CMSC 132: Object-Oriented
Programming |

Shortest Paths
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Shortest paths

Given an edge-weighted digraph, find the shortest path
from s to t.

edge-weighted digraph

4->5 0.35

5->4  0.35 (D—

4->7 0.37 w\®/r

5-57 0.28 <~(:)

7->5 0.28 ﬂ

5->1 0.32 e

0->4 0.38 =

0->2 0.26

;->§ 833 shortest path from 0 to 6
_> .

2->7 0.34 SCT

6->2 0.40 253 0.39
3->6 0.52 3-56 0.52

6->0 0.58 '

6->4 0.93



Shortest path variants

Which vertices?
* Single source: from one vertex s to every other vertex.
* Source-sink: from one vertex s to another t.
* All pairs: between all pairs of vertices.
Restrictions on edge weights?
* Nonnegative weights.
* Arbitrary weights.
Cycles?
* No directed cycles.
* No "negative cycles."

Simplifying assumption: Shortest paths from s to each vertex v
exist.



Weighted directed edge

public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v—w
int from() vertex v
int to() vertex w
double weight() weight of this edge
String toString() string representation
weight

o8 )

|diom for processing an edge e: int v = e.from(), w = e.to();



Weighted directed edge implementation

public class DirectedEdge{
private final int v, w;
private final double weight;

public DirectedEdge (int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;

}

public int from() { return v; }
public int to() { return w; }
public double weight() { return weight; }




Edge-weighted digraph

public class EdgeWeightedDigraph

EdgeWeightedDigraph (int V)

void addEdge (DirectedEdge e)

Iterable<DirectedEdge> adj(int v)

int V()

int E()
Iterable<DirectedEdge> edges()
String toString()

Conventions. Allow self-loops and parallel edges.

edge-weighted
digraph with V
vertices

add weighted
directed edge e

edges pointing from
v

number of vertices
number of edges
all edges

string representation



Edge-weighted digraph: adjacency-lists
representation
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Edge-weighted digraph implementation

public class EdgeWeightedDigraph{
private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph (int V) {
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>() ;
}

public void addEdge (DirectedEdge e) {
int v = e.from() ;
adj[v] .add(e) ;

}

public Iterable<DirectedEdge> adj(int v) {
return adj[v];

}



Single-source shortest paths

What is the shortest distance and path from A to H?
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Single-source shortest paths

Data structures: Represent the Shortest Path with two vertex-
indexed arrays:

* distTo[v] is length of shortest path from s to v.
* edgeTo|v] is last edge on shortest path from s to v.

I'/ -I N 6 /7 3\|
public double distTo (int v) { K}/\r’ \MAQ;K
return distTo[v]; (6, % i \i}
} Do fth
(2 \3/

public Iterable<DirectedEdge> pathTo (int v) {
Stack<DirectedEdge> path = new Stack<DirectedEdge> () ;
DirectedEdge e = edgeTol[Vv];

while (e '= null) {
path.push(e) ;
e = edgeTo[e.from()];

}

return path;



Edge relaxation

Relax edge e = v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* |f e = v—w gives shorter path to w through v, update both
distTo[w] and edgeTo[w]

C O/Q 3.1

@ 72 4.4
black edges

are in edgeTo[]

v—Ww successfully relaxes
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Edge relaxation

Relax edge e = v—w.
» distTolv] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* If e = v—w gives shorter path to w through v, update both distTo[w] and
edgeTo[w]

private void relax (DirectedEdge e) { O C>’/)C{&]

int v = e.from(), w = e.to(); Cﬁiz 13

if (distTo[w] > distTo[v] + e.weight()) { \
distTo[w] = distTo[v] + e.weight(); / e

e, black edges
} are in edgeTo[]

edgeTo [w]
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Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
Relax any edge.

Efficient implementations: How to choose which edge to relax?
* Dijkstra's algorithm (nonnegative weights).

* Topological sort algorithm (no directed cycles).

* Bellman-Ford algorithm (no negative cycles).

