
CMSC 330:
Organization of Programming Languages

Introduction to Ruby:

1CMSC 330 - Summer 2020

Ruby

An object-oriented, imperative, dynamically typed
(scripting) language
• Similar to other scripting languages (e.g., Python)
• Notable in being fully object-oriented, and embracing higher-

order programming style
Ø Functions taking function(al code) as arguments

Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”

Adopted by Ruby on Rails web programming framework in
2005 (a key to Ruby’s popularity)

2CMSC 330 - Summer 2020

Books on Ruby

• See course web page

3CMSC 330 - Summer 2020

Applications of Scripting Languages

Scripting languages have many uses
• Automating system administration
• Automating user tasks
• Quick-and-dirty development

Motivating application

Text processing

4CMSC 330 - Summer 2020

Output from Command-Line Tool
% wc *

271 674 5323 AST.c
100 392 3219 AST.h
117 1459 238788 AST.o
1874 5428 47461 AST_defs.c
1375 6307 53667 AST_defs.h
371 884 9483 AST_parent.c
810 2328 24589 AST_print.c
640 3070 33530 AST_types.h
285 846 7081 AST_utils.c
59 274 2154 AST_utils.h
50 400 28756 AST_utils.o
866 2757 25873 Makefile
270 725 5578 Makefile.am
866 2743 27320 Makefile.in
38 175 1154 alloca.c

2035 4516 47721 aloctypes.c
86 350 3286 aloctypes.h
104 1051 66848 aloctypes.o

...

5CMSC 330 - Summer 2020

Ruby started with special purpose, but has grown into
a general-purpose language
• As have related languages, like Python and Perl

But Ruby has distinctive features when compared to
traditional general-purpose languages
• Such as lightweight syntax, dynamic typing, evaluating code

in strings, …
We will call them scripting languages, still, but also
dynamic languages

CMSC 330 - Summer 2020 6

A Simple Example

Let’s start with a simple Ruby program
This is a ruby
program
x = 1
n = 5
while n > 0
x = x * n
n = n - 1

end
print(x)
print("\n")

ruby1.rb:

7CMSC 330 - Summer 2020

% ruby -w ruby1.rb
120
%

This is a ruby
program
x = 1
n = 5
while n > 0
x = x * n
n = n - 1

end
print(x)
print("\n")

Language Basics

comments begin with #, go to end of line

variables need not
be declared

line break separates
expressions
(can also use “;”)

no special main()
function or
method

8CMSC 330 - Summer 2020

Run Ruby, Run
There are two basic ways to run a Ruby program
• ruby -w filename – execute script in filename

Ø tip: the -w will cause Ruby to print a bit more if something bad happens
Ø Ruby filenames should end with ‘.rb’ extension

• irb – launch interactive Ruby shell
Ø Can type in Ruby programs one line at a time, and watch as each line is

executed
irb(main):001:0> 3+4
Þ7

Ø Can load Ruby programs via load command
• E.g.: load ‘foo.rb’

Ruby is installed on Grace cluster

9CMSC 330 - Summer 2020

Some Ruby Language Features
Implicit declarations
• Java, C have explicit declarations

Dynamic typing
• Java, C have (mostly) static typing

Everything is an object
• No distinction between objects and primitive data
• Even “null” is an object (called nil in Ruby), as are classes

No outside access to private object state
• Must use getters, setters

No method overloading
Class-based and Mixin inheritance

10CMSC 330 - Summer 2020

Implicit vs. Explicit Declarations

In Ruby, variables are implicitly declared
• First use of a variable declares it and determines type

x = 37; // no declaration needed – created when assigned to
y = x + 5

• x, y now exist, are integers

Java and C/C++ use explicit variable declarations
• Variables are named and typed before they are used

int x, y; // declaration
x = 37; // use
y = x + 5; // use

11CMSC 330 - Summer 2020

Tradeoffs?

