CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
A Few Questions About REs

- How are REs implemented?
 - Given an arbitrary RE and a string, how to decide whether the RE matches the string?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e^+ is the same as ee^*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- … next comes the math!
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

Example alphabets:
- Binary: $\Sigma = \{0, 1\}$
- Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \}$ (and $\emptyset \neq \varepsilon$)

- Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):
 - 0101
 - 0101110
 - ε
Definition: String concatenation

- String **concatenation** is indicated by juxtaposition

 \[s_1 = \text{super} \quad \text{and} \quad s_2 = \text{hero} \]

 - Sometimes also written \(s_1 \cdot s_2 \)

- For any string \(s \), we have \(s\varepsilon = s = \varepsilon s \)

 - You can concatenate strings from different alphabets; then the new alphabet is the union of the originals:

 - If \(s_1 = \text{super} \) from \(\Sigma_1 = \{s,u,p,e,r\} \) and \(s_2 = \text{hero} \) from \(\Sigma_2 = \{h,e,r,o\} \), then \(s_1s_2 = \text{superhero} \) from \(\Sigma_3 = \{e,h,o,p,r,s,u\} \)
Definition: Language

- A language L is a set of strings over an alphabet

- Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{ a, aa, ab, ac \}$

- Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{ \epsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \}$
 - Language of all strings written Σ^*

- Example: All strings of length 0 over alphabet Σ
 - $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \}$
 - “the set of strings s such that s is from Σ^* and has length 0”
 - $= \{ \epsilon \} \neq \emptyset$
Definition: Language (cont.)

Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
- Give an example element of this language (123) 456–7890
- Are all strings over the alphabet in the language? No
- Is there a Ruby regular expression for this language?
  ```ruby
  /^\(\d{3}\)\d{3}–\d{4}$/
  ```

Example: The set of all valid (runnable) Ruby programs
- Later we’ll see how we can specify this language
- (Regular expressions are useful, but not sufficient)
Operations on Languages

Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** L_1L_2 is defined as
 - $L_1L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

- **Union** is defined as
 - $L_1 \cup L_2 = \{ x \mid x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** is defined as
 - $L^* = \{ x \mid x = \epsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Operations Examples

Let $L_1 = \{ a, b \}$, $L_2 = \{ 1, 2, 3 \}$ (and $\Sigma = \{a,b,1,2,3\}$)

- What is L_1L_2?
 - $\{ a1, a2, a3, b1, b2, b3 \}$

- What is $L_1 \cup L_2$?
 - $\{ a, b, 1, 2, 3 \}$

- What is L_1^*?
 - $\{ \varepsilon, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, \ldots \}$
Quiz 1: Which string is not in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ \quad \text{where} \quad \Sigma = \{a,b,c,d\}

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 1: Which string is **not** in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ \quad \text{where} \ \Sigma = \{a,b,c,d\}

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 2: Which string is **not** in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$
where $\Sigma = \{a, b, c, d\}$

$L_2 = \{d\}$

$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Quiz 2: Which string is **not** in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ where $\Sigma = \{a, b, c, d\}$

$L_2 = \{d\}$

$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Regular Expressions: Grammar

Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R

$$R ::= \emptyset \quad \text{The empty language}$$

$$| \varepsilon \quad \text{The empty string}$$

$$| \sigma \quad \text{A symbol from alphabet } \Sigma$$

$$| R_1 R_2 \quad \text{The concatenation of two regexps}$$

$$| R_1 \mid R_2 \quad \text{The union of two regexps}$$

$$| R^* \quad \text{The Kleene closure of a regexp}$$
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - *aka* regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0 \}$ ($a^n =$ sequence of n a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows:

Constants

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each symbol $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

Ex: with $\Sigma = \{ a, b \}$, regex a denotes language $\{a\}$, regex b denotes language $\{b\}$
Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

Operations

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

There are no other regular expressions over Σ
Terminology etc.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - a generates language \{a\}
 - a|b generates language \{a\} ∪ \{b\} = \{a, b\}
 - a* generates language \{ε\} ∪ \{a\} ∪ \{aa\} ∪ ... = \{ε, a, aa, ...\}

- If \(s \in \) language \(L \) generated by a RE \(r \), we say that \(r \) accepts, describes, or recognizes string \(s \)
Precedence

Order in which operators are applied is:

- Kleene closure \(* \) > concatenation > union \(| \)

- \(ab|c \) = (a b) | c \rightarrow \{ab, c\}
- \(ab^* \) = a (b^*) \rightarrow \{a, ab, abb \ldots\}
- \(a|b^* \) = a | (b^*) \rightarrow \{a, \epsilon, b, bb, bbb \ldots\}

We use parentheses () to clarify

- E.g., \(a(b|c) \), \((ab)^* \), \((a|b)^* \)
- Using escaped \(\backslash(\) if parens are in the alphabet
Ruby Regular Expressions

Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition:

- `/Ruby/` – concatenation of single-symbol REs
- `/([Ruby]|Regular)/` – union
- `/([Ruby])/*` – Kleene closure
- `/([Ruby])+/` – same as `(Ruby)(Ruby)*`
- `/([Ruby])?` – same as `(ε|Ruby))`
- `/([a-z])/` – same as `(a|b|c|...|z)`
- `/[^0-9]/` – same as `(a|b|c|...) for a,b,c,... ∈ Σ - {0..9}`
- `^, $` – correspond to extra symbols in alphabet

Think of every string containing a distinct, hidden symbol at its start and at its end – these are written `^` and `$
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1

Accepted?
Yes
Finite Automaton: Example 2

```
S0  0  1  0  1  0
S1  0  1

0 0 1 0 1 0
```

Accepted?

No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)
Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Quiz 4: Which string is \textbf{not} accepted?

(a,b,c notation shorthand for three self loops)

- A. bcca
- B. abbbc
- C. ccc
- D. ε
Quiz 4: Which string is **not** accepted?

(a,b,c notation shorthand for three self loops)

A. bccca
B. abbbc
C. ccc
D. \(\varepsilon \)
Finite Automaton: Example 3

What language does this FA accept?

\[a^*b^*c^* \]

S3 is a dead state – a nonfinal state with no transition to another state.
- aka a trap state
Finite Automaton: Example 4

Language?

\[a^*b^*c^* \text{ again, so FAs are not unique} \]
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown.

Language?
- Strings over \(\{0,1,2,3\}\) with alternating even and odd digits, beginning with odd digit.
Finite Automaton: Example 5

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Finite Automaton: Example 5

- **Language as a regular expression?**
 - $(a|b)^*abb$
Over $\Sigma=\{a, b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in $\{a, b\}$.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Over $\Sigma = \{a,b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings **end with** two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an **odd** number of 0s and **odd** number of 1s

4 states:

<table>
<thead>
<tr>
<th>0s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s

Flip each state