
CMSC 330: Organization of Programming
Languages

OCaml
Higher Order Functions

1
CMSC330 Summer 2019

Anonymous Functions

Recall code blocks in Ruby

• Here, we can think of { |x| print x } as a function

We can do this (and more) in OCaml

2

(1..10).each { |x| print x }

3

Anonymous Functions

As with Ruby, passing around functions is common
• So often we don’t want to bother to give them names

Use fun to make a function with no name

(fun x -> x + 3) 5

fun x -> x + 3

Parameter Body
(in which parameter x

is bound)

= 8

Anonymous Functions

Syntax
• fun x1 … xn -> e

Evaluation
• An anonymous function is an expression
• In fact, it is a value – no further evaluation is possible

Ø As such, it can be passed to other functions, returned from them, stored in
a variable, etc.

Type checking
• (fun x1 … xn -> e) : (t1 -> … -> tn -> u)

when e : u under assumptions x1 : t1, …, xn : tn.
Ø (Same rule as let f x1 … xn = e)

4

Calling Functions, Generalized

Syntax e0 e1 … en
Evaluation
• Evaluate arguments e1 … en to values v1 … vn

Ø Order is actually right to left, not left to right
Ø But this doesn’t matter if e1 … en don’t have side effects

• Evaluate e0 to a function fun x1 … xn -> e
• Substitute vi for xi in e, yielding new expression e’
• Evaluate e’ to value v, which is the final result

Example:
• (fun x -> x+x) 1

5

Not just a variable f

⇒ 1+1 ⇒ 2

Calling Functions, Generalized

Syntax e0 e1 … en
Type checking (almost the same as before)
• If e0 : t1 -> … -> tn -> u and e1 : t1, …, en : tn then e0 e1 …
en : u

Example:
• (fun x -> x+x) 1 : int
• since (fun x -> x+x): int -> int and 1 : int

6

A. Error
B. 2
C. 1
D. 0

7

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun z -> z-2) y

A. Error
B. 2
C. 1
D. 0

8

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun z -> z-2) y

A. Type error
B. int
C. int -> int -> int
D. �a -> �b -> �a

9

Quiz 2: What is this expression’s type ?

(fun x y -> x) 2 3

A. Type error
B. int
C. int -> int -> int
D. �a -> �b -> �a

10

Quiz 2: What is this expression’s type ?

(fun x y -> x) 2 3

11

Functions and Binding

Functions are first-class, so you can bind them to other
names as you like
let f x = x + 3;;
let g = f;;
g 5

In fact, let for functions is syntactic shorthand
let f x = body

↓ is semantically equivalent to
let f = fun x -> body

= 8

12

Example Shorthands
let next x = x + 1

• Short for let next = fun x -> x + 1

let plus x y = x + y

• Short for let plus = fun x y -> x + y

let rec fact n =
if n = 0 then 1 else n * fact (n-1)

• Short for let rec fact = fun n ->
(if n = 0 then 1 else n * fact (n-1))

A. Error
B. 2
C. 1
D. 0

13

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in
let g = f in
g 1

A. Error
B. 2
C. 1
D. 0

14

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in
let g = f in
g 1

15

Defining Functions Everywhere
let move l x =
let left x = x – 1 in (* locally defined fun *)
let right x = x + 1 in (* locally defined fun *)
if l then left x
else right x

;;

let move’ l x = (* equivalent to the above *)
if l then (fun y -> y – 1) x
else (fun y -> y + 1) x

16

Pattern Matching With Fun

match can be used within fun
(fun l -> match l with (h::_) -> h) [1; 2]

But use named functions for complicated matches
May use standard pattern matching abbreviations
(fun (x, y) -> x+y) (1,2)

= 1

= 3

17

Passing Functions as Arguments
In OCaml you can pass functions as arguments
(akin to Ruby code blocks)
let plus_three x = x + 3 (* int -> int *)

let twice f z = f (f z) (* ('a->'a) -> 'a -> 'a *)
twice plus_three 5 = 11

Ruby’s collect is called map in OCaml
• map f l applies function f to each element of l, and

puts the results in a new list (preserving order)

map plus_three [1; 2; 3] = [4; 5; 6]
map (fun x -> (-x)) [1; 2; 3] = [-1; -2; -3]

map function

What is Map?

map f [n1;n2;n3] [f n1; f n2; f n3]

Map generates a new list by applying a function to every item in the
given list

map cook

== >

== >

Why do we need Map?

let rec double lst =
match lst with
[]->[]
|h::t-> h * 2 :: double t

let rec neg lst =
match lst with

[]->[]
|h::t-> h * (-1) :: neg t

double [1; 2; 3; 4];;
- : int list = [2; 4; 6; 8]

neg [1;2;3;4];;
- : int list = [-1; -2; -3; -4]

