CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
- I.e., whether s is a member of R 's language
- Approach: Convert R to a finite automaton FA and see whether s is accepted by FA
- Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
> which enjoys a fast acceptance algorithm

Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
- Exactly one sequence of steps for each string
> Easy to implement acceptance check
- All examples so far
- Nondeterministic Finite Automata (NFA)
- May have many sequences of steps for each string
- Accepts if any path ends in final state at end of string
- More compact than DFA
> But more expensive to test whether a string matches

Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
- I.e., transition function must be a valid function
- DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
- May move to new state without consuming character

ε-transition
- DFA transition must be labeled with symbol
- DFA is a special case of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- ba
- Has paths to either S0 or S1
- Neither is final, so rejected
- babaabb
- Has paths to different states
- One path leads to S3, so accepts string

NFA for (ab|aba)*

- aba
- Has paths to states S0, S1
- ababa
- Has paths to S0, S1
- Need to use ε-transition

Comparing NFA and DFA for (ab|aba)*

DFA

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Formal Definition

- A deterministic finite automaton (DFA) is a

5 -tuple ($\Sigma, Q, q_{0}, F, \delta$) where

- Σ is an alphabet
- Q is a nonempty set of states
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the start state
- $\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states
- $\delta: Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
> What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

- $\Sigma=\{0,1\}$
- $\mathrm{Q}=\{\mathrm{SO}, \mathrm{S} 1\}$
- $\mathrm{q}_{0}=\mathrm{SO}$
- $F=\{S 1\}$

δ	0	1
S 0	S 0	S 1
$\underline{\mathrm{~g}}$		
S 1	S 0	S 1

or as $\{(\mathrm{S} 0,0, \mathrm{~S} 0),(\mathrm{S} 0,1, \mathrm{~S} 1),(\mathrm{S} 1,0, \mathrm{~S} 0),(\mathrm{S} 1,1, \mathrm{~S} 1)\}$

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA


```
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
                                case '0': cur_state = 0; break;
                                case '1': cur state = 1; break;
                                case '\n': printf("rejected\n"); return 0;
                                default: printf("rejected\n"); return 0;
                            }
                            break;
        case 1: switch (symbol) {
                                case '0': cur state = 0; break;
                                case '1': cur_state = 1; break;
                                case '\n': printf("accepted\n"); return 1;
                                default: printf("rejected\n"); return 0;
                    }
                            break;
        default: printf("unknown state; I'm confused\n");
                        break
    }
}
```


Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components ( }\Sigma,Q,\mp@subsup{q}{0}{},F,\delta)\mathrm{ of a DFA:
let q = qo
while (there exists another symbol \sigma of the input string)
    q := \delta(q, \sigma);
if q}\inF\mathrm{ then
    accept
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Nondeterministic Finite Automata (NFA)

- An NFA is a 5 -tuple $\left(\Sigma, Q, q_{0}, F, \delta\right)$ where
- $\Sigma, \mathrm{Q}, \mathrm{q} 0, \mathrm{~F}$ as with DFAs
- $\delta \subseteq Q \times(\Sigma \cup\{\varepsilon\}) \times Q$ specifies the NFA's transitions

- $\Sigma=\{a\}$
- $Q=\{S 1, S 2, S 3\}$
- $\mathrm{q}_{0}=\mathrm{S} 1$
- $F=\{S 3\}$
- $\delta=\{(S 1, a, S 1),(S 1, a, S 2),(S 2, \varepsilon, S 3)\}$
- An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
- NFA must keep track of several "current states"
> Due to multiple transitions with same label, and ε-transitions
- If any current state is final when done then accept s
- Example
- After processing "a"
> NFA may be in states S1
S2

S3
> Since S3 is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!

Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them
can
reduce

NB. Both transform and reduce are historical terms; they mean "convert"

Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A>=\left(\Sigma, Q, q_{0}, F, \delta\right)$
- Remember regular expressions are defined recursively from primitive $R E$ languages
- Invariant: $|F|=1$ in our NFAs
> Recall F = set of final states
-Will define <A> for base cases: $\sigma, \varepsilon, \emptyset$
- Where σ is a symbol in Σ
- And for inductive cases: $A B, A \mid B, A^{*}$

