CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata

How do regular expressions work?

- What we've learned
- What regular expressions are
- What they can express, and cannot
- Programming with them
- What's next: how they work
- A great computer science result

A Few Questions About REs

- How are REs implemented?
- Given an arbitrary RE and a string, how to decide whether the RE matches the string?
-What are the basic components of REs?
- Can implement some features in terms of others
> E.g., $\mathrm{e}+$ is the same as ee*
- What does a regular expression represent?
- Just a set of strings
> This observation provides insight on how we go about our implementation
- ... next comes the math !

Definition: Alphabet

- An alphabet is a finite set of symbols
- Usually denoted Σ
- Example alphabets:
- Binary: $\Sigma=\{0,1\}$
- Decimal: $\quad \Sigma=\{0,1,2,3,4,5,6,7,8,9\}$
- Alphanumeric: $\quad \Sigma=\{0-9, a-z, A-Z\}$

Definition: String

- A string is a finite sequence of symbols from Σ
- ε is the empty string ("" in Ruby)
- $|\mathbf{s}|$ is the length of string s
> $|\mathrm{Hello}|=5,|\varepsilon|=0$
- Note
$>\varnothing$ is the empty set (with 0 elements)
> $\varnothing \neq\{\varepsilon\}$ (and $\varnothing \neq \varepsilon$)
- Example strings over alphabet $\Sigma=\{0,1\}$ (binary):
- 0101
- 0101110
- ε

Definition: String concatenation

- String concatenation is indicated by juxtaposition

$$
\begin{aligned}
& s_{1}=\text { super } \\
& s_{2}=\text { hero }
\end{aligned}
$$

$$
\mathrm{s}_{1} \mathrm{~s}_{2}=\text { superhero }
$$

-Sometimes also written $\mathrm{s}_{1} \cdot \mathrm{~s}_{2}$

- For any string s, we have $s \varepsilon=s=\varepsilon s$
- You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:
> If $s_{1}=$ super from $\Sigma_{1}=\{s, u, p, e, r\}$ and $s_{2}=$ hero from $\Sigma_{2}=$ $\{h, e, r, o\}$, then $s_{1} s_{2}=$ superhero from $\Sigma_{3}=\{e, h, o, p, r, s, u\}$

Definition: Language

- A language L is a set of strings over an alphabet
- Example: All strings of length 1 or 2 over alphabet $\Sigma=$ $\{a, b, c\}$ that begin with a
- $L=\{a, a a, a b, a c\}$
- Example: All strings over $\Sigma=\{a, b\}$
- $L=\{\varepsilon, a, b, a a, b b, a b, b a, a a a, b b a, a b a, b a a, \ldots\}$
- Language of all strings written Σ^{*}
- Example: All strings of length 0 over alphabet Σ
- $L=\left\{s \mid s \in \Sigma^{*}\right.$ and $\left.|s|=0\right\}$
"the set of strings s such that s is from Σ^{*} and has length 0 "

$$
=\{\varepsilon\} \neq \varnothing
$$

Definition: Language (cont.)

- Example: The set of phone numbers over the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,9,(),-$,
- Give an example element of this language (123)456-7890
- Are all strings over the alphabet in the language? No
- Is there a Ruby regular expression for this language? $八(\backslash d\{3,3\} \backslash) \backslash d\{3,3\}-\backslash d\{4,4\} /$
- Example: The set of all valid (runnable) Ruby programs
- Later we'll see how we can specify this language
- (Regular expressions are useful, but not sufficient)

Operations on Languages

- Let Σ be an alphabet and let L, L_{1}, L_{2} be languages over Σ
- Concatenation $L_{1} L_{2}$ is defined as
- $L_{1} L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- Union is defined as
- $L_{1} \cup L_{2}=\left\{x \mid x \in L_{1}\right.$ or $\left.x \in L_{2}\right\}$
- Kleene closure is defined as
- $L^{*}=\{x \mid x=\varepsilon$ or $x \in L$ or $x \in \operatorname{LL}$ or $x \in \operatorname{LLL}$ or $\ldots\}$

Operations Examples

Let $L_{1}=\{a, b\}, L_{2}=\{1,2,3\} \quad$ (and $\left.\Sigma=\{a, b, 1,2,3\}\right)$

