CMSC 330: Organization of Programming Languages

OCaml

Higher Order Functions

Anonymous Functions

- Recall code blocks in Ruby
(1..10).each $\{|x|$ print $x\}$
- Here, we can think of $\{|x|$ print $x\}$ as a function
- We can do this (and more) in OCaml

Anonymous Functions

- Passing functions around is very common
- So often we don't want to bother to give them names
- Use fun to make a function with no name

(fun $x->x+3) 5$
$=8$

Anonymous Functions

- Syntax
- fun $x 1$... xn -> e
- Evaluation
- An anonymous function is an expression
- In fact, it is a value - no further evaluation is possible
> As such, it can be passed to other functions, returned from them, stored in a variable, etc.
- Type checking
- (fun $x 1 \ldots$ xn $->e):(t 1->\ldots->$ tn $->u)$ when e:u under assumptions $x 1$: t1, ..., $x n$: tn.
> (Same rule as let $f \times 1 \ldots x n=e)$

All Functions Are Anonymous

- Functions are first-class, so you can bind them to other names as you like
let f x = $\mathrm{x}+3$; ;
let $\mathrm{g}=\mathrm{f} ;$;
g $5=8$
- In fact, let for functions is syntactic shorthand let f x = body
$\downarrow \quad$ is semantically equivalent to
let $\mathrm{f}=$ fun x -> body

Example Shorthands

- let next $x=x+1$
- Short for let next $=$ fun $\mathrm{x}->\mathrm{x}+1$
- let plus x y = x + y
- Short for let plus $=$ fun $\mathbf{x} y->\mathbf{x}+\mathrm{y}$
- let rec fact $\mathrm{n}=$

$$
\text { if } n=0 \text { then } 1 \text { else } n * \text { fact }(n-1)
$$

- Short for let rec fact $=$ fun $n->$

$$
\text { (if } n=0 \text { then } 1 \text { else } n * \text { fact }(n-1) \text {) }
$$

Defining Functions Everywhere

```
let move l x =
    let left x = x - 1 in (* locally defined fun *)
    let right x = x + 1 in (* locally defined fun *)
    if l then left x
    else right x
;;
let move' l x = (* equivalent to the above *)
    if l then (fun y -> y - 1) x
    else (fun y -> y + 1) x
```


Calling Functions, Generalized

- Syntax e0 e1 ... en
- Evaluation
- Evaluate arguments e1 ... en to values v1 ... vn
> Order is actually right to left, not left to right
> But this doesn't matter if e1 ... en don't have side effects
- Evaluate $e 0$ to a function fun $\mathbf{x 1} \ldots$ xn $->e$
- Substitute vi for xi in e, yielding new expression e'
- Evaluate e^{\prime} to value v, which is the final result

Calling Functions, Generalized

- Syntax e0 e1 ... en
- Type checking (almost the same as before)
- If $\boldsymbol{e} 0$: t1 -> ... -> tn -> u and $e 1$: $t 1, \ldots$, en : tn then e0 e1 ... en : u
- Example:
- (fun x-> $x+1$) 1 : int
- since (fun x-> $x+1$): int $->$ int and 1 : int

Pattern Matching With Fun

- match can be used within fun

$$
\begin{aligned}
(f u n & 1 \\
& ->\text { match } 1 \text { with (h::_) } \\
& =1
\end{aligned}
$$

- But use named functions for complicated matches
- May use standard pattern matching abbreviations
(fun (x, y) -> x+y) (1,2)
= 3

Quiz 1: What does this evaluate to?

$$
\begin{aligned}
& \text { let } y=(f u n x->x+1) 2 \text { in } \\
& (\text { fun } y->y+2) y
\end{aligned}
$$

A. Error
B. 3
C. 5
D. 2

Quiz 1: What does this evaluate to?

$$
\begin{aligned}
& \text { let } y=(f u n x->x+1) 2 \text { in } \\
& (\text { fun } y->y+2) y
\end{aligned}
$$

A. Error
B. 3
C. 5
D. 2

Quiz 2: What does this evaluate to?

$$
\begin{aligned}
& \text { let } f \times=0 \text { in } \\
& \text { let } g=f \text { in } \\
& g(f u n i=i+1) 1
\end{aligned}
$$

A. Error
B. 2
C. 1
D. 0

Quiz 2: What does this evaluate to?

B. 2
C. 1

This function has type 'a -> int
It is applied to too many arguments;
D. 0

Passing Functions as Arguments

- In OCaml you can pass functions as arguments (akin to Ruby code blocks)
let plus_three $\mathrm{x}=\mathrm{x}+3$ (* int -> int *)
let twice $\mathbf{f} \mathbf{z ~ = ~} \mathbf{f}(\mathbf{f} \mathbf{z})(* ~(' a->' a) ~->~ ' a ~->~ ' a ~ *) ~$ twice plus_three 5 = 11
- Ruby's collect is called map in OCaml
- map $\mathbf{f} \mathbf{l}$ applies function f to each element of 1 , and puts the results in a new list (preserving order)

```
map plus_three [1; 2; 3] = [4; 5; 6]
map (fun x -> (-x)) [1; 2; 3] = [-1; -2; -3]
```


The Map Function

- Let's write the map function
- Takes a function and a list, applies the function to each element of the list, and returns a list of the results

```
let rec map f l = match l with
    [] -> []
    | (h::t) -> (f h)::(map f t)
```

 let add_one \(x=x+1\)
 let negate \(x=-x\)
 map add_one \([1 ; 2 ; 3]=[2 ; 3 ; 4]\)
 map negate \([9 ;-5 ; 0]=[-9 ; 5 ; 0]\)
 - Type of map?

The Map Function (cont.)

