CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment

\[e \Rightarrow v \]

- Says “\(e \) evaluates to \(v \)”
- \(e \): expression in Micro-OCaml
- \(v \): value that results from evaluating \(e \)
Definitional Interpreter

It turns out that the rules for judgment $e \Rightarrow v$ can be easily turned into idiomatic OCaml code

- The language’s expressions e and values v have corresponding OCaml datatype representations `exp` and `value`
- The semantics is represented as a function

```
val eval : exp -> value
```

This way of presenting the semantics is referred to as a definitional interpreter

- The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[
e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e
\]

- **\(e, x, n\)** are *meta-variables* that stand for categories of syntax
 - **\(x\)** is any identifier (like \(z, y, \text{foo}\))
 - **\(n\)** is any numeral (like \(1, 0, 10, -25\))
 - **\(e\)** is any expression (here defined, recursively!)

Concrete syntax of actual expressions in **black**
- Such as \(\text{let}, +, z, \text{foo}, \text{in}, \ldots\)

- \(::= \) and \(|\) are *meta-syntax* used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e \]

Examples

• 1 is a numeral \(n \) which is an expression \(e \)
• \(1+z \) is an expression \(e \) because
 \- 1 is an expression \(e \),
 \- \(z \) is an identifier \(x \), which is an expression \(e \), and
 \- \(e + e \) is an expression \(e \)
• \text{let } z = 1 \text{ in } 1+z \text{ is an expression } e \text{ because}
 \- \(z \) is an identifier \(x \),
 \- 1 is an expression \(e \),
 \- \(1+z \) is an expression \(e \), and
 \- \text{let } x = e \text{ in } e \text{ is an expression } e
Abstract Syntax = Structure

Here, the grammar for \(e \) is describing its abstract syntax tree (AST), i.e., \(e \)'s structure

\[
e ::= x \mid n \mid e + e \mid \text{let } x = e \text{ in } e
\]

corresponds to (in definitional interpreter)

```plaintext
type id = string
type num = int
type exp =
  | Ident of id (* x *)
  | Num of num (* n *)
  | Plus of exp * exp (* e+e *)
  | Let of id * exp * exp
      (* let x=e in e *)
```

Aside: Real Interpreters

Source → Parser → Static Analyzer (e.g., Type Checker) → Abstract Syntax Tree (AST), a kind of intermediate representation (IR) → Evaluator → Output

Front End

Back End

Evaluator
the part we write in the definitional interpreter

Input

Interpreter

CMSC 330 Summer 2019
Values

- An expression’s final result is a value. What can values be?

\[v ::= n \]

- Just numerals for now
 - In terms of an interpreter’s representation:
 \[
 \text{type value = int}
 \]
 - In a full language, values \(v \) will also include booleans (true, false), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- Judgments are just statements. We use rules to prove that the statement is true.
 - $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true
 - `let foo=1+2 in foo+5 \Rightarrow 8`
 - `let f=1+2 in let z=1 in f+z \Rightarrow 4`
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$
- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$
- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Here, $e_2\{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$
Rules of Inference

- We can use a more compact notation for the rules we just presented: rules of inference
 - Has the following format
 \[
 \begin{array}{c}
 H_1 \quad \ldots \quad H_n \\
 \hline
 C
 \end{array}
 \]
 - Says: if the conditions \(H_1 \ldots H_n \) ("hypotheses") are true, then the condition \(C \) ("conclusion") is true
 - If \(n=0 \) (no hypotheses) then the conclusion automatically holds; this is called an axiom

- We are using inference rules where \(C \) is our judgment about evaluation, i.e., that \(e \Rightarrow v \)
Lego Blocks and Lego Cars

\[P = 8.0 \text{ mm} \]
\[= \frac{5}{6} \times H \]
\[= 2.5 \times h \]

\[h = 3.2 \text{ mm} \]
\[= \frac{1}{3} \times H \]
\[= 0.4 \times P \]

\[H = 9.6 \text{ mm} \]
\[= 3 \times h \]
\[= 1.2 \times P \]

\[2 \times P - 0.2 \text{ mm} \]
\[= 15.8 \text{ mm} \]
Rules of Inference: Num and Sum

