is First(B)?
A. {a}
B. {b}
C. {b,c}
D. {c}

What is First(A)?

- A. {a}
- B. {b}
- C. {c}
- D. {b,c}

What is First(A)?
A. {a}
B. {b}
C. {c}
D. {b,c}

Recursive Descent Parser Implementation

- For all terminals, use function match_tok a
 - If lookahead is a it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not a
- For each nonterminal N, create a function parse_N
 - Called when we're trying to parse a part of the input which corresponds to (or can be derived from) N
 - parse_S for the start symbol S begins the parse

match_tok in OCaml

```
let tok list = ref [] (* list of parsed tokens *)
exception ParseError of string
let match tok a =
 match !tok list with
    (* checks lookahead; advances on match *)
    | (h::t) when a = h \rightarrow tok list := t
    | -> raise (ParseError "bad match")
(* used by parse X *)
let lookahead () =
 match !tok list with
    [] -> raise (ParseError "no tokens")
  | (h::t) -> h
```

Parsing Nonterminals

- The body of parse_N for a nonterminal N does the following
 - Let $N \to \beta_1 \mid ... \mid \beta_k$ be the productions of N
 - > Here β_i is the entire right side of a production- a sequence of terminals and nonterminals
 - Pick the production $N \to \beta_i$ such that the lookahead is in First(β_i)
 - > It must be that $First(\beta_i) \cap First(\beta_j) = \emptyset$ for $i \neq j$
 - \succ If there is no such production, but $N \rightarrow \epsilon$ then return
 - > Otherwise fail with a parse error
 - Suppose $\beta_i = \alpha_1 \alpha_2 \dots \alpha_n$. Then call parse_ $\alpha_1(); \dots;$ parse_ $\alpha_n()$ to match the expected right-hand side, and return

Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - First(xyz) = { x }, First(abc) = { a }

```
Parser
   let parse S () =
     if lookahead () = "x" then (* S \rightarrow xyz *)
        (match tok "x";
        match tok "y";
        match tok "z")
      else if lookahead () = "a" then (* S \rightarrow abc *)
         (match tok "a";
        match tok "b";
        match tok "c")
      else raise (ParseError "parse S")
```

Another Example Parser

- Given grammar $S \rightarrow A \mid B$ $A \rightarrow x \mid y$ $B \rightarrow z$
 - First(A) = { x, y }, First(B) = { z }

```
Parser: let rec parse_S () =
                if lookahead () = |x'|
                   lookahead () = "y" then
                  parse A () (* S \rightarrow A *)
                else if lookahead () = "z" then
                  parse B () (* S \rightarrow B *)
                else raise (ParseError "parse S")
              and parse A () =
                if lookahead () = "x" then
                  match tok "x" (* A \rightarrow x *)
                else if lookahead () = "y" then
                  match tok "y" (* A \rightarrow y *)
                else raise (ParseError "parse A")
              and parse B () = \dots
```

Example

```
E \rightarrow id = n | \{L\} \qquad First(E) = \{ id, "\{" \} \}L \rightarrow E ; L | \epsilon \qquad Parser:
```

```
let rec parse_E () =
    if lookahead () = "id" then
        (* E → id = n *)
        (match_tok "id";
        match_tok "=";
        match_tok "n")
    else if lookahead () = "{" then
        (* E → { L } *)
        (match_tok "{";
        parse_L ();
        match_tok "}")
    else raise (ParseError "parse A")
```

and parse_L () =
if lookahead () = "id"
|| lookahead () = "{" then
(*
$$L \rightarrow E$$
; L *)
(parse_E ();
match_tok ";";
parse_L ())
else
(* $L \rightarrow \epsilon$ *)
()

Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we'll consider ASTs later)
- Examples
 - Grammar
 - $S \to xyz$
 - $S \to abc$
 - String "xyz"

- Grammar $S \rightarrow A \mid B$
 - $A \rightarrow x \mid y$

$$B \rightarrow z$$

- String "x"
 parse_S ()
 parse_A ()
 - match_tok "x"

X

Things to Notice (cont.)