Reducing Regular Expressions to NFAs

- Base case: σ

Recall: NFA is $\left(\Sigma, Q, q_{0}, F, \delta\right)$ where
Σ is the alphabet
Q is set of states
q_{0} is starting state
F is set of final states
δ is transition relation

$$
<\sigma>=(\{\sigma\},\{S 0, S 1\}, S 0,\{S 1\},\{(S 0, \sigma, S 1)\})
$$

Reduction

- Base case: ε

$$
<\varepsilon>=(\emptyset,\{S 0\}, S 0,\{S 0\}, \varnothing)
$$

- Base case: \varnothing

$<\emptyset>=(\emptyset,\{S 0, S 1\}, S 0,\{S 1\}, \varnothing)$

Reduction: Concatenation

- Induction: $A B$

- $\left\langle A>=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)\right.$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$

Reduction: Concatenation

- Induction: $A B$

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$
- $\left\langle A B>=\left(\Sigma_{A} \cup \Sigma_{B}, Q_{A} \cup Q_{B}, q_{A},\left\{f_{B}\right\}, \delta_{A} \cup \delta_{B} \cup\left\{\left(f_{A}, \varepsilon, q_{B}\right)\right\}\right)\right.$

Reduction: Union
Induction: $A \mid B$

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$

Reduction: Union

- Induction: $A \mid B$

- $\left\langle A>=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)\right.$
- $\langle B\rangle=\left(\Sigma_{B}, Q_{B}, q_{B},\left\{f_{B}\right\}, \delta_{B}\right)$
- $\langle A \mid B\rangle=\left(\Sigma_{A} \cup \Sigma_{B}, Q_{A} \cup Q_{B} \cup\{S 0, S 1\}, S 0,\{S 1\}\right.$,

$$
\left.\delta_{A} \cup \delta_{B} \cup\left\{\left(S 0, \varepsilon, q_{A}\right),\left(S 0, \varepsilon, q_{B}\right),\left(f_{A}, \varepsilon, S 1\right),\left(f_{B}, \varepsilon, S 1\right)\right\}\right)
$$

Reduction: Closure

- Induction: A^{*}

- $\langle A\rangle=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)$

Reduction: Closure

- Induction: A^{*}

- $\left\langle A>=\left(\Sigma_{A}, Q_{A}, q_{A},\left\{f_{A}\right\}, \delta_{A}\right)\right.$
- $\left\langle A^{*}\right\rangle=\left(\Sigma_{A}, Q_{A} \cup\{S 0, S 1\}, S 0,\{S 1\}\right.$,

$$
\left.\delta_{A} \cup\left\{\left(f_{A}, \varepsilon, S 1\right),\left(S 0, \varepsilon, q_{A}\right),(S 0, \varepsilon, S 1),(S 1, \varepsilon, S 0)\right\}\right)
$$

Quiz 2: Which NFA matches a* ?

Quiz 2: Which NFA matches a* ?

Quiz 3: Which NFA matches a|b*?

Quiz 3: Which NFA matches a|b*?

Reduction Complexity

- Given a regular expression A of size n...

Size = \# of symbols + \# of operations

- How many states does <A> have?
- Two added for each \|, two added for each *
- O(n)
- That's pretty good!

Reducing NFA to DFA

can
reduce

DFA \longleftarrow NFA

Reducing NFA to DFA

- NFA may be reduced to DFA
- By explicitly tracking the set of NFA states
- Intuition
- Build DFA where
> Each DFA state represents a set of NFA "current states"
- Example

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
- DFA state is a subset of set of all NFA states
- Algorithm
- Input
$>\operatorname{NFA}\left(\Sigma, Q, q_{0}, F_{n}, \delta\right)$
- Output
$>\operatorname{DFA}\left(\Sigma, R, r_{0}, F_{d}, \delta\right)$
- Using two subroutines
> ε-closure (δ, p) (and ε-closure((δ, Q))
$>\operatorname{move}(\delta, \mathrm{p}, \sigma)$ (and move($\delta, \mathrm{Q}, \sigma)$)
- (where p is an NFA state)

ε-transitions and ε-closure

- We say $p \xrightarrow{\varepsilon} q$
- If it is possible to go from state p to state q by taking only ε-transitions in δ
- If $\exists \mathrm{p}, \mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \mathrm{p}_{\mathrm{n}}, \mathrm{q} \in \mathrm{Q}$ such that
$>\left\{p, \varepsilon, p_{1}\right\} \in \delta,\left\{p_{1}, \varepsilon, p_{2}\right\} \in \delta, \ldots,\left\{p_{n}, \varepsilon, q\right\} \in \delta$
- ε-closure((D, p)
- Set of states reachable from p using ε-transitions alone
> Set of states q such that $p \xrightarrow{\varepsilon} q$ according to δ
$>\varepsilon$-closure $(\delta, p)=\{q \mid p \xrightarrow{\varepsilon} q$ in $\delta\}$
> ε-closure $(\delta, Q)=\{q \mid p \in Q, p \xrightarrow{\varepsilon} q$ in $\delta\}$
- Notes
$>\varepsilon$-closure $(\bar{\delta}, \mathrm{p})$ always includes p
> We write ε-closure(p) or ε-closure(Q) when δ is clear from context