- What is $L_{1} L_{2}$?
- \{ a1, a2, a3, b1, b2, b3 \}
-What is $L_{1} \cup L_{2}$?
- $\{a, b, 1,2,3\}$
- What is $L_{1}{ }^{*}$?
- \{ $\varepsilon, a, b, a a, b b, a b, b a, ~ a a a, ~ a a b, ~ b b a, ~ b b b, ~ a b a, ~ a b b, ~$ baa, bab, ... \}

Quiz 1: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. a } \\
& \text { B. abd } \\
& \text { C. } \varepsilon \\
& \text { D.d }
\end{aligned}
$$

Quiz 1: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \sum=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1} \cup \mathrm{~L}_{2}
\end{aligned}
$$

A. a
B. abd
C. ε
D. d

Quiz 2: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1}\left(\mathrm{~L}_{2}{ }^{*}\right)
\end{aligned}
$$

A. a
B. abd
C. adad
D. abdd

Quiz 2: Which string is not in L_{3}

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{a}, \mathrm{ab}, \mathrm{c}, \mathrm{~d}, \varepsilon\} \quad \text { where } \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\} \\
& \mathrm{L}_{2}=\{\mathrm{d}\} \\
& \mathrm{L}_{3}=\mathrm{L}_{1}\left(\mathrm{~L}_{2}{ }^{*}\right)
\end{aligned}
$$

A. a
B. abd
C. adad
D. abdd

Regular Expressions: Grammar

- Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R
$R::=\varnothing \quad$ The empty language
$\varepsilon \quad$ The empty string
σ
A symbol from alphabet Σ
$R_{1} R_{2}$
$\left|R_{1}\right| R_{2}$
| R^{*}
The concatenation of two regexps
The union of two regexps
The Kleene closure of a regexp

Regular Languages

- Regular expressions denote languages. These are the regular languages
- aka regular sets
- Not all languages are regular
- Examples (without proof):
> The set of palindromes over Σ
$>\left\{a^{n} b^{n} \mid n>0\right\} \quad\left(a^{n}=\right.$ sequence of $\left.n a^{\prime} s\right)$
- Almost all programming languages are not regular
- But aspects of them sometimes are (e.g., identifiers)
- Regular expressions are commonly used in parsing tools

Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows

Constants

regular expression	denotes language
\varnothing	\varnothing
ε	$\{\varepsilon\}$
each symbo $\sigma \in \Sigma$	$\{\sigma\}$

Ex: with $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, regex a denotes language $\{\mathrm{a}\}$ regex b denotes language $\{b\}$

Semantics: Regular Expressions (2)

- Let A and B be regular expressions denoting languages L_{A} and L_{B}, respectively. Then:

Operations

regular expression	denotes language
$A B$	$L_{A} L_{B}$
$A \mid B$	$L_{A} \cup L_{B}$
A^{*}	$L_{A}{ }^{*}$

- There are no other regular expressions over Σ

Terminology etc.

- Regexps apply operations to symbols
- Generates a set of strings (i.e., a language)
> (Formal definition shortly)
- Examples
> a generates language $\{a\}$
$>a \mid b$ generates language $\{a\} \cup\{b\}=\{a, b\}$
$>a^{*}$ generates language $\{\varepsilon\} \cup\{a\} \cup\{a a\} \cup \ldots=\{\varepsilon, a, a a, \ldots\}$
- If $s \in$ language L generated by a RE r, we say that r accepts, describes, or recognizes string s

Precedence

- Order in which operators are applied is:
- Kleene closure * > concatenation > union |
- $a b|c=(a b)| c \rightarrow\{a b, c\}$
- $a b^{*}=a\left(b^{*}\right) \quad \rightarrow\{a, a b, a b b \ldots\}$
- $a\left|b^{*}=a\right|\left(b^{*}\right) \rightarrow\{a, \varepsilon, b, b b, b b b \ldots\}$
- We use parentheses () to clarify
- E.g., a(b|c), (ab)*, (a|b)*
- Using escaped \backslash (if parens are in the alphabet

Ruby Regular Expressions

- Almost all of the features we've seen for Ruby REs can be reduced to this formal definition
- /Ruby/ - concatenation of single-symbol REs
- /(Ruby|Regular)/ - union
- /(Ruby)*/ - Kleene closure
- /(Ruby)+/ - same as (Ruby)(Ruby)*
- /(Ruby)?/ - same as ($\varepsilon \mid(R u b y))$
- /[a-z]/ - same as (a|b|c|...|z)
- / [^0-9]/ - same as (a|b|c|...) for a,b,c,... $\in \Sigma$ - \{0... 9$\}$
- ^, \$ - correspond to extra symbols in alphabet
> Think of every string containing a distinct, hidden symbol at its start and at its end - these are written ^ and \$

Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
- A "machine" for recognizing a regular language
"String"
"String"
"String" "String"

"String"
"String"

Finite Automaton

Elements

- States S
(start, final)
- Alphabet Σ
- Transition edges ठ

Finite Automaton

- Machine starts in start or initial state

Final state

Elements

- States S (start, final)
- Alphabet Σ
- Transition edges δ
- Repeat until the end of the string s is reached
- Scan the next symbol $\sigma \in \Sigma$ of the string s
- Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Finite Automaton: States

- Start state
- State with incoming transition from no other state
- Can have only one start state

- Final states
- States with double circle
- Can have zero or more final states

- Any state, including the start state, can be final

Finite Automaton: Example 1

001011
Accepted?
Yes

Finite Automaton: Example 2

001010
Accepted?
No

Quiz 3: What Language is This?

A. All strings over $\{0,1\}$
B. All strings over $\{1\}$
C. All strings over $\{0,1\}$ of length 1
D. All strings over $\{0,1\}$ that end in 1

Quiz 3: What Language is This?

A. All strings over $\{0,1\}$
B. All strings over $\{1\}$
C. All strings over $\{0,1\}$ of length 1
D. All strings over $\{0,1\}$ that end in 1 regular expression for this language is (0|1)*1

Finite Automaton: Example 3

string	state at end	accepts $?$
aabcc		

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
aabcc	S2	Y

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
acca		

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
acca	S3	N

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
aacbbb		

(a,b,c notation shorthand for three self loops)

Finite Automaton: Example 3

string	state at end	accepts $?$
aacbbb	S3	N

(a,b,c notation shorthand for three self loops)

Quiz 4: Which string is not accepted?

A. bcca
B. abbbc
C. ccc
D. ε

(a,b,c notation shorthand for three self loops)

Quiz 4: Which string is not accepted?

A. bcca
B. $a b b b c$
C. ccc
D. ε

(a, b, c notation shorthand for three self loops)

Finite Automaton: Example 3

What language does this FA accept?
a*b*c*

S3 is a dead state a nonfinal state with no transition to another state

- aka a trap state

Finite Automaton: Example 4

Language?

$a^{*} b^{*} c^{*}$ again, so FAs are not unique

Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

is short for
- Language?

- Strings over $\{0,1,2,3\}$ with alternating even and odd digits, beginning with odd digit

Finite Automaton: Example 5

- Description for each state
- S0 = "Haven't seen anything yet" OR "Last symbol seen was a b"
- S1 = "Last symbol seen was an a"
- S 2 = "Last two symbols seen were ab "
- S3 = "Last three symbols seen were abb"

Finite Automaton: Example 5

- Language as a regular expression?
- (a|b)*abb

Quiz 5

Over $\Sigma=\{a, b\}$, this FA accepts only:
A. A string that contains a single a.
B. Any string in $\{a, b\}$.
C. A string that starts with b followed by a's.
D. Zero or more b's, followed by one or more a's.

Quiz 5

Over $\Sigma=\{a, b\}$, this FA accepts only:
A. A string that contains a single a.
B. Any string in $\{a, b\}$.
c. A string that starts with b followed by a's.
D. Zero or more b's, followed by one or more a's.

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing two consecutive Os followed by two consecutive 1s
- That accepts strings with an odd number of 1 s
- That accepts strings containing an even number of 0 s and any number of 1 s
- That accepts strings containing an odd number of 0 s and odd number of 1 s
- That accepts strings that DO NOT contain odd number of 0 s and an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings with an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings with an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an even number of 0 s and any number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an even number of 0 s and any number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing two consecutive Os followed by two consecutive 1s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing two consecutive Os very immediately (right after, no other things in between) followed by two consecutive 1s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings end with two consecutive Os followed by two consecutive 1s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings end with two consecutive Os followed by two consecutive 1s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an odd number of 0 s and odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings containing an odd number of 0 s and odd number of 1 s

4 states:

0s 1s
$\begin{array}{ll}e & e \\ o & e \\ e & 0 \\ 0 & o\end{array}$

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings that DO NOT contain odd number of 0 s and an odd number of 1 s

Exercises: Define an FA over $\Sigma=\{0,1\}$

- That accepts strings that DO NOT contain odd number of 0 s and an odd number of 1 s

Flip each state