Why do we need Map?
let rec double lst =

match lst with
[]->[]

|h::t-> h * 2 :: double t

let rec neg lst =
match lst with

[]->[]
|h::t-> h * (-1) :: neg t

let rec map f lst =
match lst with

[]->[]
|h::t-> (f h):: map f t

How to implement Map?

let rec map f lst =
match lst with
|[]->[]
|h::t-> (f h):: (map f t)

Type of Map

let map f lst =
match lst with
|[]->[]
|h::t-> (f h):: map f t

('a -> 'b) -> 'a list -> 'b list

How to use Map?

let double x = x * 2 ;;

let lst = [1; 2; 3; 4; 5] ;;

let t = map double lst ;;

t : int list = [2; 4; 6; 8; 10]

Example 1

let t = [1; 2; 3; 4];;
map (fun x-> x-1) t;;

let t = [1; 2; 3; 4];;
let sub1 x = x - 1;;
map sub1 t;;

Subtract 1 from every item in an int list

int list = [0; 1; 2; 3]

Example 2

let t = [1; 2; 3; 4];;
let neg x = x * (-1);;

Negate every item in an int list

int list = [-1; -2; -3; -4]

map neg t;;

Example 3

let fs = [neg; sub1; double];;
map (fun x -> map x lst) fs;;

Apply a list functions to an int list

int list list = [[-1; -2; -3]; [0; 1; 2]; [2; 4; 6]]

let lst = [1;2;3];;
let neg x = x * (-1);;
let sub1 x = x-1;;
let double x = x + x;;

Example 4: Permute a list
let permute lst =
let rec rm x l = List.filter ((<>) x) l
and insertToPermute lst x =
let t = rm x lst in
List.map ((fun a b->a::b) x)(permuteall t)

and permuteall lst =
match lst with
|[]->[]
|[x]->[[x]]
|_->List.flatten(List.map (insertToPermute lst) lst)

in permuteall lst
;;

permute [1;2;3];;
- : int list list =
[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2];
[3; 2; 1]]

Example 5: Power Set

let populate a b =
if b=[] then [[a]]
else let t = List.map (fun x->a::x) b in

[a]::t@b
;;

let powerset lst = List.fold_right populate lst []
;;

powerset [1;2;3];;
- : int list list = [[1]; [1; 2]; [1; 2; 3]; [1; 3];
[2]; [2; 3]; [3]]

populate 1 [[2];[3]];;
- : int list list =
- [[1]; [1; 2]; [1; 3]; [2];
[3]]

What we learned?

Map:

• A higher order function.

• List module

• Takes a function and a list as arguments, applies the function to
each member of the list, generates a new list

• It is powerful.

fold function

What is Fold

• Fold generally
• takes a function of two arguments, a list, and an initial value

(accumulator)
• combines the list by applying the function to the

accumulator and one element from the list and the result of
recursively folding the function over the rest of the list.

Accumulator: (i.e. 0 for addition, 1 for multiplication, false for
boolean OR, negative infinity for maximum, etc.)

What is Fold

fold (fun x y-> x+y) 0 [1;2;3;4;5];;

- : int = 15

Why do we need Fold?

let rec sum l =
match l with
[] -> 0
|h::t -> h + (sum t)

let rec concat l =
match l with
[] -> ""
|h::t -> h ^ (concat t)

Concatenate a list of strings:sum a list of integers

sum [1;2;3;4];;
- : int = 10

concat ["a";"b";"c"];;
- : string = "abc"

Why do we need Fold?

let rec sum l =
match l with
[] -> 0
|h::t -> h + (sum t)

let rec concat l =
match l with
[] -> ""
|h::t -> h ^ (concat t)

Concatenate a list of strings:sum a list of integers

let rec fold f acc lst =
match l with
[] -> acc
|h::t -> fold f (f acc h) t

How to implement Fold

let rec fold f acc lst =
match l with
[] -> acc
|h::t -> fold f (f acc h) t

Type of Fold

let rec fold f acc lst =
match l with
[] -> acc
|h::t -> fold f (f acc h) t

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

f acc lst -> return type

How to use Fold?

let add x y = x + y ;;

let lst = [2; 3; 4] ;;

let t = fold add 0 lst ;;

t : int = 9

How to use Fold?

let add x y = x + y ;;
let lst = [2; 3; 4] ;;
let t = fold add 0 lst ;;
t : int = 9

fold add 0 lst
fold add (add 0 2) [3;4]
fold add 2 [3;4]
fold add (add 2 3) [4]
fold add 5 [4]
fold add (add 5 4) []
fold add 9 []
9

let rec fold f acc lst =
match l with
[] -> acc
|h :: t -> fold f (f acc h) t

Example 1: Product of an int list

let mul x y = x * y;;

let lst = [1; 2; 3; 4; 5];;

fold mul 1 lst
- : int = 120 fold mul 0 lst;;

