
CMSC 132: Object-Oriented
Programming II

Inheritance

1CMSC 330 Summer 2020

Mustang vs Model T

2

Ford Mustang

Ford Model T

CMSC 330 Summer 2020

Interior: Mustang vs Model T

3CMSC 330 Summer 2020

Frame: Mustang vs Model T

4

Mustang

Model T
CMSC 330 Summer 2020

Compaq: old and new

5

Price: US$3590
Weight: 28 pounds
CPU: Intel 8088, 4.77MHz
RAM: 128K, 640K max

CMSC 330 Summer 2020

Object Oriented Programming
An Object-Oriented Language supports the following
fundamental concepts:
• Polymorphism
• Inheritance
• Encapsulation
• Abstraction
• Classes
• Objects
• Instance
• Method

6CMSC 330 Summer 2020

Object

Objects have states and behaviors.
Example: A dog has states - color, name, breed
as well as behaviors – wagging the tail, barking,
eating.
An object is an instance of a class.
• If we consider the real-world, we can find many

objects around us, cars, dogs, humans, etc. All these
objects have a state and a behavior.

CMSC 330 Summer 2020 7

Class

A class can be defined as a template/blueprint
that describes the behavior/state that the object
of its type support.

CMSC 330 Summer 2020 8

public class Bicycle{
public int gear;
public int speed;
public Bicycle(int startSpeed, int startGear) {

gear = startGear;
speed = startSpeed;

}
public void setGear(int v){gear = v;}
public void applyBrake(int dec){speed -= dec;}
public void speedUp(int inc) { speed += inc; }

}

Java Class Example

Fraction Class
• Numerator
• Denominator
• Reduce a Fraction to Lowest Terms
• Addition, Multiplication
• …

• Now, let us implement the Fraction class.
• Code will be posted on course site.

CMSC 330 Summer 2020 9

Inheritance
• Classes can be derived from other classes, thereby

inheriting fields and methods from those classes.
• A class that is derived from another class is called a

subclass (also a derived class, extended class, or
child class).

• The class from which the subclass is derived is
called a superclass (also a base class or a parent
class).

• Derived (Child) class can be base (parent) class

10
CMSC 330 Summer 2020

Inheritance

11

Shape

Circle RectangleTriangle

Right -Triangle Equilateral -
Triangle

Motivation: In real life objects have a hierarchical structure:

Square

CMSC 330 Summer 2020

Inheritance
Define a general class
Later, define specialized classes based on
the general class
These specialized classes inherit properties
from the general class

12

Person

Student Employee

Faculty StaffUndergrad Grad

CMSC 330 Summer 2020

Inheritance

13

Person

Student Employee

Faculty StaffUndergrad Grad

Person: name, address, phone, email
Student: college, major, gpa
Employee: Salary, dateHired, office
Faculty: rank, officeHours
Staff: title
Undergrad: freshman,sophomore, junior, or senior)
Grad: advisor, level (ms or phd)
CMSC 330 Summer 2020

Inheritance cont.

What are some properties of a Person?
• name, height, weight, age

How about a Student?
• ID, major, gpa

Does a Student have a name, height, weight,
and age?
• Student inherits these properties from Person

14
CMSC 330 Summer 2020

is-a relationship
This inheritance relationship is known as an is-a
relationship

A Grad student is a Student
A Student is a Person.

Is a Person a Student? – Not necessarily!

15
CMSC 330 Summer 2020

Why inheritance is useful

Enables you to define shared properties and
actions once

Derived classes can perform the same actions
as base classes without having to redefine the
actions

If desired, the actions can be redefined –
method overriding

16
CMSC 330 Summer 2020

Person Class
public class Person {

private String name;
public Person(){
name = "";

}
public Person(String name){
this.name = name;

}
public void setName(String newName){

name = newName;
}
public String getName(){

return name;
}
@Override
public String toString(){

return "Name:"+name;
}

}

17

Person

-name
+Person()
+Person(String name):void
+setName(String name) : void
+getName() : String

CMSC 330 Summer 2020

Student Class
public class Student extends Person{
private int id;
public Student() {
id = 0;

}
public Student(String name, int id) {

super(name);
this.id = id;

}
public void setID(int idNumber) {

id = idNumber;
}
public int getID(){

return id;
}
@Override
public String toString(){

return "Id:"+ id +"\tName:" +
getName();

}
} 18

Person

-name
+Person()
+Person(String name):void
+setName(String name) : void
+getName() : String

Student

-id

+Student()
+Student(String name, int id) : void
+setID(int id) : void
+getID(): int
+toString() : String

CMSC 330 Summer 2020

Dissecting the Student Class
• Extends: To specify that Student is a derived class (subclass) of Person

we add the descriptor “extends” to the class definition:

public class Student extends Person {
…
}

• Notice that a Student class
• Inherits everything from the Person class
• A Student IS-A Person (wherever a Person is needed, we can use a

Student).

