CMSC 132: Object-Oriented
Programming I

DIRECTED GRAPHS

Graphs slides are modified from COS 126 slides of
Dr. Robert Sedgewick.

Directed graphs

Digraph

* Set of vertices connected pairwise by directed edges.

vertex of
outdegree 4
and indegree 2

Q y
direced path % KO 2 e
¢
I
L

Road network

Vertex = intersection; edge = one-way street.

v W D) z > " [ZU - -
W Mulberry St d 6& \‘fo\ é z %
z) o D Q N % = e%’\ a (%)
I S o 1334 Z A aye = |
) % 3 = 3 2 et 2
2 2 DOWNTOWN 5 2 2 DUNBAR
3 .
% Lexington Market ©))] St E Baltimore St EE
7@ gFa‘JeK
W Fayette St JONESTOWN = ELombard St
Hippodrome Theatre & Baltimore St [@'Shot Tower
, W Baltimore St [E f‘n 2 o S E Pratt St
i 5 8
@ Royal Farms Arena = § s o n 2
niversity of Maryland o T = X o =
- T« © E\lOMbgrg st L S o hSt ©
(o) = < \\ Gou =
| Medical Center 3 W Lombard St % 7 2 g?‘a . Gough St % g _g
E o A0S v
=T @ 2 E Pratt.St % \e X ((n) £ Bank St
(%] W Pratt St o ’}m < 20 o]
INNER HARBOR 2 - =
s © @ National Aquarium Eastern Ave. »
P o
i o St
Oriole Park at -y qTansportation Center &2 Pier/SixPavilion® FleetSL FELLS POINT
nsay St Camden Yards at Camden Yards Aliceanna St
" l /””E’Hafbo HARBOR EAST |
zZ . !
=8 2, ol OTTERBEIN |
é»_ E: /)(0/7 Qe ST 3954 Al a8 oes St
S‘“S}‘ 9 @ S K; y g 5
Ha " Blyy “w_Key Hwy @ American Visionary
& g g Art Museum
réJD WHa FEDERAL
g Mburg o HILL-MONTGOMERY o B
> N

Baltimore inner harbor

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happening occurrence occurren natural_event
/ \ miracle

ac human_action human_activity

change alteration modification miracle
/ ’\ \ group_action

damagehar impairment transition increase forfeitforfeiture.sacrifice action
/ / T resistance opposition transgression
runladderravel leap jump saltation jumpleap
change
demotion T variation

motion movemen move

T S~

locomotion travel descent
runrunning jump parachuting

i

dashsprint

Digraph applications

digraph vertex edge
transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

Some digraph problems

Path:

* |s there a directed path from sto t?
Shortest path:

 What is the shortest directed path from sto t ?
Topological sort:

 Can you draw a digraph so that all edges point upwards?
Strong connectivity:

* |s there a directed path between all pairs of vertices?
Transitive closure:

* For which vertices v and w is there a path from vto w ?
PageRank:

 What is the importance of a web page?

Digraph Implementation

public class Digraph

void
Iterable<Integer>
int

int

Digraph

String

Digraph(int V)

Digraph(In in)

addEdge(int v, int w)
adj(int v)

V()

E()

reverse()

toString()

create an empty digraph with V
vertices

create a digraph from input
stream

add a directed edge v—w
vertices pointing from v
number of vertices
number of edges

reverse of this digraph

string representation

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

@@)
[

@/’

(63=(®)

=
N

=R
H O ©® NV &»WwWNRE O,

(=8
.
™

HEEEEEEEEEEEN

VI

RElEl

~0f+{3]

=512

=312

~[4]

{48 0]

~[6—{9]

~[12~[10

~z2

~[4 2]

nil

Adjacency-lists digraph implementation

public class Graph {

private final int V;

private final Bag<Integer>[] adj; <« adjacency lists
public Graph (int V) ({
this.V = V;)
adj = (Bag<Integer>[]) new Bag[V]; ,
for (int v = 0; v < Vi vi+) - Create_empty graph with
adj[v] = new Bag<Integer>() ; V vertices
} —
public void addEdge (int v, int w) ({
adj[v] .add (w) ;
}
public Iterable<Integer> adj(int v) { iterator for vertices

return adj[v]; pointing from v

Digraph representation

Comparisons of three different representations:

insert edge edge from iterate over vertices
representation space o
fromvtow v to w? pointing from v?

list of edges E

adjacency matrix V2 1t] \"

outdegree(v) outdegree(v)

adjacency lists

t disallows parallel edges

10

Depth-first search in digraphs

» Same method as for undirected graphs.