- Suppose \(e \) is a numeral \(n \)
 - Then \(e \) evaluates to itself, i.e., \(n \Rightarrow n \)

- Suppose \(e \) is an addition expression \(e_1 + e_2 \)
 - If \(e_1 \) evaluates to \(n_1 \), i.e., \(e_1 \Rightarrow n_1 \)
 - If \(e_2 \) evaluates to \(n_2 \), i.e., \(e_2 \Rightarrow n_2 \)
 - Then \(e \) evaluates to \(n_3 \), where \(n_3 \) is the sum of \(n_1 \) and \(n_2 \)
 - I.e., \(e_1 + e_2 \Rightarrow n_3 \)

\[
\begin{align*}
 e_1 & \Rightarrow n_1 \\
 e_2 & \Rightarrow n_2 \\
 n_3 & \text{ is } n_1 + n_2 \\
 e_1 + e_2 & \Rightarrow n_3
\end{align*}
\]
Rules of Inference: Let

- Suppose \(e \) is a let expression \(\text{let } x = e_1 \text{ in } e_2 \)
 - If \(e_1 \) evaluates to \(v \), i.e., \(e_1 \Rightarrow v_1 \)
 - If \(e_2\{v_1/x\} \) evaluates to \(v_2 \), i.e., \(e_2\{v_1/x\} \Rightarrow v_2 \)
 - Then \(e \) evaluates to \(v_2 \), i.e., \(\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \)

\[
\begin{array}{c|c|c}
 e_1 \Rightarrow v_1 & e_2\{v_1/x\} \Rightarrow v_2 \\
\hline
\text{let } x = e_1 \text{ in } e_2 & \Rightarrow v_2
\end{array}
\]
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 ➢ Goal: Show that $let \ x = 4 \ in \ x+3 \ \Rightarrow \ 7$
Derivations

\[
\begin{align*}
\text{let } x = 4 \text{ in } x+3 \Rightarrow & \quad 4 \\
\Rightarrow & \quad 4 \\
\Rightarrow & \quad 3 \\
\Rightarrow & \quad 7 \\
\text{is } 4+3
\end{align*}
\]

\[
\begin{align*}
\text{Goal: show that} \\
\text{let } x = 4 \text{ in } x+3 \Rightarrow 7
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
13 & \text{is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
\hline
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is 3+8} \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is 2+11} \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Definitional Interpreter