14



Dijkstra's algorithm

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

15



Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

distTo[] | edgeTo
0 -
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Update A's neighbors

o0

V | distTo[] | edgeTo
A 0 --

B 2 0

C %

D 1 A

E %

F
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Update D’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

18




Update B's neighbors

No Update

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D
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Update E’s neighbors

No Update

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D
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Update C’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 8 C
G 5 D
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Update G’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 6 G
G 5 D
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Update F’s neighbors

V | distTo[] | edgeTo

No Update
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Dijkstra's algorithm Demo

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.
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Dijkstra's algorithm

Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
Add vertex to tree and relax all edges pointing from that vertex.

()

M’

(2)

distTo[] edgeTo[]

v
0
1
2
3
4
5
6
7

0.0
5.0
14.0
17.0
9.0
13.0
25.0
8.0

0-1
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Dijkstra's algorithm Implementation

public class DijkstraSP{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s) {
edgeTo = new DirectedEdge[G.V ()]
distTo = new double[G.V()];
pg = new IndexMinPQ<Double>(G.V()) ;
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pg.insert(s, 0.0);
while ('pg.isEmpty()) {
int v = pqg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

26



Shortest Path Demo




Shortest Path Demo

8 7
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Shortest Path Demo

If the graph has negative weighted edges, Dijkstra's algorithm does
not work.

29



Acyclic shortest paths

. Consider vertices in topological order. Relax all
edges pointing from that vertex.

1 15 >
5/74 /
01475236 @< | ]2\ :
8\‘<7‘\< 5 S 9
9 T
\ ! 1
S G
s — 13 \

30



Acyclic shortest paths

. Consider vertices in topological order.
. Relax all edges pointing from that vertex.

01 4 7 5 2 3 6

@ @ \% distTo[] edgeTol[]
0 0.0
s 1 5.0 0—1
2 14.0 5-2
@ 3 17.0 2—3
4 9.0 0—4
5 13.0 4—5
6 25.0 2—6
@/ 7 8.0 07
(&)



Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
* Negate all weights.
* Find shortest paths.
* Negate weights in result

Key point. Topological sort algorithm works even with negative
weights.

longest paths input shortest paths input
5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37
5->7 0.28 5->7 -0.28
5->1 0.32 5->1 -0.32
4->0 0.38 4->0 -0.38
0->2 0.26 0->2 -0.26
3->7 0.39 3->7 -0.39
1->3 0.29 1->3 -0.29
7->2 0.34 7->2 -0.34
6->2 0.40 6->2 -0.40
3->6 0.52 3->6 -0.52
6->0 0.58 6->0 -0.58
6->4 0.93 6->4 -0.93



Longest paths in edge-weighted DAGs

Parallel job scheduling.

* Given a set of jobs with durations and precedence constraints,
schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the
constraints.

must complete

job  duration e
0 41.0 1 7 9
1 51.0 2

2 50.0

3 36.0

4 38.0

5 45.0

6 21.0 3 8
7 32.0 3 8
8 32.0 2

9 29.0 4 6

41 70 91 123 173

Parallel job scheduling solution

33



Critical path method

To solve a parallel job-scheduling problem, create edge-weighted
DAG:
* Source and sink vertices.
* Two vertices (begin and end) for each job.
* Three edges for each job.
» Begin to end (weighted by duration)
» Source to begin(0 weight)
» End to sink(0 weight)

One edge for each precedence constraint (0 weight).

job start ]ob finish precedence constraint

" (zero welght
<:> - /( :)—> \
duratzcm \\ O 32 —> @ 32
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Critical path method

Use longest path from the source to schedule each job.

Parallel job scheduling solution

41 —>@ 21 >
C C 50
dumTtion \®i>
)1 // . \ critical path
/@—» >(3) >

\C 38 O

45

29

35



Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

SDT
SBDT
SACDT
SACET

00w
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Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

00w
n
>
O
O
_I
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Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

OO wWx>
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Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

OO w»
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