
CMSC 132: Object-Oriented
Programming II

DIRECTED GRAPHS

1

Graphs slides are modified from COS 126 slides of
Dr. Robert Sedgewick.

Directed graphs

• Digraph
• Set of vertices connected pairwise by directed edges.

2

Road network

3

Vertex = intersection; edge = one-way street.

Baltimore inner harbor

WordNet graph

4

Vertex = synset; edge = hypernym relationship.

Digraph applications

5

digraph vertex edge
transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship
WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction
cell phone person placed call

infectious disease person infection
game board position legal move

citation journal article citation
object graph object pointer

inheritance hierarchy class inherits from
control flow code block jump

Some digraph problems
• Path:

• Is there a directed path from s to t ?
• Shortest path:

• What is the shortest directed path from s to t ?
• Topological sort:

• Can you draw a digraph so that all edges point upwards?
• Strong connectivity:

• Is there a directed path between all pairs of vertices?
• Transitive closure:

• For which vertices v and w is there a path from v to w ?
• PageRank:

• What is the importance of a web page?

6

Digraph Implementation

7

public class Digraph

Digraph(int V) create an empty digraph with V
vertices

Digraph(In in) create a digraph from input
stream

void addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

String toString() string representation

Adjacency-lists digraph representation
Maintain vertex-indexed array of lists.

8

Adjacency-lists digraph implementation
public class Graph {

private final int V;
private final Bag<Integer>[] adj;
public Graph(int V) {

this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w) {

adj[v].add(w);
}
public Iterable<Integer> adj(int v) {

return adj[v];
}

}

9

adjacency lists

create empty graph with
V vertices

iterator for vertices
pointing from v

Digraph representation

10

Comparisons of three different representations:

Depth-first search in digraphs
Same method as for undirected graphs.
• Every undirected graph is a digraph (with edges in both

directions).
• DFS is a digraph algorithm.

11

DFS (to visit a vertex v)
Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.

Depth-first search demo
To visit a vertex v :

Mark vertex v as visited.
Recursively visit all unmrked vertices pointing from v.

12

Depth-first search demo

13

Depth-first search Implementation

14

public class DirectedDFS {
private boolean[] marked;
public DirectedDFS(Digraph G, int s) {

marked = new boolean[G.V()];
dfs(G, s);

}
private void dfs(Digraph G, int v) {

marked[v] = true;
for (int w : G.adj(v))

if (!marked[w]) dfs(G, w);
}
public boolean visited(int v) {

return marked[v];
}

}

Code for directed graphs identical to undirected one.

Reachability application: program
control-flow analysis

Every program is a digraph.
• Vertex = basic block of

instructions (straight-line
program).

• Edge = jump.
Dead-code elimination.
• Find (and remove)

unreachable code.

15

Reachability application: mark-sweep
garbage collector

Every data structure is a
digraph.
• Vertex = object.
• Edge = reference.

Roots:
• Objects known to be directly

accessible by program (e.g.,
stack).

Reachable objects:
• Objects indirectly accessible by

program (starting at a root and
following a chain of pointers).

16

Breadth-first search in digraphs

17

Same method as for undirected graphs. Every undirected graph
is a digraph (with edges in both directions). BFS is a digraph
algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to E + V.

Directed breadth-first search demo
Repeat until queue is empty:

Remove vertex v from queue.
Add to queue all unmarked vertices pointing from v and mark them.

18

Directed breadth-first search demo
Repeat until queue is empty:

Remove vertex v from queue.
Add to queue all unmarked vertices pointing from v and mark them.

19

Multiple-source shortest paths
Given a digraph and a set of source vertices, find
shortest path from any vertex in the set to each other
vertex.
Use BFS, but initialize by enqueuing all source vertices

20

Example:
S = {1, 7, 10 }.
Shortest path to 4 is 7→6→4. 1
Shortest path to 5 is 7→6→0→5
Shortest path to 12 is 10→12.

Topological Sort

21

Precedence scheduling

Goal:
• Given a set of tasks to be completed with

precedence constraints, in which order should we
schedule the tasks?

Digraph model:
• vertex = task;
• edge = precedence constraint.

22

0.CMSC216
1.CMSC330
2.CMSC351
3.CMSC131
4.CMSC420
5.CMSC250
6.CMSC132

Topological sort
DAG:
• Directed acyclic graph.

Topological sort:
• Redraw DAG so all edges point upwards.

23

Topological sort demo

Run depth-first search.
Return vertices in reverse postorder

24

postorder
4,1,2,5,0,6,3

topological order
3,6,0,5,2,1,4

Depth-first search order

25

public class DepthFirstOrder {
private boolean[] marked;
private Stack<Integer> reversePost;
public DepthFirstOrder(Digraph G) {

reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)

if (!marked[v]) dfs(G, v);
}
private void dfs(Digraph G, int v) {

marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
reversePost.push(v);

}
public Iterable<Integer> reversePost() {

return reversePost;
}
}

Topological sort
Kahn's algorithm
• First described by Kahn (1962),

26

1. find a vertex which has no incoming edges
2. insert it into a set S; at least one such vertex must exist in a

non-empty acyclic graph.
2. Remove outgoing edges from that vertex, and repeat 1

https://en.wikipedia.org/wiki/Topological_sorting