* Every undirected graph is a digraph (with edges in both
directions).

* DFS is a digraph algorithm.

DFS (to visit a vertex v)
Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.

11

Depth-first search demo

To visit a vertex v :
Mark vertex v as visited.

Recursively visit all unmrked vertices pointing from v.

12

Depth-first search demo

0\

o ° reachable

from vertex 0

0/\0

v marked[] edgeTo[]

0 T =
1 T 0
2 T 3
3 T 4
4 T 5
5 T 0
6 F —
7 F
8 F
9 F
10 F
11 F
12 F

13

Depth-first search Implementation

Code for directed graphs identical to undirected one.

public class DirectedDFS {
private boolean[] marked;
public DirectedDFS (Digraph G, int s) ({
marked = new boolean[G.V()],
dfs (G, s);
}
private void dfs (Digraph G, int v) {
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
}
public boolean visited(int v) {
return marked|[v];

}

14

Reachability application: program
control-flow analysis

» Every program is a digraph.

* Vertex = basic block of
instructions (straight-line
program).

* Edge = jump.
» Dead-code elimination.

* Find (and remove)
unreachable code.

Reachability application: mark-sweep
garbage collector

» Every data structure is a
digraph.
* Vertex = object.
* Edge = reference.

» Roots:

* Objects known to be directly
accessible by program (e.g.,
stack).

» Reachable objects:

* QObjects indirectly accessible by
program (starting at a root and
following a chain of pointers).

Fy

J—d
fﬁJ
T
{,/J

16

S100.

Breadth-first search in digraphs

Same method as for undirected graphs. Every undirected graph
is a digraph (with edges in both directions). BFS is a digraph
algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to E + V.

17

Directed breadth-first search demo

Repeat until queue is empty:
Remove vertex v from queue.
Add to queue all unmarked vertices pointing from v and mark them.

18

Directed breadth-first search demo

Repeat until queue is empty:
Remove vertex v from queue.

Add to queue all unmarked vertices pointing from v and mark them.

edgeTo[] distTo[]

0

Vv
0
|

2
3
4
5

w N b O O |

1
1
3
2
4

19

Multiple-source shortest paths

» Given a digraph and a set of source vertices, find
shortest path from any vertex in the set to each other

vertex.
» Use BFS, but initialize by enqueuing all source vertices

0

Example: Q
S={1,7,10}. ©)Oe 020,
(4

Shortest pathto 4 is 7—6—4. 1

Shortest path to 5 is 7—-6—0—-5

Shortest path to 12 is 10—12. } \
20

Topological Sort

21

Precedence scheduling

» Goal:

e Given a set of tasks to be completed with
precedence constraints, in which order should we
schedule the tasks?

» Digraph model: g
* vertex = task; 0
(5

O

* edge = precedence constraint.

0.CMSC216
1.CMSC330 £ \
2.CMSC351

3.CMSC131)= ,@

4.CMSC420 4 @
5.CMSC250 °

6.CMSC132 6

Topological sort

» DAG:
* Directed acyclic graph.
» Topological sort:
* Redraw DAG so all edges point upwards.

(2)—

Poc

©
O

6

23

Topological sort demo

» Run depth-first search.
» Return vertices in reverse postorder

0
X postorder
4,1,2,5,0,6,3
topological order
3,6,0,5,2,1,4
@/

Depth-first search order

public class DepthFirstOrder ({
private boolean[] marked;
private Stack<Integer> reversePost;
public DepthFirstOrder (Digraph G) ({
reversePost = new Stack<Integer>() ;
marked = new boolean[G.V ()],
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs (G, wv);
}
private void dfs(Digraph G, int v) ({
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
reversePost.push (v) ;
}
public Iterable<Integer> reversePost() {
return reversePost;

Topological sort

» Kahn's algorithm
* First described by Kahn (1962),

1. find a vertex which has no incoming edges

2. insertitinto a setS; atleast one such vertex must existin a
non-empty acyclic graph.

2. Remove outgoing edges from that vertex, and repeat 1

@/@

26

https://en.wikipedia.org/wiki/Topological_sorting