Explicit Declarations Implicit Declarations

More text to type Less text to type

Helps prevent typos Easy to mistype variable name

12

var = 37
If (rare-condition)
y = vsr + 5

Typo!
Only caught when this line is actually run.
Bug could be latent for quite a while

CMSC 330 - Summer 2020

13

Static Type Checking (Static Typing)

Before program is run
• Types of all expressions are determined
• Disallowed operations cause compile-time error

Ø Cannot run the program

Static types are often explicit (aka manifest)
• Specified in text (at variable declaration)

Ø C, C++, Java, C#
• But may also be inferred – compiler determines type based on

usage
Ø OCaml, C# and Go (limited)

CMSC 330 - Summer 2020

14

Dynamic Type Checking

During program execution
• Can determine type from run-time value
• Type is checked before use
• Disallowed operations cause run-time exception

Ø Type errors may be latent in code for a long time

Dynamic types are not manifest
• Variables are just introduced/used without types
• Examples

Ø Ruby, Python, Javascript, Lisp

CMSC 330 - Summer 2020

Static and Dynamic Typing

Ruby is dynamically typed, C is statically typed

Notes
• Can always run the Ruby program; may fail when run
• C variables declared, with types

Ø Ruby variables declared implicitly
Ø Implicit declarations most natural with dynamic typing

Ruby
x = 3
x = "foo" # gives x a

new type
x.foo # NoMethodError

at runtime

/* C */
int x;
x = 3;
x = "foo"; /* not allowed */
/* program doesn’t compile */

15CMSC 330 - Summer 2020

16

Tradeoffs?
Static type checking
• More work for programmer (at first)

Ø Catches more (and subtle) errors at compile time
• Precludes some correct programs

Ø May require a contorted rewrite
• More efficient code (fewer run-time checks)

Dynamic type checking
• Less work for programmer (at first)

Ø Delays some errors to run time
• Allows more programs

Ø Including ones that will fail
• Less efficient code (more run-time checks)

CMSC 330 - Summer 2020

Java: Mostly Static Typing

In Java, types are mostly checked statically
Object x = new Object();
x.println(“hello”); // No such method error at compile time

But sometimes checks occur at run-time
Object o = new Object();
String s = (String) o; // No compiler warning, fails at run time
// (Some Java compilers may be smart enough to warn about above cast)

17CMSC 330 - Summer 2020

Quiz 1: Get out your clickers!

True or false: This program has a type error

18

Ruby
b = “foo”
a = 30
a = b

A. True
B. False

CMSC 330 - Summer 2020

Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

19

Ruby
b = “foo”
a = 30
a = b

A. True

B. False

/* C */
void foo() {
int a = 3;
char *b = “foo”;
a = b;

}

A. True
B. False

CMSC 330 - Summer 2020

Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

20

Ruby
b = “foo”
a = 30
a = b

A. True
B. False

/* C */
void foo() {
int a = 3;
char *b = “foo”;
a = b;

}

A. True
B. False

CMSC 330 - Summer 2020

Control Statements in Ruby

A control statement is one that affects which instruction is
executed next
• While loops
• Conditionals

if grade >= 90 then
puts "You got an A"

elsif grade >= 80 then
puts "You got a B"

elsif grade >= 70 then
puts "You got a C"

else
puts "You’re not doing so well"

end

21

i = 0
while i < n
i = i + 1

end

CMSC 330 - Summer 2020

Conditionals and Loops Must End!

All Ruby conditional and looping statements must be
terminated with the end keyword.
Examples
• if grade >= 90 then

puts "You got an A"
end

• if grade >= 90 then
puts "You got an A"

else
puts “No A, sorry"

end

22

• i = 0
while i < n
i = i + 1

end

CMSC 330 - Summer 2020

What is True?

The guard of a conditional is the expression that
determines which branch is taken

The true branch is taken if the guard evaluates to anything
except
• false
• nil

Warning to C programmers: 0 is not false!

if grade >= 90 then
...

Guard

23CMSC 330 - Summer 2020

Quiz 2: What is the output?

26

x = 0
if x then
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end

A. Nothing –
there’s an

error
B. “false”
C. “== 0”
D. “true”

CMSC 330 - Summer 2020

Quiz 2: What is the output?

27

x = 0
if x then
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end

A. Nothing –
there’s an

error

B.“false”
C. “== 0”
D. “true”

CMSC 330 - Summer 2020

x is neither false nor nil so

the first guard is satisfied

