CMSC 330: Organization of Programming Languages

OCaml
Higher Order Functions
Anonymous Functions

- Recall code blocks in Ruby

  ```ruby
  (1..10).each { |x| print x }
  ```

 - Here, we can think of `{ |x| print x }` as a function

- We can do this (and more) in OCaml
Anonymous Functions

- Passing functions around is very common
 - So often we don’t want to bother to give them names

- Use `fun` to make a function with no name

```
fun x -> x + 3
```

```
(fun x -> x + 3) 5 = 8
```
Anonymous Functions

- **Syntax**
 - \(\text{fun } x_1 \ldots x_n \rightarrow e \)

- **Evaluation**
 - An anonymous function is an expression
 - In fact, *it is a value* – no further evaluation is possible
 - As such, it can be passed to other functions, returned from them, stored in a variable, etc.

- **Type checking**
 - \((\text{fun } x_1 \ldots x_n \rightarrow e) : (t_1 \rightarrow \ldots \rightarrow t_n \rightarrow u)\)
 - when \(e : u \) under assumptions \(x_1 : t_1, \ldots, x_n : t_n \).
 - (Same rule as \(\text{let } f x_1 \ldots x_n = e \))
All Functions Are Anonymous

- Functions are first-class, so you can bind them to other names as you like

  ```
  let f x = x + 3;;
  let g = f;;
  g 5 = 8
  ```

- In fact, let for functions is syntactic shorthand

  ```
  let f x = body
  ↓
  is semantically equivalent to
  let f = fun x -> body
  ```
Example Shorthands

- let next x = x + 1
 - Short for let next = fun x -> x + 1

- let plus x y = x + y
 - Short for let plus = fun x y -> x + y

- let rec fact n =

 if n = 0 then 1 else n * fact (n-1)

 - Short for let rec fact = fun n ->
 (if n = 0 then 1 else n * fact (n-1))
Defining Functions Everywhere

let move l x =
 let left x = x - 1 in (* locally defined fun *)
 let right x = x + 1 in (* locally defined fun *)
 if l then left x
 else right x
;;

let move’ l x = (* equivalent to the above *)
 if l then (fun y -> y - 1) x
 else (fun y -> y + 1) x
Calling Functions, Generalized

- Syntax $e_0 e_1 \ldots e_n$

- Evaluation
 - Evaluate arguments $e_1 \ldots e_n$ to values $v_1 \ldots v_n$
 - Order is actually right to left, not left to right
 - But this doesn’t matter if $e_1 \ldots e_n$ don’t have side effects
 - Evaluate e_0 to a function $\text{fun } x_1 \ldots x_n \rightarrow e$
 - Substitute v_i for x_i in e, yielding new expression e'
 - Evaluate e' to value v, which is the final result

Not just a variable f
Calling Functions, Generalized

- Syntax $e_0\ e_1\ ...\ e_n$

- Type checking (almost the same as before)
 - If $e_0 : t_1 \rightarrow ... \rightarrow t_n \rightarrow u$ and $e_1 : t_1, \ldots, e_n : t_n$
 then $e_0\ e_1\ ...\ e_n : u$

- Example:
 - $(\text{fun}\ x \rightarrow x+1)\ 1 : \text{int}$
 - since $(\text{fun}\ x \rightarrow x+1) : \text{int} \rightarrow \text{int}$ and $1 : \text{int}$
Pattern Matching With Fun

- **match** can be used within **fun**

  ```
  (fun l -> match l with (h::_) -> h) [1; 2]
  = 1
  ```

- But use named functions for complicated matches

- May use standard pattern matching abbreviations

  ```
  (fun (x, y) -> x+y) (1,2)
  = 3
  ```
Quiz 1: What does this evaluate to?

\[
\text{let } y = (\text{fun } x \rightarrow x+1) \ 2 \ \text{in} \\
(\text{fun } y \rightarrow y+2) \ y
\]