19
CMSC 330 Summer 2020

Super()
• super(): When initializing a new Student object, we need to initialize its

base class (or superclass). This is done by calling super(…). For
example, super(name) invokes the constructor Person(name)
• super(…) must be the first statement of your constructor

• If you do not call super(), Java will automatically invoke the base
class’s default constructor

• What if the base class’s default constructor is undefined? Error
• You must use “super(…)”, not “Person(…)”.

20
CMSC 330 Summer 2020

Memory Layout and Initialization Order
• When you create a new derived class object:

• Java allocates space for both the base class instance variables and
the derived class variables

• Java initializes the base class variables first, and then initializes the
derived class variables

• Example:
Person ted = new Person("Ted Goodman");
Student bob = new Student("Bob Goodstudent", 100);

21

name Ted Goodman

Bob Goodstudent

100

ted

name

id
bob

CMSC 330 Summer 2020

Inheritance
• Inheritance: Since Student is derived from Person, a Student object

can invoke any of the Person methods, it inherits them

22

Student bob = new Student("Bob Goodstudent", 100);

String bobsName = bob.getName());

bob.setName("Robert Goodstudent");

System.out.println("Bob's new info: " +
bob.toString());

CMSC 330 Summer 2020

Inheritance
A Student “is a” Person:

• By inheritance a Student object is also a Person object. We can
use a Student reference anywhere that a Person reference is
needed

Person robert = bob; // Okay: A Student is a Person

• We cannot reverse this. (A Person need not be a
Student.)

Student bob2 = robert; // Error! Cannot convert Person to Student

23
CMSC 330 Summer 2020

Overriding Methods
• New Methods: A derived class can define entirely new

instance variables and new methods
• Overriding: A derived class can also redefine existing

methods
public class Person {

…
public String toString() { … }

}
public class Student extends Person {

…
public String toString() { … }

}
Student bob = new Student("Bob Goodstudent", 100);
System.out.println("Bob's info: " + bob);

24

The derived class can
redefine this method.

Since bob is of type Student,
this invokes the Student toString()

CMSC 330 Summer 2020

Overriding and Overloading
• Don’t confuse method overriding with method overloading.

Overriding: occurs when a derived class defines a method with the same
name and parameters as the base class.

Overloading: occurs when two or more methods have the same name, but
have different parameters (different signature).

Example:
public class Person {

public void setName(String n) { name = n; }

…
}
public class Faculty extends Person {

public void setName(String n) {
super.setName(“The Evil Professor ” + n);

}

public void setName(String first, String last) {
super.setName(first + “ ” + last);

}
}

25

The base class defines
a method setName()

Overriding: Same name and
parameters; different
definition.

Overloading: Same name, but
different parameters.

CMSC 330 Summer 2020

Quiz 1: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t;
System.out.println(t.i);

}
}

26

A. 0
B. garbage value
C. compiler error
D. runtime error

CMSC 330 Summer 2020

Quiz 1: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t;
System.out.println(t.i);

}
}

27

A. 0
B. garbage value
C. compiler error: variable not initialized.
D. runtime error

CMSC 330 Summer 2020

Quiz 2: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t = null;
System.out.println(t.i);

}
}

28

A. 0
B. garbage value
C. compiler error
D. runtime error

CMSC 330 Summer 2020

Quiz 2: Output of following program
class Test {
int i;

}
class Main {
public static void main(String args[]){

Test t = null;
System.out.println(t.i);

}
}

29

A. 0
B. garbage value
C. compiler error
D. runtime error: Null pointer exception

CMSC 330 Summer 2020

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}
}
class Child extends Base{

void display(){System.out.print(”Child ");}
}
Base b= new Base();
Child c = new Child ();
Base ref = b;
ref.display();
ref = c;
ref.display();