ε-closure: Example 1

- Following NFA contains
- $p 1 \xrightarrow{\varepsilon} p 2$
- $p 2 \xrightarrow{\varepsilon}$ p3
- p1 $\xrightarrow{\varepsilon}$ p3

> Since $\mathrm{p} 1 \xrightarrow{\varepsilon} \mathrm{p} 2$ and $\mathrm{p} 2 \xrightarrow{\varepsilon} \mathrm{p} 3$
- ε-closures
- ε-closure(p1) = \{p1, p2, p3 \}
- ε-closure $(\mathrm{p} 2)=\{$ p2, p3 $\}$
- ε-closure $(\mathrm{p} 3)=\{\mathrm{p} 3\}$
- ε-closure $(\{$ p1, p2 $\})=\{$ p1, p2, p3 $\} \cup\{$ p2, p3 $\}$

ع-closure: Example 2

- Following NFA contains
- p1 $\xrightarrow{\varepsilon}$ p3
- p3 $\xrightarrow{\varepsilon}$ p2
- p1 $\xrightarrow{\varepsilon}$ p2
- Since p1 $\xrightarrow{\mathcal{\varepsilon}} \mathrm{p} 3$ and $\mathrm{p} 3 \xrightarrow{\mathcal{\varepsilon}} \mathrm{p} 2$

- ε-closures
- ε-closure(p1) = \{p1, p2, p3 \}
- ε-closure(p2) = \{p2 \}
- ε-closure $(\mathrm{p} 3)=\{\mathrm{p} 2, \mathrm{p} 3\}$
- ε-closure $(\{$ p2,p3 $\})=\{$ p2 $\} \cup\{$ p2, p3 $\}$

ع-closure Algorithm: Approach

- Input: \quad NFA ($\left.\Sigma, Q, q_{0}, F_{n}, \delta\right)$, State Set R
- Output: State Set R'
- Algorithm

Let $R^{\prime}=R$	// start states
Repeat	
Let $R=R^{\prime}$	// continue from previous
Let $R^{\prime}=R \cup\{q \mid p \in R,(p, \varepsilon, q) \in \delta\}$	// new ε-reachable states
Until $R=R^{\prime}$	// stop when no new states

This algorithm computes a fixed point

ε-closure Algorithm Example

- Calculate ε-closure($\delta,\{p 1\})$

R	R^{\prime}
$\{p 1\}$	$\{p 1\}$

\{p1\}
\{p1, p2\}
\{p1, p2\} \{p1, p2, p3\}
\{p1, p2, p3\} \{p1, p2, p3\}

Let $R^{\prime}=R$
Repeat
Let $R=R^{\prime}$
Let R' $=R \cup\{q \mid p \in R,(p, \varepsilon, q) \in \delta\}$
Until $R=R^{\prime}$

Calculating move(p, σ)

- move(ס,p, σ)
- Set of states reachable from p using exactly one transition on symbol σ
> Set of states q such that $\{p, \sigma, q\} \in \delta$
$>\operatorname{move}(\delta, p, \sigma)=\{q \mid\{p, \sigma, q\} \in \delta\}$
$>\operatorname{move}(\delta, Q, \sigma)=\{q \mid p \in Q,\{p, \sigma, q\} \in \delta\}$
- i.e., can "lift" move() to a set of states Q
- Notes:
$>$ move $(\bar{\delta}, \mathrm{p}, \sigma)$ is \varnothing if no transition $(\mathrm{p}, \sigma, \mathrm{q}) \in \delta$, for any q
> We write move(p, σ) or move(R, σ) when δ clear from context

move(p,o) : Example 1

- Following NFA
- $\Sigma=\{a, b\}$
- Move

- $\operatorname{move}(p 1, a)=\{p 2, p 3\}$
- move(p1, b) = \varnothing
$\operatorname{move}(\{p 1, p 2\}, b)=\{p 3\}$
- move(p2, a) = \varnothing
- move(p2, b) $=\{$ p3 $\}$
- $\operatorname{move}(p 3, a)=\varnothing$
- move $(\mathrm{p} 3, \mathrm{~b})=\varnothing$