- : int = 0

Wrong accumulator

Example 2: Count elements of a list satisfying a
condition

let countif p l =
fold (fun counter element -> if p element then counter+1

else counter) 0 l ;;

countif (fun x -> x > 0) [30;-1;45;100;0];;

- : int = 3

Exaple 3: Collect even numbers in the list
let f acc y = if (y mod 2) = 0 then y::acc

else acc;;

fold f [] [1;2;3;4;5;6];;

- : int list = [6; 4; 2] Reversed

Example 4: Inner Product
first compute list of pair-wise products, then sum up

[x1;x2;x3]∗[y1;y2;y3] = [x1∗y1 + x2∗y2 + x3∗y3]

let rec map2 f a b =
match (a,b) with
|([],[])->([])
|(h1::t1,h2::t2)->(f h1 h2):: (map2 f t1 t2)
|_->invalid_arg "map2";;

let product v1 v2 =
fold (+) 0 (map2 (*) v1 v2);;

val product : int list -> int list -> int = <fun>
product [2;4;6] [1;3;5];;
#- : int = 44

Example 5: Find the maximum from a list

let maxList lst =
match lst with
[]->failwith "empty list"

|h::t-> fold max h t ;;

maxList [3;10;5];;
- : int = 10

(*
maxList [3;10;5]
fold max 3 [10:5]
fold max (max 3 10) [5]
fold max (max 10 5) []
fold max 10 []
10 *)

Quiz: Sum of sublists
Given a list of int lists, compute the sum of each int list, and return
them as list.

For example:
sumList [[1;2;3];[4];[5;6;7]]
- : int list = [6; 4; 18]

Solution: Sum of sublists

let sumList = map (fold (+) 0);;

sumList [[1;2;3];[4;5;6];[10]];;
- : int list = [6; 15; 10]

Quiz: Maximum contiguous subarray
Given an int list, find the contiguous sublist, which has the largest sum
and return its sum.

Example:
Input: [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6

Quiz: Maximum contiguous subarray
let f (m, acc) h =

let m = max m (acc + h) in
let x = if acc < 0 then 0 else acc in
(m, x+h)

;;
let submax lst = let (max_so_far, max_current) =

fold f (0,0) lst in
max_so_far

;;

submax [-2; 1; -3; 4; -1; 2; 1; -5; 4];;
- : int = 6

Summary
map f [v1; v2; …; vn]

= [f v1; f v2; …; f vn]
• e.g., map (fun x -> x+1) [1;2;3] = [2;3;4]

fold f v [v1; v2; …; vn]
= fold f (f v v1) [v2; …; vn]
= fold f (f (f v v1) v2) […; vn]
= …

= f (f (f (f v v1) v2) …) vn
§ e.g., fold add 0 [1;2;3;4] =

add (add (add (add 0 1) 2) 3) 4 = 10
52

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

53

Quiz 4: What does this evaluate to?

map (fun x -> x *. 4) [1;2;3]

54

map (fun x -> x *. 4) [1;2;3]

Quiz 4: What does this evaluate to?

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error -- the *. function takes

floats, not ints
D. [4; 8; 12]

Quiz 5: What does this evaluate to?

55

fold (fun a y -> y::a) [] [3;4;2]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

Quiz 5: What does this evaluate to?

56

fold (fun a y -> y::a) [] [3;4;2]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

57

Quiz 6: What does this evaluate to?

let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false

58

let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]

Quiz 6: What does this evaluate to?

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false

Combining map and fold

Idea: map a list to another list, and then fold
over it to compute the final result
• Basis of the famous “map/reduce” framework from

Google, since these operations can be parallelized

59

let countone l =
fold (fun a h -> if h=1 then a+1 else a) 0 l

let countones ss =
let counts = map countone ss in
fold (fun a c -> a+c) 0 counts

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2

fold_right

60

let rec fold_right f l a = match l with
[] -> a

| (h::t) -> f h (fold_right f t a)

let rec fold f a l = match l with
[] -> a

| (h::t) -> fold f (f a h) t

Right-to-left version of fold:

Left-to-right version used so far:

Left-to-right vs. right-to-left
fold f v [v1; v2; …; vn] =
f (f (f (f v v1) v2) …) vn

fold_right f [v1; v2; …; vn] v =
f (f (f (f vn v) …) v2) v1

fold (fun x y -> x – y) 0 [1;2;3] = -6

since ((0-1)-2)-3) = -6
fold_right (fun x y -> x – y) [1;2;3] 0 = 2

since 1-(2-(3-0)) = 2

61

When to use one or the other?

Many problems lend themselves to fold_right
But it does present a performance disadvantage
• The recursion builds of a deep stack: One stack frame for each

recursive call of fold_right

An optimization called tail recursion permits optimizing
fold so that it uses no stack at all
• We will see how this works in a later lecture!

62