A. Error
B. 3
C. 5
D. 2
Quiz 1: What does this evaluate to?

\[
\text{let } y = (\text{fun } x \to x+1) \ 2 \ \text{in} \\
(\text{fun } y \to y+2) \ y
\]

A. Error
B. 3
C. 5
D. 2
Quiz 2: What does this evaluate to?

```haskell
let f x = 0 in
let g = f in
g (fun i -> i+1) 1
```

A. *Error*
B. 2
C. 1
D. 0
Quiz 2: What does this evaluate to?

```
let f x = 0 in
let g = f in
g (fun i -> i+1) 1
```

This function has type 'a -> int
It is applied to too many arguments;

A. Error
B. 2
C. 1
D. 0
Passing Functions as Arguments

- In OCaml you can pass functions as arguments (akin to Ruby code blocks)

\[
\begin{align*}
\text{let } \text{plus}_3 \text{ x } &= \text{ x } + \text{ 3} \quad (* \text{ int } \to \text{ int } *) \\
\text{let } \text{twice } f \text{ z } &= f \text{ (f z)} \quad (* \text{ ('a'} \to \text{a')} \to \text{ 'a'} \to \text{ 'a' } *) \\
\text{twice } \text{plus}_3 \text{ 5 } &= 11
\end{align*}
\]

- Ruby’s `collect` is called `map` in OCaml

 - `map f l` applies function `f` to each element of `l`, and puts the results in a new list (preserving order)

\[
\begin{align*}
\text{map } \text{plus}_3 \text{ [1; 2; 3] } &= \text{ [4; 5; 6]} \\
\text{map } (\text{fun } \text{x } \to \text{ (-x)}) \text{ [1; 2; 3] } &= \text{ [-1; -2; -3]}
\end{align*}
\]
The Map Function

Let’s write the map function

- Takes a function and a list, applies the function to each element of the list, and returns a list of the results

```ocaml
let rec map f l = match l with
  []  -> []
| (h::t) -> (f h)::(map f t)
```

```ocaml
let add_one x = x + 1
let negate x = -x
map add_one [1; 2; 3] = [2; 3; 4]
map negate [9; -5; 0] = [-9; 5; 0]
```

Type of map?
The Map Function (cont.)

What is the type of the map function?

```ocaml
let rec map f l = match l with
  | [] -> []
  | (h::t) -> (f h)::(map f t)
```

('a -> 'b) -> 'a list -> 'b list

\(f \) \(l \)
The Fold Function

- Common pattern
 - Iterate through list and apply function to each element, keeping track of partial results computed so far

```ocaml
let rec fold f a l = match l with
  | [] -> a
  | (h::t) -> fold f (f a h) t
```

- `a` = “accumulator”
- Usually called fold left to remind us that `f` takes the accumulator as its first argument

- What's the type of `fold`?

  ```
  = ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
  ```

This is the `fold_left` function in OCaml's standard `List` library.
Example

```
let rec fold f a l = match l with
    [] -> a
  | (h::t) -> fold f (f a h) t
```

```
let add a x = a + x
fold add 0 [1; 2; 3; 4] →
fold add 1 [2; 3; 4] →
fold add 3 [3; 4] →
fold add 6 [4] →
fold add 10 [] →
10

We just built the `sum` function!
```
Another Example

```
let rec fold f a l = match l with
  []  -> a
| (h::t) -> fold f (f a h) t
```

```
let next a _ = a + 1
fold next 0 [2; 3; 4; 5]  →
fold next 1 [3; 4; 5]  →
fold next 2 [4; 5]  →
fold next 3 [5]  →
fold next 4 []  →
4
```

We just built the `length` function!
Using Fold to Build Reverse

Let’s build the reverse function with fold!

```ocaml
let prepend a x = x :: a
let rec fold f a l = match l with
    [] -> a
  | (h::t) -> fold f (f a h) t
fold prepend [] [1; 2; 3; 4] →
fold prepend [1] [2; 3; 4] →
fold prepend [2; 1] [3; 4] →
fold prepend [3; 2; 1] [4] →
fold prepend [4; 3; 2; 1] [] →
[4; 3; 2; 1]
```
Summary