move(p,б) : Example 2

- Following NFA
- $\Sigma=\{a, b\}$
- Move

- move(p1, a) $=\{p 2\}$
- $\operatorname{move}(\mathrm{p} 1, \mathrm{~b})=\{\mathrm{p} 3\}$
- $\operatorname{move}(p 2, a)=\{p 3\}$
- move(p2, b) = \varnothing
- $\operatorname{move}(p 3, a)=\varnothing$
- $\operatorname{move}(p 3, b)=\varnothing$
$\operatorname{move}(\{p 1, p 2\}, a)=\{p 2, p 3\}$

NFA \rightarrow DFA Reduction Algorithm ("subset")

- Input NFA ($\left.\Sigma, \mathrm{Q}, \mathrm{q}_{0}, \mathrm{~F}_{\mathrm{n}}, \delta\right)$, Output DFA $\left(\Sigma, \mathrm{R}, \mathrm{r}_{0}, \mathrm{~F}_{\mathrm{d}}, \delta^{\prime}\right)$
- Algorithm

$$
\begin{aligned}
& \text { Let } r_{0}=\varepsilon \text {-closure }\left(\delta, q_{0}\right) \text {, add it to } R \\
& \text { While } \exists \text { an unmarked state } r \in R \\
& \text { Mark } r \\
& \text { For each } \sigma \in \Sigma \\
& \text { Let } E=\text { move }(\delta, r, \sigma) \\
& \text { Let } e=\varepsilon \text {-closure }(\delta, E) \\
& \text { If } e \notin R \\
& \text { Let } R=R \cup\{e\} \\
& \text { Let } \delta^{\prime}=\delta^{\prime} \cup\{r, \sigma, e\}
\end{aligned}
$$

Let $F_{d}=\left\{r \mid \exists s \in r\right.$ with $\left.s \in F_{n}\right\}$
// DFA start state
// process DFA state r
// each state visited once
// for each symbol σ
// states reached via σ
// states reached via ε
// if state e is new
// add e to R (unmarked)
// add transition $r \rightarrow e$ on σ
// final if include state in F_{n}

NFA \rightarrow DFA Example 1

- Start $=\varepsilon$-closure $(\delta, \mathrm{p} 1)=\{\{\mathrm{p} 1, \mathrm{p} 3\}\} \quad$ NFA
- $R=\{\{p 1, p 3\}\}$
- $r \in R=\{p 1, p 3\}$
- $\operatorname{move}(\delta,\{p 1, p 3\}, a)=\{p 2\}$
> $e=\varepsilon$-closure $(\delta,\{p 2\})=\{p 2\}$
$>R=R \cup\{\{p 2\}\}=\{\{p 1, p 3\},\{p 2\}\} \quad$ DFA
$>\delta^{\prime}=\delta^{\prime} \cup\{\{\mathrm{p} 1, \mathrm{p} 3\}, \mathrm{a},\{\mathrm{p} 2\}\}$
- $\operatorname{move}(\delta,\{p 1, p 3\}, b)=\varnothing$

NFA \rightarrow DFA Example 1 (cont.)

- $R=\{\{p 1, p 3\},\{p 2\}\}$
- $r \in R=\{p 2\}$
- $\operatorname{move}(\delta,\{p 2\}, a)=\varnothing$
- $\operatorname{move}(\delta,\{p 2\}, b)=\{p 3\}$
> $\mathrm{e}=\varepsilon$-closure $(\delta,\{p 3\})=\{p 3\}$
$>R=R \cup\{\{p 3\}\}=\{\{p 1, p 3\},\{p 2\},\{p 3\}\} \quad$ DFA
$>\delta^{\prime}=\delta^{\prime} \cup\{\{p 2\}, b,\{p 3\}\}$

NFA \rightarrow DFA Example 1 (cont.)

- $R=\{\{p 1, p 3\},\{p 2\},\{p 3\}\}$
- $r \in R=\{p 3\}$
- $\operatorname{Move}(\{p 3\}, a)=\varnothing$
- $\operatorname{Move}(\{p 3\}, b)=\varnothing$
- Mark \{p3\}, exit loop
- $\mathrm{F}_{\mathrm{d}}=\{\{\mathrm{p} 1, \mathrm{p} 3\},\{p 3\}\}$
> Since $p 3 \in F_{n}$
- Done!

