CMSC 132: Object-Oriented
Programming |

Shortest Paths

sion <) Seliman nv LTIOVING Q
i s "
mnore) . @ S X
Den, Hillandale & 31 min | £ 3 3
evy S 18.8 miles $ s %
2 View -) 201 b 7
oL 505
495 4 £ &
s 8
Q =
[=}
n
Adelphi Greenbelt
93 Ra 320 650
vy Chase 515 Eefwg(tn =
Vi . eights
— " Silver Spring Langley Park College Park oo Goddard
922 pr = & 195 %7
2 /&}&\ ‘, Greenbelt Park &&*
(D) 2 (a5 P, &°
Z o}k(ﬁ, 1495
Q0 410
(%,29 New Lanham
PSS % Chillum = %, Carrollton
o, Military RNy f;é‘
SHIP % &
s . % =3
AN 3 : < 704
3 % = N
s 2)
2 Landover Hills —
Z NORTHWEST 11954 I
WASHINGTON
nian National oL DML
+ (3) Glenarden
ological Park HEIGHTS
=
2
2 @9 y
3
= NORg-_tﬂEAST SR
. WASHINGTON :
Washington FedExField ® . Lake
“ a0,
" Phuy NOMA H St NE . "e.
Q ©MNing Ry Ng 2
- e
A<7 v
United States CapitolO: E Capitol St SE
CAPITOL HILL 2 Capitol A\EN
3 Heights 14954
(4.) % & Larg
N N SOUTHWEST S e Walker Mill]
WASHINGTON Q& q
SOUTHEAST <& Coral Hills
WASHINGTON s 88

Shortest paths

Given an edge-weighted digraph, find the shortest path
from s to t.

edge-weighted digraph

4->5 0.35

5->4 0.35 (D—

4->7 0.37 w\®/r

5-57 0.28 <~(:)

7->5 0.28 ﬂ

5->1 0.32 e

0->4 0.38 =

0->2 0.26

;->§ 833 shortest path from 0 to 6
_> .

2->7 0.34 SCT

6->2 0.40 253 0.39
3->6 0.52 3-56 0.52

6->0 0.58 '

6->4 0.93

Shortest path variants

Which vertices?
* Single source: from one vertex s to every other vertex.
* Source-sink: from one vertex s to another t.
* All pairs: between all pairs of vertices.
Restrictions on edge weights?
* Nonnegative weights.
* Arbitrary weights.
Cycles?
* No directed cycles.
* No "negative cycles."

Simplifying assumption: Shortest paths from s to each vertex v
exist.

Weighted directed edge

public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v—w
int from() vertex v
int to() vertex w
double weight() weight of this edge
String toString() string representation
weight

o8)

|diom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge implementation

public class DirectedEdge{
private final int v, w;
private final double weight;

public DirectedEdge (int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;

}

public int from() { return v; }
public int to() { return w; }
public double weight() { return weight; }

Edge-weighted digraph

public class EdgeWeightedDigraph

EdgeWeightedDigraph (int V)

void addEdge (DirectedEdge e)

Iterable<DirectedEdge> adj(int v)

int V()

int E()
Iterable<DirectedEdge> edges()
String toString()

Conventions. Allow self-loops and parallel edges.

edge-weighted
digraph with V
vertices

add weighted
directed edge e

edges pointing from
v

number of vertices
number of edges
all edges

string representation

Edge-weighted digraph: adjacency-lists
representation

E%;.é\\@

(4)=

V\f;yEWD'tEXt ~[0]2].26]~[0]4].38]
15
45 0.35 adj \
54 0.35 0_
oy 1:4 Tl o
;i 8§§ : 1 \ reference to a
04 0.38 3L Direcl;c.ethdge
02 0.26 T ~[a]7][37{a]5]35]]
7 3 0.39 5 \
13 0.29]
27 0.3 oL ~[s[1].32~[5]7].28}—[5]4].35]
6 2 0.40 7]
36 0.52
60 0.58 \\54-93}_’|6|0|-58}—’62|-40
6 4 0.93
~[7]3].39~7]5].28]

Edge-weighted digraph implementation

public class EdgeWeightedDigraph{
private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph (int V) {
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>() ;
}

public void addEdge (DirectedEdge e) {
int v = e.from() ;
adj[v] .add(e) ;

}

public Iterable<DirectedEdge> adj(int v) {
return adj[v];

}

Single-source shortest paths

What is the shortest distance and path from A to H?

11 ®
15 , 8 17
6 ® .
® > © : 16 12
3
18 &) ——9—(e)
> 4 10

14

10

Single-source shortest paths

Data structures: Represent the Shortest Path with two vertex-
indexed arrays:

* distTo[v] is length of shortest path from s to v.
* edgeTo|v] is last edge on shortest path from s to v.