- What is the type of the map function?
let rec map f l $=$ match 1 with
[] -> []
| (h::t) -> (f h)::(map ft)
$\underbrace{(' a->~ ' b)}_{f}->\underbrace{\text { 'a list }}_{1}->$ 'b list

The Fold Function

- Common pattern
- Iterate through list and apply function to each element, keeping track of partial results computed so far
let rec fold f a $1=$ match 1 with
[] -> a
| (h::t) -> fold f (f a h) t
- a = "accumulator"
- Usually called fold left to remind us that f takes the accumulator as its first argument
-What's the type of fold?
= ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

Example

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

let add $a \mathrm{x}=\mathrm{a}+\mathrm{x}$
fold add 0 [1; 2; 3; 4] \rightarrow
fold add 1 [2; 3; 4] \rightarrow
fold add 3 [3; 4] \rightarrow
fold add 6 [4] \rightarrow
fold add 10 [] \rightarrow
10

We just built the sum function!

Another Example

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

```
let next a _ = a + 1
fold next 0 [2; 3; 4; 5] }
fold next 1 [3; 4; 5] }
fold next 2 [4; 5] }
fold next 3 [5] }
fold next 4 [] }
4
```

We just built the length function!

Using Fold to Build Reverse

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

- Let's build the reverse function with fold!
let prepend a $\mathrm{x}=\mathrm{x}:$:a
fold prepend [] [1; 2; 3; 4] \rightarrow
fold prepend [1] [2; 3; 4] \rightarrow
fold prepend [2; 1] [3; 4] \rightarrow
fold prepend [3; 2; 1] [4] \rightarrow
fold prepend [4; 3; 2; 1] [] \rightarrow
[4; 3; 2; 1]

Summary

- map f [vi; v2; ...; va]

$$
=[f \mathrm{v} 1 ; f \mathrm{v} 2 ; \ldots ; f \mathrm{vn}]
$$

- e.g., map (fun $x->x+1$) $[1 ; 2 ; 3]=[2 ; 3 ; 4]$

$$
\begin{array}{lll}
\text { - fold } f & v & {[v 1 ; v 2 ; \ldots ; v n]} \\
=\text { fold } f & (f v v 1) & {[v 2 ; \ldots ; v n]} \\
=\text { fold } f(f(f v v 1) v 2) & {[\ldots ; v n]}
\end{array}
$$

$=$
$=f(f(f(f \vee v 1) \quad v 2)$...) vo

- e.g., fold add 0 [1;2;3;4] = add (add (add (add 0 1) 2) 3) $4=10$

Quiz 3: What does this evaluate to?

> let $g x=x+1$ in
> $($ fun $f y->f$) $g 1$
A. Error
B. 2
C. 1
D. (id 2)

Quiz 3: What does this evaluate to?

> let $g x=x+1$ in
> $($ fun $f y->f$) $g 1$
A. Error
B. 2
C. 1
D. (id 2)

Quiz 4: What does this evaluate to?

map (fun $x->\times$ *. 4) [1;2;3]
A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

Quiz 4: What does this evaluate to?

map (fun x -> x *. 4) [1;2;3]
A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

Quiz 5: What does this evaluate to?

fold (fun a y -> y::a) [] [3;4;2]
A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

Quiz 5: What does this evaluate to?

fold (fun a y -> y::a) [] [3;4;2]
A. $\left[\begin{array}{lll} & & \\ \text { B. }[3 ; 4 ; 2 &] \\ \text { C. }[2 ; 4 ; 3 &] \\ \text { D. } & \text { Error }\end{array}\right.$

Quiz 6: What does this evaluate to?

let is_even $x=(x \bmod 2=0)$ in map is_even [1;2;3;4;5]
A. [false;true; false; true; false]
B. $[0 ; 1 ; 1 ; 2 ; 2]$
C. $[0 ; 0 ; 0 ; 0 ; 0]$
D. false

Quiz 6: What does this evaluate to?

let is_even $x=(x \bmod 2=0)$ in map is_even [1;2;3;4;5]
A. [false;true;false;true;false]
B. $[0 ; 1 ; 1 ; 2 ; 2]$
C. $[0 ; 0 ; 0 ; 0 ; 0]$
D. false

Combining map and fold

- Idea: map a list to another list, and then fold over it to compute the final result
- Basis of the famous "map/reduce" framework from Google, since these operations can be parallelized

```
let countone l =
    fold (fun a h -> if h=1 then a+1 else a) 0 l
let countones ss =
    let counts = map countone ss in
    fold (fun a c -> a+c) 0 counts
countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2
```


fold_right

- Right-to-left version of fold:

```
let rec fold_right f l a = match l with
    [] -> a
    | (h::t) -> f h (fold_right f t a)
```

- Left-to-right version used so far:

```
let rec fold f a l = match l with
    [] -> a
    | (h::t) -> fold f (f a h) t
```


Left-to-right vs. right-to-left

fold $f v$ [v1; v2; ...; vn] =
$f(f(f(f \vee v 1)$ v2) ...) vn
fold_right f [v1; v2;...; vn] $v=$ $f(f(f(f$ vn v) ...) v2) v1
fold (fun x y -> $\mathrm{x}-\mathrm{y}$) $0 \quad[1 ; 2 ; 3]=-6$ since ((0-1)-2)-3) $=-6$
fold_right (fun x y -> x - y) [1;2;3] 0 = 2 since 1-(2-(3-0)) = 2

When to use one or the other?

- Many problems lend themselves to fold_right
- But it does present a performance disadvantage
- The recursion builds of a deep stack: One stack frame for each recursive call of fold_right
- An optimization called tail recursion permits optimizing fold so that it uses no stack at all
- We will see how this works in a later lecture!