30

A. Compilation error
B. Base Child
C. Child Base
D. Runtime error

CMSC 330 Summer 2020

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}
}
class Child extends Base{

void display(){System.out.print(”Child ");}
}
Base b= new Base();
Child c = new Child ();
Base ref = b;
ref.display();
ref = c;
ref.display();

31

A. Compilation error
B. Base Child
C. Child Base
D. Runtime error

CMSC 330 Summer 2020

Overriding Variables: Shadowing
• We can override methods, can we override instance variables too?
• Answer: Yes, it is possible, but not recommended

• Overriding an instance variable is called shadowing, because it
makes the base instance variables of the base class inaccessible.
(We can still access it explicitly using super.varName).

public class Person { public class Staff
extends Person {

String name; String name;
// … // … name refers to

Staff’s name
} }

• This can be confusing to readers, since they may not have noticed
that you redefined name. Better to just pick a new variable name

32
CMSC 330 Summer 2020

Shadowing example

33

class Base {
public int x;
public Base(){x = 10;}
public String foo(){return x+"";}

}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public String foo(){return (x + "\t" + super.x);}

}

Derived d = new Derived();
d.foo();

CMSC 330 Summer 2020

Shadowing example

34

class Base {
public int x;
public Base(){x = 10;}
public String foo(){return x+"";}

}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public String foo(){return (x + "\t" + super.x);}

}

Derived d = new Derived();
d.foo();

20 10

CMSC 330 Summer 2020

Shadowing example

35

class Base {
public int x;
public Base(){x = 10;}
public void foo(){return x);}

}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public void foo(){return (x + “\t” + super.x);}

}

Derived d = new Derived();
Base b = d;
d.x;
b.x;

CMSC 330 Summer 2020

Shadowing example

36

class Base {
public int x;
public Base(){x = 10;}
public String foo(){return x);}

}

class Derived extends Base {
public int x;
public Derived(){ x = 20;}
public String foo(){return (x + “\t” + super.x);}

}

Derived d = new Derived();
Base b = d;
d.x; 20
b.x; 10

CMSC 330 Summer 2020

super and this
• super: refers to the base class object

• We can invoke any base class constructor using super(…).
• We can access data and methods in the base class (Person)

through super. E.g., toString() and equals() invoke the
corresponding methods from the Person base class, using
super.toString() and super.equals().

• this: refers to the current object
• We can refer to our own data and methods using “this.” but this

usually is not needed
• We can invoke any of our own constructors using this(…). As

with the super constructor, this can only be done within a
constructor, and must be the first statement of the constructor.
Example:

public Fraction(int n) {
this(n,1);

}

37
CMSC 330 Summer 2020

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

38

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Base

Child

The Java Virtual Machine does not mandate any particular internal
structure for objects.

CMSC 330 Summer 2020

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

39

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Base object

CMSC 330 Summer 2020

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){ }
public void m2(){ }

}

40

class Child extends Base{
private int d;
public void m1(){ }
public void m3(){ }

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Pointer to m1()
Pointer to m2()

VTABLE

Pointer to m3()

Pointer to
vtable
a
b
c
d

Base object

Child object

CMSC 330 Summer 2020

Memory Layout
class Base{
private int a;
protected int b;
protected int c;
protected void m1(){}
public void m2(){}

}

41

class Child extends Base{
private int d;
public void m1(){}
public void m3(){}

}

Pointer to m1()
Pointer to m2()

VTABLE
Pointer to
vtable
a
b
c

Pointer to m1()
Pointer to m2()

VTABLE

Pointer to m3()

Pointer to
vtable
a
b
c
d

Base object

Child object

Each class has one vtable.

All objects of the this class shares the vtable.
CMSC 330 Summer 2020

Inheritance and Private
• Private members:

• Child class inherits all the private data of Base class
• However, private members of the base class cannot be

accessed directly

• Why is this? After you have gone to all the work of setting up
privacy, it wouldn’t be fair to allow someone to simply extend your
class and now have access to all the private information

42
CMSC 330 Summer 2020

Quiz 5: True/False

Except Object, which has no superclass, every class has
one and only one direct superclass.