- This is a predictive parser
 - Because the lookahead determines exactly which production to use
- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ε
 - Possible infinite recursion
- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar

Conflicting First Sets

- Consider parsing the grammar $E \rightarrow ab \mid ac$
 - First(ab) = a Parser cannot choose between
 - First(ac) = a RHS based on lookahead!
- ► Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and
 - First(α_1) \cap First(α_2) != ϵ or \emptyset
- Solution
 - Rewrite grammar using left factoring

Left Factoring Algorithm

- Given grammar
 - $A \rightarrow x\alpha_1 \mid x\alpha_2 \mid ... \mid x\alpha_n \mid \beta$
- Rewrite grammar as
 - $A \rightarrow xL \mid \beta$
 - $L \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$
- Repeat as necessary
- Examples
 - $S \rightarrow ab \mid ac$ $\Rightarrow S \rightarrow aL$ $L \rightarrow b \mid c$
 - $S \rightarrow abcA \mid abB \mid a \Rightarrow S \rightarrow aL$ $L \rightarrow bcA \mid bB \mid \epsilon$
 - $L \rightarrow bcA \mid bB \mid \epsilon \qquad \Rightarrow L \rightarrow bL' \mid \epsilon \quad L' \rightarrow cA \mid B$

Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to chose between productions
- Example
 - Consider parsing the grammar $E \rightarrow a + b \mid a^*b \mid a$

```
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* E \rightarrow a+b *)
    (match_tok "+";
    match_tok "b")
  else if lookahead () = "*" then (* E \rightarrow a*b *)
    (match_tok "*";
    match_tok "b")
  else () (* E \rightarrow a *)
```

Left Recursion

- Consider grammar $S \rightarrow Sa \mid \epsilon$
 - Try writing parser

```
let rec parse_S () =
    if lookahead () = "a" then
        (parse_S ();
        match_tok "a") (* S → Sa *)
    else ()
```

• Body of parse_S () has an infinite loop!

Infinite loop occurs in grammar with left recursion

Right Recursion

• Consider grammar $S \rightarrow aS \mid \epsilon$ Again, Fir

```
Again, First(aS) = a
```

• Try writing parser

```
let rec parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
        parse_S ()) (* S → aS *)
        else ()
```

• Will parse_S() infinite loop?

> Invoking match_tok will advance lookahead, eventually stop

Top down parsers handles grammar w/ right recursion

Algorithm To Eliminate Left Recursion

Given grammar

- $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_n \mid \beta$
 - $> \beta$ must exist or no derivation will yield a string
- Rewrite grammar as (repeat as needed)
 - $A \rightarrow \beta L$
 - $L \rightarrow \alpha_1 L \mid \alpha_2 L \mid ... \mid \alpha_n L \mid \epsilon$
- Replaces left recursion with right recursion
- Examples
 - $S \rightarrow Sa \mid \epsilon$ $\Rightarrow S \rightarrow L$ $L \rightarrow aL \mid \epsilon$
 - $S \rightarrow Sa \mid Sb \mid c$ $\Rightarrow S \rightarrow cL$ $L \rightarrow aL \mid bL \mid c$

What Does the following code parse?

```
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
        match_tok "x";
        match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

```
A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
```

What Does the following code parse?

```
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
        match_tok "x";
        match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

```
A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
```

What Does the following code parse?

```
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
    parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
    match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q

What Does the following code parse?

```
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
    parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
    match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q

Can recursive descent parse this grammar?

A. Yes B. No

Can recursive descent parse this grammar?

What's Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing
- But when we want to reason about languages
 - Extra information gets in the way (too much detail)

Abstract Syntax Trees (ASTs)

An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts

AST

Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you'd use to represent strings in the language
 - Note that grammars describe trees
 - > So do OCaml datatypes, as we have seen already
 - $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E^*E \mid (E)$

Producing an AST

- To produce an AST, we can modify the parse() functions to construct the AST along the way
 - match_tok a returns an AST node (leaf) for a
 - parse_A returns an AST node for A
 > AST nodes for RHS of production become children of LHS node
- Example
 - $S \rightarrow aA$
- let rec parse_S () =
 if lookahead () = "a" then
 S
 let n1 = match_tok "a" in
 / \
 let n2 = parse_A () in
 Node(n1,n2)
 else raise ParseError "parse_S"
 I

The Compilation Process

