
CMSC 330: Organization of 

Programming Languages

Smart Pointers

in Rust

CMSC330 Summer 2018 Copyright © 2018 Michael Hicks, the University of

Maryland. Some material based on https://doc.rust-

lang.org/book/second-edition/index.html



Smart Pointers

• A smart pointer is a reference plus metadata, to 
provide additional capabilities
– Originated in C++
– Examples seen so far: String, Vec<T>

• Usually implemented as structs
– Which must implement the Deref and Drop traits

• New ones we will see: Box<T>, Rc<T>
– There are several others, such as Ref<T>
– And you can make your own; see the book!

2



Box<T> Smart Pointers

• Box<T> values point to heap-allocated data
– The Box<T> value (the pointer) is on the stack, while 

its pointed-to T value is allocated on the heap

– Has Deref trait – can be treated like a reference
• More later

– Has Drop trait – will drop its data when it dies

• Uses?
– Reduce copying (via an ownership move)
– Create dynamically sized objects

• Particularly useful for recursive types

3



Quiz 1

A Box<T> value points to heap-allocated data. 
Therefore, it cannot be dropped when the owner 
goes out of scope.

4

A. True
B. False



Quiz 1

A Box<T> value points to heap-allocated data. 
Therefore, it cannot be dropped when the owner 
goes out of scope.

5

A. True
B. False



• Naïve attempt doesn’t work
– Compiler complains that it 

can’t know the size of List
– The Cons case is “inlined” 

into the enum

Example: Linked List

6

enum List {
Nil,
Cons(i32,List)

}

• Since a List is recursive, it could be basically any size

• Use a Box to add an indirection
– Now the size is fixed

• i32 + size of pointer
– Nil tag smaller

enum List {
Nil,
Cons(i32,Box<List>)

}



Creating a LinkedList

7

enum List {
Nil,
Cons(i32,Box<List>)

}

use List::{Cons, Nil};

fn main() {
let list = Cons(1,

Box::new(Cons(2,
Box::new(Nil))));

… // data dropped at end of scope
}



Deref Trait
• If x is an int then &x is a &{int}

– Can use * operator to dereference it, extracting the 
underlying value
• *(&x) == x

• Can use * on Box<T> types
– Deref trait requires deref(&self) -> &T method
– So that *x translates to *(x.deref())

• deref returns type &T and not T so as not to 
relinquish ownership from inside the Box type

8



Deref Coercion

• The Rust compiler automatically inserts one or 
more calls to x.deref() to get the right type
– When &T required but value x : U provided, where U

implements Deref trait
– In particular, at function and method calls

• Also a DerefMut trait
– Deref coercion works with this too (see Rust book)

9



Example

– &m should have type &str to pass it to hello
– So, compiler calls m.deref() to get &String, and 

then deref() again to get &str

10

fn hello(x:&str) {
println!("hello {}",x);

}
fn main() {

let m = Box::new(String::from("Rust"));
hello(&m); //same as hello(&(*m)[..]);

}



Drop Trait
• Provides the method fn drop(&mut self)

– Called when the value implementing the trait dies
– Should be used to free the underlying resources, 

e.g., heap memory

• May not call drop method manually
– Would lead to a double free when Rust calls the 

method again at the end of a scope
– Can call std::mem::drop function in some 

circumstances

11



Multiple Pointers to a Value
• What’s wrong with this code?

– Box::new takes ownership of its argument, so the 
second Box::new(a) call fails since a not owned

• How to allow something like this code? 

12

fn main() {
let a = Cons(5,

Box::new(Cons(10,
Box::new(Nil))));

let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));//fails

}



Rc<T> to the Rescue

• Smart Pointer that associates a counter with the 
underlying reference

• Calling clone copies the pointer, not the 
pointed-to data, and bumps the counter by one
– By convention, call Rc::clone(&a) rather than 
a.clone(), as a visual marker for future 
performance debugging

• In general, calls to x.clone() are possible issues

• Calling drop reduces the counter by one
• When the counter hits zero, the data is freed

13



Rc::clone “Shares” Ownership

14

enum List {
Nil,
Cons(i32,Rc<List>)

}
use List::{Cons, Nil};

fn main() {
let a = Rc::new(Cons(5,

Rc::new(Cons(10,
Rc::new(Nil)))));

let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));//ok

}

Nb. Rc::strong_count returns the current ref count



Quiz 2

Rc::clone produces a new pointer to the same 
value in the heap. Because it shares the 
reference, programmer has to destroy the pointed-
to value.

15

A. True
B. False



Quiz 2

Rc::clone produces a new pointer to the same 
value in the heap. Because it shares the 
reference, programmer has to destroy the pointed-
to value.

16

A. True
B. False



More
• See the Rust book for 

– How to get more flexible borrowing rules using 
Ref<T> and RefCell<T> types

• Allows for mutability

– How to use such pointers to make useful tree-based 
datastructures

• With lifetimes that may extend beyond the creating scope

– How you can end up with reference cycles leading to 
a memory leak

• And how you can use Weak<T> types to prevent them

• Check out The Rustonomicon for how to 
implement your own smart pointers!
– https://doc.rust-lang.org/stable/nomicon/ 17

https://doc.rust-lang.org/stable/nomicon/