- The style of rules lends itself directly to the implementation of an interpreter as a recursive function

```ml
let rec eval (e:exp):value =
    match e with
    | Ident x -> (* no rule *)
      failwith "no value"
    | Num n -> n
    | Plus (e1,e2) ->
      let n1 = eval e1 in
      let n2 = eval e2 in
      let n3 = n1+n2 in
      n3
    | Let (x,e1,e2) ->
      let v1 = eval e1 in
      let e2' = subst v1 x e2 in
      let v2 = eval e2' in v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules:

<table>
<thead>
<tr>
<th><code>e1 ⇒ n1</code></th>
<th><code>e2 ⇒ n2</code></th>
<th><code>n3 is n1+n2</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>e1 + e2 ⇒ n3</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>e1 ⇒ v1</code></th>
<th><code>e2{v1/x} ⇒ v2</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>let x = e1 in e2 ⇒ v2</code></td>
<td></td>
</tr>
</tbody>
</table>
Derivations = Interpreter Call Trees

\[
\begin{align*}
4 \Rightarrow 4 & \quad 3 \Rightarrow 3 & \quad 7 \text{ is } 4 + 3 \\
4 \Rightarrow 4 & \quad 4 + 3 \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x + 3 \Rightarrow 7
\end{align*}
\]

Has the same shape as the recursive call tree of the interpreter:

\[
\begin{align*}
\text{eval } \text{Num } 4 \Rightarrow 4 & \quad \text{eval } \text{Num } 3 \Rightarrow 3 & \quad 7 \text{ is } 4 + 3 \\
\text{eval } (\text{subst } 4 \text{ "}x\text{"}) & \quad \text{Plus}(\text{Ident("}x\text{")}, \text{Num } 3)) \Rightarrow 7 \\
\text{eval } \text{Let("}x\text{", Num } 4, \text{Plus}(\text{Ident("}x\text{")}, \text{Num } 3)) \Rightarrow 7
\end{align*}
\]
Semantics Defines Program Meaning

- $e \Rightarrow v$ holds if and only if a proof can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means $e \not\Rightarrow v$
- Proofs can be constructed bottom-up
 - In a goal-directed fashion
- Thus, function $\text{eval } e = \{ v \mid e \Rightarrow v \}$
 - Determinism of semantics implies at most one element for any e
- So: Expression $e \text{ means } v$
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

Mathematically, an environment is a partial function from identifiers to values

- If A is an environment, and x is an identifier, then $A(x)$ can either be ...
 - ... a value (intuition: the variable has been declared)
 - ... or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table

- If A is

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
</tr>
</tbody>
</table>

- then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

- is the empty environment (undefined for all ids)
- If A is an environment then $A, x: v$ is one that extends A with a mapping from x to v
 - Sometimes just write $x: v$ instead of $\cdot, x: v$ for brevity
 - NB. if A maps x to some v', then that mapping is shadowed by the mapping $x: v$
- Lookup $A(x)$ is defined as follows
 $\cdot(x) = \text{undefined}$
 $(A, y: v)(x) = \begin{cases} v & \text{if } x = y \\ A(x) & \text{if } x <> y \text{ and } A(x) \text{ defined} \\ \text{undefined} & \text{otherwise} \end{cases}$