- \textbf{map} \(f \) \([v_1; v_2; \ldots; v_n]\)

 \[= [f \ v_1; f \ v_2; \ldots; f \ v_n]\]

 • e.g., \(\text{map} \ (\text{fun} \ x \rightarrow x+1) \ [1;2;3] = [2;3;4] \)

- \textbf{fold} \(f \) \(v \) \([v_1; v_2; \ldots; v_n]\)

 \[= \text{fold} \ f \ (f \ v \ v_1) \ [v_2; \ldots; v_n]\]

 \[= \text{fold} \ f \ (f(f \ v \ v_1) \ v_2) \ [\ldots; v_n]\]

 \[= \ldots\]

 \[= f \ (f \ (f \ (f \ v \ v_1) \ v_2) \ldots) \ v_n\]

 • e.g., \(\text{fold add} \ 0 \ [1;2;3;4] = \)

 \[\text{add} \ (\text{add} \ (\text{add} \ (\text{add} \ 0 \ 1) \ 2) \ 3) \ 4 = 10 \]
Quiz 3: What does this evaluate to?

let g x = x+1 in
 (fun f y -> f y) g 1

A. Error
B. 2
C. 1
D. (id 2)
Quiz 3: What does this evaluate to?

\[
\text{let } g \ x = x+1 \ \text{in} \\
(f \ \text{fun} \ f \ y \ -> \ f \ y) \ g \ 1
\]

A. Error
B. 2
C. 1
D. (id 2)
Quiz 4: What does this evaluate to?

(map (fun x -> x *. 4) [1;2;3])

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]
Quiz 4: What does this evaluate to?

```
map (fun x -> x *. 4) [1;2;3]
```

A. [1.0 ; 2.0 ; 3.0]
B. [4.0 ; 8.0 ; 12.0]
C. Error
D. [4; 8; 12]
Quiz 5: What does this evaluate to?

\[\text{fold (fun a y -> y::a) [] [3;4;2]} \]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error
Quiz 5: What does this evaluate to?

\[
fold \ (\text{fun} \ a \ y \rightarrow \ y :: a) \ [] \ [3;4;2]\]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error
Quiz 6: What does this evaluate to?

```
let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]
```

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false
Quiz 6: What does this evaluate to?

```
let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]
```

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false
Combining map and fold

- Idea: map a list to another list, and then fold over it to compute the final result
 - Basis of the famous “map/reduce” framework from Google, since these operations can be parallelized

```ocaml
let countone l = fold (fun a h -> if h=1 then a+1 else a) 0 l
let countones ss = let counts = map countone ss in fold (fun a c -> a+c) 0 counts

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2
```
fold_right

- Right-to-left version of fold:

```ocaml
let rec fold_right f l a = match l with
  | [] -> a
  | (h::t) -> f h (fold_right f t a)
```

- Left-to-right version used so far:

```ocaml
let rec fold f a l = match l with
  | [] -> a
  | (h::t) -> fold f (f a h) t
```
Left-to-right vs. right-to-left

fold $f \ [v_1; v_2; \ldots; v_n] =$
\[f \ (f \ (f \ (f \ v \ v_1) \ v_2) \ \ldots) \ v_n \]

fold_right $f \ [v_1; v_2; \ldots; v_n] \ v =$
\[f \ (f \ (f \ (f \ v_n \ v) \ \ldots) \ v_2) \ v_1 \]

fold (fun x y -> x - y) 0 [1;2;3] = -6
since ((0-1)-2)-3) = -6

fold_right (fun x y -> x - y) [1;2;3] 0 = 2
since 1-(2-(3-0)) = 2
When to use one or the other?

- Many problems lend themselves to \texttt{fold_right}
- But it does present a performance disadvantage
 - The recursion builds up a deep stack: One stack frame for each recursive call of \texttt{fold_right}
- An optimization called \texttt{tail recursion} permits optimizing \texttt{fold} so that it uses no stack at all
 - We will see how this works in a later lecture!