CMSC 132: Object-Oriented Programming II

Big-O Performance Analysis
Execution Time Factors

- **Computer:**
 - CPU speed, amount of memory, etc.

- **Compiler:**
 - Efficiency of code generation.

- **Data:**
 - Number of items to be processed.
 - Initial ordering (e.g., random, sorted, reversed)

- **Algorithm:**
 - E.g., linear vs. binary search.
Are Algorithms Important?

- The fastest algorithm for 100 items may **not** be the fastest for 10,000 items!
- Algorithm choice is more important than any other factor!

![Graph showing execution time vs. number of data items with time complexities O(log N), O(N), and O(N^2).]
Counting the instructions

```java
public void SelectionSort ( int [ ] num ){
    int i, j, first, temp;
    for ( i = num.length - 1; i > 0; i -- )
    {
        first = 0;  //initialize to subscript of first element
        for(j = 1; j <= i; j ++)  //locate smallest element between positions 1 and i.
        {
            if( num[ j ] < num[ first ] )
            {
                first = j;
            }
        }
        temp = num[ first ];  //swap smallest found with element in position i.
        num[ first ] = num[ i ];
        num[ i ] = temp;
    }
}
```

\[
4 + 2(n-1) + 4 + 2 \cdot (n-2)+ \ldots + 4 + 2 \cdot 1 =
4(n-1) + 2((n-1)+(n-2)+(n-3)\ldots 1) = 4(n-1) \cdot 2 n(n-1)/2
=4(n-1) + n^2 - n = n^2 + 3n - 4
\]
What is Big-O?

- Big-O characterizes algorithm performance.

- Big-O describes how execution time grows as the number of data items increase.

- Big-O is a function with parameter N, where N represents the number of items.
Predicting Execution Time

- If a program takes 10ms to process one item, how long will it take for 1000 items?

- (time for 1 item) x (Big-O() time complexity of N items)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10} N$</td>
<td>3 x 10ms</td>
<td>.03 sec</td>
</tr>
<tr>
<td>N</td>
<td>$10^3 \times 10$ms</td>
<td>10 sec</td>
</tr>
<tr>
<td>$N \log_{10} N$</td>
<td>$10^3 \times 3 \times 10$ms</td>
<td>30 sec</td>
</tr>
<tr>
<td>N^2</td>
<td>$10^6 \times 10$ms</td>
<td>16 min</td>
</tr>
<tr>
<td>N^3</td>
<td>$10^9 \times 10$ms</td>
<td>12 days</td>
</tr>
</tbody>
</table>
Complexity

- In general, we are not so much interested in the time and space complexity for small inputs.

- For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with $n = 10$, it is gigantic for $n = 2^{30}$.
Complexity

- For example, let us assume two algorithms A and B that solve the same class of problems.

- The time complexity of A is $5,000n$, the one for B is 1.1^n for an input with n elements.

- For $n = 10$, A requires 50,000 steps, but B only 3, so B seems to be superior to A.

- For $n = 1000$, however, A requires 5,000,000 steps, while B requires 2.5×10^{41} steps.
Complexity

- This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.

- So what is important is the growth of the complexity functions.

- The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.
Complexity

Comparison: time complexity of algorithms A and B

<table>
<thead>
<tr>
<th>Input Size</th>
<th>Algorithm A</th>
<th>Algorithm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5,000n</td>
<td>1.1^n</td>
</tr>
<tr>
<td>10</td>
<td>50,000</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>500,000</td>
<td>13,781</td>
</tr>
<tr>
<td>1,000</td>
<td>5,000,000</td>
<td>2.5×10^{41}</td>
</tr>
<tr>
<td>1,000,000</td>
<td>5×10^9</td>
<td>4.8×10^{41392}</td>
</tr>
</tbody>
</table>
The Growth of Functions

- The growth of functions is usually described using the **big-O notation**.

- **Definition:** Let f and g be functions from the integers or the real numbers to the real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that

 $$ |f(x)| \leq C |g(x)| $$

 whenever $x > k$.

CMSC 132 Summer 2020
The Growth of Functions

- When we analyze the growth of complexity functions, \(f(x) \) and \(g(x) \) are always positive.

- Therefore, we can simplify the big-O requirement to

\[
f(x) \leq C \cdot g(x) \quad \text{whenever } x > k.
\]

- If we want to show that \(f(x) \) is \(O(g(x)) \), we only need to find one pair \((C, k)\) (which is never unique).
The Growth of Functions

- The idea behind the big-O notation is to establish an upper boundary for the growth of a function $f(x)$ for large x.