DFA

NFA \rightarrow DFA Example 2

- NFA
- DFA

$R=\{\{A\},\{B, D\},\{C, D\}\}$

Quiz 4: Which DFA is equiv to this NFA?

Quiz 4: Which DFA is equiv to this NFA?

> B.

Actual Answer

NFA \rightarrow DFA Example 3

- NFA

- DFA

$$
R=\{\{A, E\},\{B, D, E\},\{C, D\},\{E\}\}
$$

Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
- Each DFA state is a subset of the set of NFA states
- Given NFA with n states, DFA may have 2^{n} states
> Since a set with n items may have 2^{n} subsets
- Corollary
> Reducing a NFA with n states may be $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time O(2 $\left.2^{|R|}\right)$
- But usually not the worst case in practice
- Use DFA to accept/reject string s
- Assume we can compute $\delta(q, \sigma)$ in constant time
- Then time to process s is $\mathrm{O}(|\mathrm{s}|)$
> Can't get much faster!
- Constructing the DFA is a one-time cost
- But then processing strings is fast

Closing the Loop: Reducing DFA to RE

can
reduce

Reducing DFAs to REs

- General idea
- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
- Ignoring the particular names of states
- In other words
- For every DFA, there is a unique DFA with minimum number of states that accepts the same language

J. Hopcroft, "An $n \log n$ algorithm for minimizing states in a finite automaton," 1971

Minimizing DFA: Hopcroft Reduction

- Intuition
- Look to distinguish states from each other
> End up in different accept / non-accept state with identical input
- Algorithm
- Construct initial partition
> Accepting \& non-accepting states
- Iteratively split partitions (until partitions remain fixed)
> Split a partition if members in partition have transitions to different partitions for same input
- Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions \& remove dead states

Splitting Partitions

- No need to split partition $\{\mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}\}$
- All transitions on a lead to identical partition P2
- Even though transitions on a lead to different states

Splitting Partitions (cont.)

- Need to split partition $\{\mathrm{S}, \mathrm{T}, \mathrm{U}\}$ into $\{\mathrm{S}, \mathrm{T}\},\{\mathrm{U}\}$
- Transitions on a from S,T lead to partition P2
- Transition on a from U lead to partition P3

Resplitting Partitions

- Need to reexamine partitions after splits
- Initially no need to split partition \{S,T,U\}
- After splitting partition $\{\mathrm{X}, \mathrm{Y}\}$ into $\{\mathrm{X}\},\{\mathrm{Y}\}$ we need to split partition $\{\mathrm{S}, \mathrm{T}, \mathrm{U}\}$ into $\{\mathrm{S}, \mathrm{T}\},\{\mathrm{U}\}$

Minimizing DFA: Example 1

- DFA

- Initial partitions
- Split partition

Minimizing DFA: Example 1

- DFA

- Initial partitions
- Accept $\begin{array}{ll}\{R\} & =P 1 \\ \text { - Reject } & \{S, T\}\end{array}$

- Split partition? \rightarrow Not required, minimization done
- move(S,a) = T \in P2
$-\operatorname{move}(\mathrm{S}, \mathrm{b})=\mathrm{R} \in \mathrm{P} 1$
- move(T,a) = T \in P2
- move (T,b) = R \in P1

Minimizing DFA: Example 2

b

Minimizing DFA: Example 2

- DFA

- Initial partitions
- Accept \{R\} =P1
- Reject \{ S, T \} = P2

DFA
 already
 minimal

- Split partition? \rightarrow Yes, different partitions for B
- move(S,a) = T \in P2
- move(T,a) = T \in P2
$-\operatorname{move}(S, b)=T \in P 2$
- move (T,b) = R \in P1

Complement of DFA

- Given a DFA accepting language L
- How can we create a DFA accepting its complement?
- Example DFA
> $\Sigma=\{a, b\}$

Complement of DFA

- Algorithm
- Add explicit transitions to a dead state
- Change every accepting state to a non-accepting state \& every non-accepting state to an accepting state
- Note this only works with DFAs
- Why not with NFAs?

Summary of Regular Expression Theory

- Finite automata
- DFA, NFA
- Equivalence of RE, NFA, DFA
- RE \rightarrow NFA
> Concatenation, union, closure
- NFA \rightarrow DFA
> ε-closure \& subset algorithm
- DFA
- Minimization, complementation