43

A. True
B. False

CMSC 330 Summer 2020

Quiz5: True/False

Except Object, which has no superclass, every class has
one and only one direct superclass.

44

A. True
B. False

CMSC 330 Summer 2020

Quiz 6:
class Base {
public void foo(){
println("Base");

}
}
class Derived extends Base {
private void foo(){
println("Derived");

}
}
…
Base b = new Derived();
b.foo();

…
45

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

CMSC 330 Summer 2020

Quiz 6:
class Base {
public void foo(){
println("Base");

}
}
class Derived extends Base {
private void foo(){
println("Derived");

}
}
…
Base b = new Derived();
b.foo();

…
46

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

It is compiler error to give
more restrictive access to a
derived class function which
overrides a base class
function.

CMSC 330 Summer 2020

Quiz 7:

47

class Animal has a subclass Mammal. Which of
the following is true:

A. Because of single inheritance, Mammal can have no
subclasses.

B. Because of single inheritance, Mammal can have no other
parent than Animal.

C. Because of single inheritance, Animal can have only one
subclass.

D. Because of single inheritance, Mammal can have no siblings.

CMSC 330 Summer 2020

Quiz 7:

48

class Animal has a subclass Mammal. Which of
the following is true:

A. Because of single inheritance, Mammal can have no
subclasses.

B. Because of single inheritance, Mammal can have no other
parent than Animal.

C. Because of single inheritance, Animal can have only one
subclass.

D. Because of single inheritance, Mammal can have no siblings.

CMSC 330 Summer 2020

Access level

49

Modifier Class Package Subclass World
public Y Y Y Y
protected Y Y Y N
no modifier Y Y N N
private Y N N N

CMSC 330 Summer 2020

Object
• Object is the superclass of all java classes

• The class Object has no instance variables, but defines
a number of methods. These include:

toString(): returns a String representation of this
object

equals(Object o): test for equality with another
object o

• Every class you define should, overrides these two
methods with something that makes sense for your
class (hashCode method is also included in the group)

50
CMSC 330 Summer 2020

Early and Late Binding
• Motivation: Consider the following example:

Base b = new Child();
b.toString();

• Q: Should this call Base’s toString or Child’s toString?
• A: There are good arguments for either choice:

Early (static) binding: The variable b is declared to be of type Base.
Therefore, we should call the Base’s toString

Late (dynamic) binding: The object to which b refers was created as a
“new Child”. Therefore, we should call the Child’s toString

Pros and cons: Early binding is more efficient, since the decision can be
made at compile time. Late binding provides more flexibility

• Java uses late binding (by default): so Faculty toString is called
(Note: C++ uses early binding by default.)

51
CMSC 330 Summer 2020

Polymorphism
• Java’s late binding makes it possible for a single reference variable to refer

to objects of many different types. Such a variable is said to be
polymorphic (meaning having many forms)

• Example: Create an array of various university people and print
Shape[] list = new Shape[3];
list[0] = new Rect(10,20);
list[1] = new Circle (10);
list[2] = new Triangle(3,4,5)
for (int i = 0; i < list.length; i++)

System.out.println(list[i].getArea());

• What type is list[i]? It can be a reference to any object that is derived from
Shape. The appropriate getArea will be called

52

Output:

CMSC 330 Summer 2020

getClass and instanceof
• Objects in Java can access their type information dynamically
• getClass(): Returns a representation of the class of any object

Person bob = new Person(…);
Person ted = new Student(…);

if (bob.getClass() == ted.getClass()) // false (ted
is really a Student)

• instanceof: You can determine whether one object is an instance of (e.g., derived
from) some class using instanceof. Note that it is an operator (!) in Java, not a
method call

53
CMSC 330 Summer 2020

Up-casting and Down-casting
• We have already seen that we can assign a derived class reference

anywhere that a base class is expected
Upcasting: Casting a reference to a base class (casting up the inheritance

tree). This is done automatically and is always safe
Downcasting: Casting a reference to a derived class. This may not be

legal (depending on the actual object type). You can force it by
performing an explicit cast

• Illegal downcasting results in a ClassCastException run-time error

54
CMSC 330 Summer 2020

Safe Downcasting
• Can we check for the legality of a cast before trying it?
• A: Yes, using instanceof.