- This boundary is specified by a function $g(x)$ that is usually much simpler than $f(x)$.
- We accept the constant C in the requirement $f(x) \leq C \cdot g(x)$ whenever $x > k$,

- because C does not grow with x.
- We are only interested in large x, so it is OK if $f(x) > C \cdot g(x)$ for $x \leq k$.
What is Big-O

\[f(n) = O(g(n)) \text{ iff } \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \forall n \geq n_0. \]
Big-O Example

\[f(x) = 6x^4 - 2x^3 + 5 \]

Prove \(f(x) = O(n^4) \)

\[
|6x^4 - 2x^3 + 5| \leq 6x^4 + |2x^3| + 5 \\
\leq 6x^4 + 2x^4 + 5x^4 \\
= 13x^4
\]
The Growth of Functions

Example:

Show that \(f(x) = x^2 + 2x + 1 \) is \(O(x^2) \).

For \(x > 1 \) we have:

\[
x^2 + 2x + 1 \leq x^2 + 2x^2 + x^2
\]
\[
\Rightarrow x^2 + 2x + 1 \leq 4x^2
\]

Therefore, for \(C = 4 \) and \(k = 1 \):

\[
f(x) \leq Cx^2 \text{ whenever } x > k.
\]
\[
\Rightarrow f(x) \text{ is } O(x^2).
\]
Common Growth Rates

<table>
<thead>
<tr>
<th>Big-O Characterization</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>$constant$</td>
</tr>
<tr>
<td></td>
<td>Adding to the front of a linked list</td>
</tr>
<tr>
<td>O($\log N$)</td>
<td>\log</td>
</tr>
<tr>
<td></td>
<td>Binary search</td>
</tr>
<tr>
<td>O(N)</td>
<td>$linear$</td>
</tr>
<tr>
<td></td>
<td>Linear search</td>
</tr>
<tr>
<td>O($N \log N$)</td>
<td>n-\log-n</td>
</tr>
<tr>
<td></td>
<td>Binary merge sort</td>
</tr>
<tr>
<td>O(N^2)</td>
<td>$quadratic$</td>
</tr>
<tr>
<td></td>
<td>Bubble Sort</td>
</tr>
<tr>
<td>O(N^3)</td>
<td>$cubic$</td>
</tr>
<tr>
<td></td>
<td>Simultaneous linear equations</td>
</tr>
<tr>
<td>O(2^N)</td>
<td>$exponential$</td>
</tr>
<tr>
<td></td>
<td>The Towers of Hanoi problem</td>
</tr>
</tbody>
</table>
Common Growth Rates
The Growth of Functions

• Question: If $f(x)$ is $O(x^2)$, is it also $O(x^3)$?

• **Yes.** x^3 grows faster than x^2, so x^3 grows also faster than $f(x)$.

• Therefore, we always have to find the **smallest** simple function $g(x)$ for which $f(x)$ is $O(g(x))$.
The Growth of Functions

• “Popular” functions $g(n)$ are
 • $n, \log n, 1, 2^n, n^2, n!, n, n^3, \log n$

• Listed from slowest to fastest growth:

 • 1
 • $\log n$
 • n
 • $n \log n$
 • n^2
 • n^3
 • 2^n
 • $n!$
The Growth of Functions

- A problem that can be solved with polynomial worst-case complexity is called **tractable**.

- Problems of higher complexity are called **intractable**.

- Problems that no algorithm can solve are called **unsolvable**.
Determining Big-O: Repetition

```c
for (i = 1; i <= n; i++)
{
    m = m + 2 ;
}
```

executed n times

Total time = (a constant c) * n = cn = $O(N)$

Ignore multiplicative constants (e.g., “c”).
Determining Big-O: Repetition

for (i = 1; i <= n; i++)
{
 for (j = 1; j <= n; j++)
 {
 k = k+1;
 }
}

Total time = c * n * n * = cn^2 = \mathcal{O}(N^2)
Determining Big-O: Repetition

outer loop
executed
n times

\[
\begin{align*}
\text{for (i = 1; i <= n; i++)} \\
&\quad \{ \\
&\quad \quad \text{for (j = 1; j <= 100; j++)} \\
&\quad \quad \quad \{ \\
&\quad \quad \quad \quad k = k+1 ; \\
&\quad \quad \quad \} \\
&\quad \} \\
\} \quad \text{constant time}
\end{align*}
\]