I'/ -I N 6 /7 3\|
public double distTo (int v) { K}/\r’ \MAQ;K
return distTo[v]; (6, % i \i}
} Do fth
(2 \3/

public Iterable<DirectedEdge> pathTo (int v) {
Stack<DirectedEdge> path = new Stack<DirectedEdge> () ;
DirectedEdge e = edgeTol[Vv];

while (e '= null) {
path.push(e) ;
e = edgeTo[e.from()];

}

return path;

Edge relaxation

Relax edge e = v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* |f e = v—w gives shorter path to w through v, update both
distTo[w] and edgeTo[w]

C O/Q 3.1

@ 72 4.4
black edges

are in edgeTo[]

v—Ww successfully relaxes

12

Edge relaxation

Relax edge e = v—w.
» distTolv] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* If e = v—w gives shorter path to w through v, update both distTo[w] and
edgeTo[w]

private void relax (DirectedEdge e) { O C>’/)C{&]

int v = e.from(), w = e.to(); Cﬁiz 13

if (distTo[w] > distTo[v] + e.weight()) { \
distTo[w] = distTo[v] + e.weight(); / e

e, black edges
} are in edgeTo[]

edgeTo [w]

13

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
Relax any edge.

Efficient implementations: How to choose which edge to relax?
* Dijkstra's algorithm (nonnegative weights).

* Topological sort algorithm (no directed cycles).

* Bellman-Ford algorithm (no negative cycles).

14

Dijkstra's algorithm

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

15

Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

distTo[] | edgeTo
0 -

oo

oo

8
M| MO0 X>|I<

16

Update A's neighbors

o0

V | distTo[] | edgeTo
A 0 --

B 2 0

C %

D 1 A

E %

F

17

Update D’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

18

Update B's neighbors

No Update

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

19

Update E’s neighbors

No Update

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

20

Update C’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 8 C
G 5 D

21

Update G’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 6 G
G 5 D

22

Update F’s neighbors

V | distTo[] | edgeTo

No Update

23

Dijkstra's algorithm Demo

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

1 15 »>

s /

@<8\I 12\ ;
; /Qs L ”
S RN

24

Dijkstra's algorithm

Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
Add vertex to tree and relax all edges pointing from that vertex.

()

M’

(2)

distTo[] edgeTo[]

v
0
1
2
3
4
5
6
7

0.0
5.0
14.0
17.0
9.0
13.0
25.0
8.0

0-1

25

Dijkstra's algorithm Implementation

public class DijkstraSP{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s) {
edgeTo = new DirectedEdge[G.V ()]
distTo = new double[G.V()];
pg = new IndexMinPQ<Double>(G.V()) ;
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pg.insert(s, 0.0);
while ('pg.isEmpty()) {
int v = pqg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

26

Shortest Path Demo

Shortest Path Demo

8 7

28

Shortest Path Demo

If the graph has negative weighted edges, Dijkstra's algorithm does
not work.

29

Acyclic shortest paths

. Consider vertices in topological order. Relax all
edges pointing from that vertex.

1 15 >
5/74 /
01475236 @< |]2\ :
8\‘<7‘\< 5 S 9
9 T
\ ! 1
S G
s — 13 \

30

Acyclic shortest paths

. Consider vertices in topological order.
. Relax all edges pointing from that vertex.

01 4 7 5 2 3 6

@ @ \% distTo[] edgeTol[]
0 0.0
s 1 5.0 0—1
2 14.0 5-2
@ 3 17.0 2—3
4 9.0 0—4
5 13.0 4—5
6 25.0 2—6
@/ 7 8.0 07
(&)

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
* Negate all weights.
* Find shortest paths.
* Negate weights in result

Key point. Topological sort algorithm works even with negative
weights.

longest paths input shortest paths input
5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37
5->7 0.28 5->7 -0.28
5->1 0.32 5->1 -0.32
4->0 0.38 4->0 -0.38
0->2 0.26 0->2 -0.26
3->7 0.39 3->7 -0.39
1->3 0.29 1->3 -0.29
7->2 0.34 7->2 -0.34
6->2 0.40 6->2 -0.40
3->6 0.52 3->6 -0.52
6->0 0.58 6->0 -0.58
6->4 0.93 6->4 -0.93

Longest paths in edge-weighted DAGs

Parallel job scheduling.

* Given a set of jobs with durations and precedence constraints,
schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the
constraints.

must complete

job duration e
0 41.0 1 7 9
1 51.0 2

2 50.0

3 36.0

4 38.0

5 45.0

6 21.0 3 8
7 32.0 3 8
8 32.0 2

9 29.0 4 6

41 70 91 123 173

Parallel job scheduling solution

33

Critical path method

To solve a parallel job-scheduling problem, create edge-weighted
DAG:
* Source and sink vertices.
* Two vertices (begin and end) for each job.
* Three edges for each job.
» Begin to end (weighted by duration)
» Source to begin(0 weight)
» End to sink(0 weight)

One edge for each precedence constraint (0 weight).

job start]ob finish precedence constraint

" (zero welght
<:> - /(:)—> \
duratzcm \\ O 32 —> @ 32
O

<

C 29 /’GD_Zl> @ —
N C 38 O
C 45

34

Critical path method

Use longest path from the source to schedule each job.

Parallel job scheduling solution

41 —>@ 21 >
C C 50
dumTtion \®i>
)1 // . \ critical path
/@—» >(3) >

\C 38 O

45

29

35

Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

SDT
SBDT
SACDT
SACET

00w

36

Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

00w
n
>
O
O
_I

37

Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

OO wWx>

38

Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

OO w»

39