55

For(s:Shape){
if(s instanceof Circle){

Circle c = (Circle)s;
int r = c.getRadius();

}
}

Only Circle has getRadius method

CMSC 330 Summer 2020

Disabling Overriding with “final”
• Sometimes you do not want to allow method overriding

Correctness: Your method only makes sense when applied to the base
class. Redefining it for a derived class might break things

Efficiency: Late binding is less efficient than early binding. You know that
no subclass will redefine your method. You can force early binding by
disabling overriding

• We can disable overriding by declaring a method to be “final”

56
CMSC 330 Summer 2020

Disabling Overriding with “final”
• final: Has two meanings, depending on context:

• Define symbolic constants:

public static final int MAX_BUFFER_SIZE = 1000;

• Indicate that a method cannot be overridden by derived classes

public class Parent {
…
public final void someMethod() { … }

}

public class Child extends Parent {
…
public void someMethod() { … }

}

57

Subclasses cannot
override this method

Illegal! someMethod is
final in base class.

CMSC 330 Summer 2020

Quiz 8
class Base {

final public void show() {
println("Base");

}
}
class Derived extends Base {

public void show() {
println("Derived");

}
}

class Main {
public static void(String[] args){

Base b = new Derived();
b.show();

}
}

58

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

CMSC 330 Summer 2020

Quiz 8
class Base {

final public void show() {
println("Base");

}
}
class Derived extends Base {

public void show() {
println("Derived");

}
}

…
Base b = new Derived();
b.show();

…

59

A. Base
B. Derived
C. Compiler Error
D. Runtime Error

Final methods cannot be
overridden. Compiler
Error: overridden method
is final

CMSC 330 Summer 2020

Quiz 9
class Base {
public static void show() {
println("Base”);

}
}
class Derived extends Base {
public static void show() {
println("Derived");

}
}
…
Base b = new Derived();;
b.show();

…
60

A. Base
B. Derived
C. Compiler Error

CMSC 330 Summer 2020

Quiz 9
class Base {
public static void show() {
println("Base”);

}
}
class Derived extends Base {
public static void show() {
println("Derived");

}
}
…
Base b = new Derived();;
b.show();

…
61

A. Base
B. Derived
C. Compiler Error

when a function is static,
runtime polymorphism
doesn't happen.

CMSC 330 Summer 2020

Abstract Class

Abstract classes cannot be instantiated, but
they can be subclassed.
It may or may not include abstract methods.

62

public abstract class Shape {
private String id;
public Shape (String id) {this.id = id};
public abstract double getArea();
public String getId() {return id;}

}

This abstract method must be defined in a
concrete subclass.

CMSC 330 Summer 2020

Abstract Class

63

public abstract class Shape {
private String id;
public Shape (String id) {this.id = id};
public abstract double getArea();
public String getId() {return id;}

}

public class Circle extends Shape {
private double radius;
public Circle (double r) {
super(“Circle”); radius = r;

}
double getArea(){return Math.PI * radius * radius;}
public double getRadius() {return radius;}
public void setRadius(double r) {radius = r}

}

Must implement

CMSC 330 Summer 2020

Inheritance versus Composition
• Inheritance is but one way to create a complex class from

another. The other way is to explicitly have an instance
variable of the given object type. This is called composition

Common Object:
public class ObjA {

public methodA() { … }
}

Inheritance: Composition:
public class ObjB extends ObjA { public class

ObjB {
… ObjA a;
// call methodA(); // call a.methodA()

} }

• When should I use inheritance vs. Composition?
• ObjB “is a” ObjA: in this case use inheritance
• ObjB “has a” ObjA: in this case use composition

64

Add ObjA as an
instance variable.

Derive a new
class from
ObjA.

CMSC 330 Summer 2020

Inheritance versus Composition
• University parking lot permits: A parking permit object involves a university

Person and a lot name (“4”, “11”, “XX”, “Home Depot”)

Inheritance: Composition:
public class Permit extends Person { public class Permit {

String lotName; Person p;
String lotName;

// … // …
} }

• Which to use?
A parking permit “is a” person? Clearly no
A parking permit “has a” person? Yes, because a Person is one of the two

entities in a a permit object
So composition is the better design choice here

• Prefer Composition over inheritance
When in doubt or when multiple choices available, prefer composition over
Inheritance

65
CMSC 330 Summer 2020

