CMSC 132: Object-Oriented Programming II

Big-O Performance Analysis

Execution Time Factors

Computer:

CPU speed, amount of memory, etc.

Compiler:

Efficiency of code generation.

Data:

- Number of items to be processed.
- Initial ordering (e.g., random, sorted, reversed)

Algorithm:

• E.g., linear vs. binary search.

Are Algorithms Important?

The fastest algorithm for 100 items may not be the fastest for 10,000 items!

Algorithm choice is more important than any other factor!

Counting the instructions

```
public void SelectionSort ( int [ ] num ){
       int i, j, first, temp;
       for ( i = num.length - 1; i > 0; i - - )
          first = 0; //initialize to subscript of first element
          for(j = 1; j \le i; j ++) //locate smallest element between positions 1 and i.
         if( num[ j ] < num[ first ] )
    first = j;
}</pre>
                                                                                           n times
         temp = num[ first ]; //swap smallest found with element in position i.
1 time - num[ first ] = num[ i ];
          num[ i ] = temp;
          4 + 2*(n-1) + 4 + 2*(n-2) + ... + 2*1 =
          4(n-1) + 2((n-1)+(n-2)+(n-3)...1) = 4(n-1) * 2 n(n-1)/2
          =4(n-1) + n^2 - n = n^2 + 3n - 4
```

What is Big-O?

- Big-O characterizes algorithm performance.
- Big-O describes how execution time grows as the number of data items increase.
- Big-O is a function with parameter N, where N represents the number of items.

Predicting Execution Time

- If a program takes 10ms to process one item, how long will it take for 1000 items?
- (time for 1 item) x (Big-O() time complexity of N items)

log ₁₀ N	3 x 10ms	.03 sec
N	10 ³ x 10ms	10 sec
N log ₁₀ N	10 ³ x 3 x 10ms	30 sec
N^2	10 ⁶ x 10ms	16 min
N ³	10 ⁹ x 10ms	12 days

- In general, we are not so much interested in the time and space complexity for small inputs.
- ► For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with n = 10, it is gigantic for n = 2³⁰.

- For example, let us assume two algorithms A and B that solve the same class of problems.
- ► The time complexity of A is 5,000n, the one for B is \[\begin{aligned} 1.1^n \] for an input with n elements.
- For n = 10, A requires 50,000 steps, but B only 3, so B seems to be superior to A.
- ► For n = 1000, however, A requires 5,000,000 steps, while B requires 2.5·10⁴¹ steps.

- This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.
- So what is important is the growth of the complexity functions.
- The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.

Comparison: time complexity of algorithms A and B

Input Size	Algorithm A	Algorithm B
n	5,000n	1.1 ⁿ
10	50,000	3
100	500,000	13,781
1,000	5,000,000	2.5*10 ⁴¹
1,000,000	5*10 ⁹	4.8*10 ⁴¹³⁹²

- The growth of functions is usually described using the big-O notation.
- Definition: Let f and g be functions from the integers or the real numbers to the real numbers.
- We say that f(x) is O(g(x)) if there are constants C and k such that
- $|f(x)| \le C|g(x)|$
- whenever x > k.

- When we analyze the growth of complexity functions, f(x) and g(x) are always positive.
- Therefore, we can simplify the big-O requirement to
- $f(x) \le C \cdot g(x)$ whenever x > k.
- If we want to show that f(x) is O(g(x)), we only need to find one pair (C, k) (which is never unique).

- ► The idea behind the big-O notation is to establish an upper boundary for the growth of a function f(x) for large x.
- This boundary is specified by a function g(x) that is usually much simpler than f(x).
- We accept the constant C in the requirement
- $f(x) \le C \cdot g(x)$ whenever x > k,
- because C does not grow with x.
- We are only interested in large x, so it is OK if f(x) > C⋅g(x) for x ≤ k.

What is Big-O

f(n) = O(g(n)) iff \exists positive constants c and n_0 such that $0 \le f(n) \le cg(n) \ \forall \ n \ge n_0$.

Big-O Example

$$f(x) = 6x^4 - 2x^3 + 5$$

Prove $f(x)=O(n^4)$

$$|6x^{4} - 2x^{3} + 5| \le 6x^{4} + |2x^{3}| + 5$$

$$\le 6x^{4} + 2x^{4} + 5x^{4}$$

$$= 13x^{4}$$

- Example:
- Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.
- For x > 1 we have:
- $x^2 + 2x + 1 \le x^2 + 2x^2 + x^2$
- $\Rightarrow x^2 + 2x + 1 \le 4x^2$
- ▶ Therefore, for C = 4 and k = 1:
- $f(x) \le Cx^2$ whenever x > k.
- \rightarrow f(x) is $O(x^2)$.

Common Growth Rates

Big-O Characterization Example		Example
O(1)	constant	Adding to the front of a linked list
O(log N)	log	Binary search
O(N)	linear	Linear search
O(N log N)	n-log-n	Binary merge sort
O(<i>N</i> ²)	quadratic	Bubble Sort
O(<i>N</i> ³)	cubic	Simultaneous linear equations
O(2 ^N)	exponential	The Towers of Hanoi problem

Common Growth Rates

- Question: If f(x) is $O(x^2)$, is it also $O(x^3)$?
- Yes. x³ grows faster than x², so x³ grows also faster than f(x).
- Therefore, we always have to find the **smallest** simple function g(x) for which f(x) is O(g(x)).