Definitional Interpreter: Environments

An environment is just a list of mappings, which are just pairs of variable to value - called an association list.
The environment semantics changes the judgment
\[e \Rightarrow v \]
to be
\[A; e \Rightarrow v \]
where \(A \) is an environment
- Idea: \(A \) is used to give values to the identifiers in \(e \)
- \(A \) can be thought of as containing declarations made up to \(e \)

Previous rules can be modified by
- Inserting \(A \) everywhere in the judgments
- Adding a rule to look up variables \(x \) in \(A \)
- Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

A(\(x\)) = v

\[A; x \Rightarrow v \]

Look up variable \(x\) in environment \(A\)

A; \(n \Rightarrow n\)

A; \(e_1 \Rightarrow v_1\)

A; \(e_2 \Rightarrow v_2\)

A; let \(x = e_1\) in \(e_2\) \(\Rightarrow v_2\)

Extend environment \(A\) with mapping from \(x\) to \(v_1\)

A; \(e_1 \Rightarrow n_1\)

A; \(e_2 \Rightarrow n_2\)

\(n_3\) is \(n_1 + n_2\)

A; \(e_1 + e_2 \Rightarrow n_3\)
let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Num n -> n
 | Plus (e1,e2) ->
 let n1 = eval env e1 in
 let n2 = eval env e2 in
 let n3 = n1+n2 in
 n3
 | Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)
\[\begin{align*}
x & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
5 & \text{is } 3+2 \\
\hline
3 & \Rightarrow 3 \\
x+2 & \Rightarrow 5 \\
\hline
\text{let x}=3 \text{ in } x+2 & \Rightarrow 5
\end{align*} \]

(b)
\[\begin{align*}
x:3; \ x & \Rightarrow 3 \\
x:3; \ 2 & \Rightarrow 2 \\
5 & \text{is } 3+2 \\
\hline
\text{•; } 3 & \Rightarrow 3 \\
x:3; \ x+2 & \Rightarrow 5 \\
\hline
\text{•; let x}=3 \text{ in } x+2 & \Rightarrow 5
\end{align*} \]

(c)
\[\begin{align*}
x:2; \ x & \Rightarrow 3 \\
x:2; \ 2 & \Rightarrow 2 \\
5 & \text{is } 3+2 \\
\hline
\text{•; let x}=3 \text{ in } x+2 & \Rightarrow 5
\end{align*} \]
What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)
\[
\begin{array}{c}
\text{x \Rightarrow 3} \\
\text{2 \Rightarrow 2 \quad 5 \text{ is } 3+2} \\
\hline
\text{3 \Rightarrow 3} \\
\text{x+2 \Rightarrow 5} \\
\end{array}
\]

\[
\begin{array}{c}
\text{let x=3 in x+2 \Rightarrow 5} \\
\end{array}
\]

(b)
\[
\begin{array}{c}
\text{x:3; x \Rightarrow 3} \\
\text{x:3; 2 \Rightarrow 2 \quad 5 \text{ is } 3+2} \\
\hline
\text{•; 3 \Rightarrow 3} \\
\text{x:3; x+2 \Rightarrow 5} \\
\end{array}
\]

\[
\begin{array}{c}
\text{•; let x=3 in x+2 \Rightarrow 5} \\
\end{array}
\]

(c)
\[
\begin{array}{c}
\text{x:2; x\Rightarrow3} \\
\text{x:2; 2\Rightarrow2 \quad 5 \text{ is } 3+2} \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{•; let x=3 in x+2 \Rightarrow 5} \\
\end{array}
\]
Adding Conditionals to Micro-OCaml

\[e ::= \text{\textit{x}} | \text{\textit{v}} | e + e | \text{let } x = e \text{ in } e \]

\[\text{let } x = e \text{ in } e \]

\[\text{eq0 } e | \text{if } e \text{ then } e \text{ else } e \]

\[v ::= n | \text{true} | \text{false} \]

- In terms of interpreter definitions:

```ocaml
type exp =
| Val of value
| ... (* as before *)
| Eq0 of exp
| If of exp * exp * exp
```

```ocaml
type value =
| Int of int
| Bool of bool
```
Rules for Eq0 and Booleans

- Booleans evaluate to themselves
 - $A; \text{false} \Rightarrow \text{false}$

- eq0 tests for 0
 - $A; \text{eq0 } 0 \Rightarrow \text{true}$
 - $A; \text{eq0 } 3+4 \Rightarrow \text{false}$
Rules for Conditionals

- **A; \(e_1 \Rightarrow \text{true} \) \quad A; \(e_2 \Rightarrow v \)**
- **\(A; \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \Rightarrow v \)**

- **A; \(e_1 \Rightarrow \text{false} \) \quad A; \(e_3 \Rightarrow v \)**
- **\(A; \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \Rightarrow v \)**

- Notice that only one branch is evaluated
 - \(A; \text{if eq0 0 then 3 else 4 } \Rightarrow 3 \)
 - \(A; \text{if eq0 1 then 3 else 4 } \Rightarrow 4 \)
Quiz 3

What is the derivation of the following judgment?

\[
\text{•; if eq0 3-2 then 5 else 10 } \Rightarrow 10
\]

(a)
\[
\begin{align*}
\text{•; } 3 &\Rightarrow 3 \\
\text{•; } 2 &\Rightarrow 2 \\
3-2 \text{ is 1}
\end{align*}
\]

\[
\begin{align*}
\text{•; } \text{eq0 3-2 } &\Rightarrow \text{false} \\
\text{•; } 10 &\Rightarrow 10
\end{align*}
\]

\[
\begin{align*}
\text{•; if eq0 3-2 then 5 else 10 } &\Rightarrow 10
\end{align*}
\]

(b)
\[
3 \Rightarrow 3 \\
2 \Rightarrow 2 \\
3-2 \text{ is 1}
\]

\[
\begin{align*}
\text{eq0 3-2 } &\Rightarrow \text{false} \\
10 &\Rightarrow 10
\end{align*}
\]

\[
\begin{align*}
\text{if eq0 3-2 then 5 else 10 } &\Rightarrow 10
\end{align*}
\]

(c)
\[
\begin{align*}
\text{•; } 3 &\Rightarrow 3 \\
\text{•; } 2 &\Rightarrow 2 \\
3-2 \text{ is 1}
\end{align*}
\]

\[
\begin{align*}
\text{•; } 3-2 &\Rightarrow 1 \\
1 &\neq 0
\end{align*}
\]

\[
\begin{align*}
\text{•; } \text{eq0 3-2 } &\Rightarrow \text{false} \\
\text{•; } 10 &\Rightarrow 10
\end{align*}
\]

\[
\begin{align*}
\text{•; if eq0 3-2 then 5 else 10 } &\Rightarrow 10
\end{align*}
\]
Quiz 3

What is the derivation of the following judgment?

\[\text{•}; \text{if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(a)
\[
\begin{align*}
\text{•}; 3 & \Rightarrow 3 \\
\text{•}; 2 & \Rightarrow 2 \quad 3-2 \text{ is 1} \\
\text{•}; \text{eq0 3-2 } \Rightarrow \text{false} & \quad \text{•}; 10 \Rightarrow 10
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
3-2 \text{ is 1} & \\
\text{eq0 3-2 } \Rightarrow \text{false} & \quad 10 \Rightarrow 10
\end{align*}
\]

(c)
\[
\begin{align*}
\text{•}; 3 & \Rightarrow 3 \\
\text{•}; 2 & \Rightarrow 2 \\
3-2 \text{ is 1} & \\
\text{•}; \text{eq0 3-2 } \Rightarrow \text{false} & \quad \text{•}; 10 \Rightarrow 10
\end{align*}
\]

\[
\begin{align*}
\text{•}; 3-2 & \Rightarrow 1 \\
1 & \neq 0
\end{align*}
\]

\[
\begin{align*}
\text{•}; \text{if eq0 3-2 then 5 else 10} & \Rightarrow 10
\end{align*}
\]
let rec eval env e =
 match e with
 Ident x -> lookup env x
| Val v -> v
| Plus (e1,e2) ->
 let Int n1 = eval env e1 in
 let Int n2 = eval env e2 in
 let n3 = n1+n2 in
 Int n3
| Let (x,e1,e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
| Eq0 e1 ->
 let Int n = eval env e1 in
 if n=0 then Bool true else Bool false
| If (e1,e2,e3) ->
 let Bool b = eval env e1 in
 if b then eval env e2
 else eval env e3
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
 - I.e., the rules for type checking

- We won’t cover this in depth in this course, but here is a flavor.

- **Types** \(t ::= \text{bool} \mid \text{int} \)

- **Judgment** \(\vdash e : t \) says \(e \) has type \(t \)
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type `bool`
 - `true : bool`
 - `false : bool`

- Equality checking has type `bool` too
 - Assuming its target expression has type `int`
 - `e : int`
 - `eq0 e : bool`

- Conditionals
 - `if e1 then e2 else e3 : t`
Handling Binding

- What about the types of variables?
 - Taking inspiration from the environment-style operational semantics, what could you do?

- Change judgment to be $G \vdash e : t$ which says e has type t under type environment G
 - G is a map from variables x to types t
 - Analogous to map A, but maps vars to types, not values

- What would be the rules for \texttt{let}, and variables?
Type Checking with Binding

- Variable lookup

 \[G(x) = t \]
 \[G \vdash x : t \]

- Let binding

 \[G \vdash e_1 : t_1 \]
 \[G, x : t_1 \vdash e_2 : t_2 \]
 \[G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2 \]

 \(\text{analogous to}\)

 \[A(x) = v \]
 \[A; x \Rightarrow v \]

 \[A; e_1 \Rightarrow v_1 \]
 \[A, x : v_1; e_2 \Rightarrow v_2 \]
 \[A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2 \]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later
Scaling Up: Lego City