inner loop
executed
100 times

Total time = $c \times 100 \times n = 100cn = O(N)$
Determining Big-O: Sequence

constant time \((c_0) \) →
\[
x = x + 1; \\
\text{for } (i=1; i<=n; i++) \\
{ } \\
\text{m} = m + 2; \\
} \\
\text{for } (i=1; i<=n; i++) \\
{ } \\
fuel \text{ inner loop executed } n \text{ times} \\
\}
\]
\[
\text{constant time } (c_1) \quad \rightarrow \quad \text{executed } n \text{ times}
\]
\[
\text{outer loop executed } n \text{ times}
\]
\[
\text{inner loop executed } n \text{ times}
\]
\[
\text{constant time } (c_2)
\]

Total time =
\[
c_0 + c_1n + c_2n^2 = O(N^2)
\]

Only dominant term is used
Determining Big-O: Selection

\[
\text{test + worst-case(then, else)}
\]

test:

\[
\text{if (depth() \neq \text{otherStack.depth()})}
\]

\[
\{ \\
\quad \text{return false;}
\}
\]

\[
\text{then part: constant (c_1)}
\]

else

\[
\{ \\
\quad \text{for (int n = 0; n < depth(); n++)}
\}
\]

another if:

test (c_2)

\[
\{ \\
\quad \text{if (!list[n].equals(otherStack.list[n]))}
\]

\[
\quad \text{return false;}
\]

then (c_3)

\[
\}
\]

\[
\text{Total time} = c_0 + \text{Worst-Case(c_1, (c_2 + c_3) \times n)} = O(N)
\]

Total time = \(c_0 + \text{Worst-Case(then, else)} \)

Total time = \(c_0 + \text{Worst-Case(c_1, else)} \)
What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(1)$
Quiz 1

What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(int i = 1; i < n; n++);
    print("good");
}
```

A. O(n²)
B. O(log n)
C. O(n)
D. O(1)
Quiz 2

What is the Big-O of the following code?

```c
void foo(int n) {
    int i;
    for(int i = 1; i < n; i++)
        for(int j = 1; j < n; j++)
            print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(1)$
Quiz 2

What is the Big-O of the following code?

```c
void foo(int n) {
    int i;
    for(int i = 1; i < n; i++);  
    for(int j = 1; j < n; j++);
    print("good");
}
```

A. O(n²)
B. O(log n)
C. O(n)
D. O(1)
Quiz 3

What is the Big-O of the following code?

```c
void foo(int n){
    int i = 1;
    int s = 1;
    while(s <= n){
        i++;
        s = s + i;
        print("work");
    }
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
Quiz 3

What is the Big-O of the following code?

```c
void foo(int n) {
    int i = 1;
    int s = 1;
    while (s <= n) {
        i++;
        s = s + i;
        print("work");
    }
}
```

A. O(n^2)
B. O(log n)
C. O(n)
D. O(\sqrt{n})

S = 1
1+2
1+2+3
S_k = 1+2+3+k+(k+1) after k iteration
S_k = 2(k+1) k <= n
k < sqrt(n)
What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(i = 1; i*i <= n; i++)
        print("hello");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n){
    int i;
    for(i = 1; i*i <= n; i++)
        print("hello");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n) {
    int i, j, k;
    for (i = 1; i <= n; i++)
        for (j = 1; j <= i; j++)
            for (k = 1; k <= 100; k++)
                print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$
What is the Big-O of the following code?

```c
void foo(int n){
    int i,j,k;
    for(i = 1; i <= n; i++)
        for(j = 1; j <= i; j++)
            for(k=1; k <= 100; k++)
                print("good");
}
```

A. O(n^2)
B. O(log n)
C. O(n)
D. O(\sqrt{n})

\[\text{total} = 100 + 200 + 300 + 400 + 500 = 100(n(n-1)/2) = O(n^2) \]
What is the Big-O of the following code?

```c
void foo(int n){
    for(int i = 1; i < n; i = i * 2)
        print("good");
}
```

A. \(O(n^2)\)
B. \(O(\log n)\)
C. \(O(n)\)
D. \(O(\sqrt{n})\)
What is the Big-O of the following code?

```c
void foo(int n) {
    for(int i = 1; i < n; i = i * 2)
        print("good");
}
```

A. $O(n^2)$
B. $O(\log n)$
C. $O(n)$
D. $O(\sqrt{n})$