- "Popular" functions g(n) are
 - n, log n, 1, 2ⁿ, n², n!, n, n³, log n
- Listed from slowest to fastest growth:
- . 1
- log n
- . n
- n log n
- \cdot n²
- n^3
- · 2ⁿ
- n

- A problem that can be solved with polynomial worst-case complexity is called tractable.
- Problems of higher complexity are called intractable.
- Problems that no algorithm can solve are called unsolvable.

Determining Big-O: Repetition

```
executed n \text{ times} for (i = 1; i \le n; i++)
m = m + 2; \leftarrow constant \text{ time}
```

Total time = (a constant c) * n = cn = O(N)

Ignore multiplicative constants (e.g., "c").

Determining Big-O: Repetition

```
outer loop executed n times for (i = 1; i \le n; i++)
\{ for (j = 1; j \le n; j++) \}
\{ k = k+1; \}
\{ constant time \}
```

Total time =
$$c * n * n * = cn^2 = O(N^2)$$

Determining Big-O: Repetition

```
outer loop executed n times \begin{cases} \text{for } (i = 1; i \le n; i + +) \\ \text{for } (j = 1; j \le 100; j + +) \\ \text{k} = k + 1; \\ \text{constant time} \end{cases} inner loop executed 100 times
```

Total time = c * 100 * n * = 100cn = O(N)

Determining Big-O: Sequence

Determining Big-O: Selection

test + worst-case(then, else) test: if (depth() != othe

```
if (depth() != otherStack.depth())
constant (c_0)
                     return false;
                    else
                      for (int n = 0; n < depth(); n++)
                                                              else part:
                                                              (c_2 + c_3) * n
  another if: — if (!list[n].equals(otherStack.list[n]))
                         return false;
  test (c_2)
  +
  then (c_3)
     Total time = c_0 + Worst-Case(c_{1,} (c_2 + c_3) * n) = O(N)
     Total time = c_0 + Worst-Case(then, else)
     Total time = c_0 + Worst-Case(c_1 else)
```

What is the Big-O of the following code?

```
void foo(int n) {
   int i;
   for(int i = 1; i < n; n++);
   print("good");
}

A. O(n²)
B. O(log n)
C. O(n)
D. O(1)</pre>
```

What is the Big-O of the following code?

```
void foo(int n) {
   int i;
   for(int i = 1; i < n; n++);
   print("good");
}

A. O(n²)
B. O(log n)
C. O(n)
D. O(1)</pre>
```

What is the Big-O of the following code?

```
void foo(int n) {
  int i;
  for(int i = 1; i < n; i++)
    for (int j = 1; j < n; j++)
       print("good");
A. O(n^2)
B. O(log n)
C. O(n)
D. O(1)
```

What is the Big-O of the following code?

```
void foo(int n) {
  int i;
  for(int i = 1; i < n; i++);
    for (int j = 1; j < n; j++);
       print("good");
A. O(n^2)
B. O(log n)
C. O(n)
D. O(1)
```

What is the Big-O of the following code?

```
void foo(int n) {
   int i = 1;
   int s = 1;
   while(s <= n) {
      i++;
      s = s + i;
      print("work");
   }
}</pre>
```

- A. $O(n^2)$
- B. O(log n)
- C. O(n)
- D. $O(\sqrt{n})$

CMSC 132 Summer 2020

What is the Big-O of the following code?

```
void foo(int n) {
                      int i = 1;
                      int s = 1;
                      while (s \le n) {
                       i++;
                       s = s + i;
                       print("work");
                            S = 1
A. O(n^2)
                                1+2
B. O(\log n)
                                1+2+3
                            S_k = 1+2+3+k+(k+1) after k iteration
C. O(n)
                              S k = 2(k+1) k <= n
D. O(\sqrt{n})
                              k < sqrt(n)
```

What is the Big-O of the following code?

```
void foo(int n) {
   int i;
   for(i = 1; i*i <= n; i++)
   print("hello");
}</pre>
```

```
A. O(n^2)
```

- B. O(log n)
- C. O(n)
- D. $O(\sqrt{n})$

CMSC 132 Summer 2020

33

What is the Big-O of the following code?

```
void foo(int n) {
   int i;
   for(i = 1; i*i <= n; i++)
   print("hello");
}</pre>
```

```
A. O(n^2)
B. O(\log n)
C. O(n)
D. O(\sqrt{n})
```

CMSC 132 Summer 2020

34

What is the Big-O of the following code?

```
void foo(int n) {
  int i,j,k;
  for(i = 1; i <= n; i++)
    for(j = 1; j <= i; j++)
    for(k=1; k <= 100; k++)
    print("good");
}</pre>
```

- A. $O(n^2)$
- B. O(log n)
- C. O(n)
- D. $O(\sqrt{n})$

What is the Big-O of the following code?

```
void foo(int n) {
              int i,j,k;
              for(i = 1; i \le n; i++)
                for(j = 1; j <= i; j++)
                 for (k=1; k \le 100; k++)
                  print("good");
A. O(n^2)
                    total = 100 + 200 + 300 + 400 + 500 = 100
B. O(\log n)
                    (1+2+3+..+n) = 100(n(n-1)/2) = O(n^2)
C. O(n)
D. O(\sqrt{n})
```

What is the Big-O of the following code?

```
void foo(int n) {
  for(int i = 1; i < n; i = i * 2)
    print("good");
}</pre>
```

```
A. O(n^2)
```

- B. O(log n)
- C. O(n)
- D. $O(\sqrt{n})$

What is the Big-O of the following code?

```
void foo(int n) {
  for(int i = 1; i < n; i = i * 2)
    print("good");
}</pre>
```

```
A. O(n²)B. O(log n)C. O(n)
```

D. $O(\sqrt{n})$