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Ruby

An object-oriented, imperative, dynamically typed 
(scripting) language
• Similar to other scripting languages (e.g., Python) 
• Notable in being fully object-oriented, and embracing higher-

order programming style
Ø Functions taking function(al code) as arguments

Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”

Adopted by Ruby on Rails web programming framework in 
2005 (a key to Ruby’s popularity)
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Books on Ruby

• See course web page
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Applications of Scripting Languages

Scripting languages have many uses
• Automating system administration
• Automating user tasks
• Quick-and-dirty development

Motivating application

Text processing
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Output from Command-Line Tool
% wc *

271     674    5323 AST.c
100     392    3219 AST.h
117    1459  238788 AST.o
1874    5428   47461 AST_defs.c
1375    6307   53667 AST_defs.h
371     884    9483 AST_parent.c
810    2328   24589 AST_print.c
640    3070   33530 AST_types.h
285     846    7081 AST_utils.c
59     274    2154 AST_utils.h
50     400   28756 AST_utils.o
866    2757   25873 Makefile
270     725    5578 Makefile.am
866    2743   27320 Makefile.in
38     175    1154 alloca.c

2035    4516   47721 aloctypes.c
86     350    3286 aloctypes.h
104    1051   66848 aloctypes.o

...
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Ruby started with special purpose, but has grown into 
a general-purpose language
• As have related languages, like Python and Perl

But Ruby has distinctive features when compared to 
traditional general-purpose languages
• Such as lightweight syntax, dynamic typing, evaluating code 

in strings, …
We will call them scripting languages, still, but also 
dynamic languages
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A Simple Example

Let’s start with a simple Ruby program
# This is a ruby 
program
x = 1
n = 5
while n > 0
x = x * n
n = n - 1

end
print(x)
print("\n")

ruby1.rb:
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%



# This is a ruby 
program
x = 1
n = 5
while n > 0
x = x * n
n = n - 1

end
print(x)
print("\n")

Language Basics

comments begin with #, go to end of line

variables need not
be declared

line break separates
expressions
(can also use “;”)

no special main()
function or
method
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Run Ruby, Run
There are two basic ways to run a Ruby program
• ruby -w filename – execute script in filename

Ø tip:  the -w will cause Ruby to print a bit more if something bad happens
Ø Ruby filenames should end with ‘.rb’ extension

• irb – launch interactive Ruby shell
Ø Can type in Ruby programs one line at a time, and watch as each line is 

executed
irb(main):001:0> 3+4
Þ7

Ø Can load Ruby programs via load command
• E.g.: load ‘foo.rb’

Ruby is installed on Grace cluster
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Some Ruby Language Features
Implicit declarations
• Java, C have explicit declarations

Dynamic typing
• Java, C have (mostly) static typing

Everything is an object
• No distinction between objects and primitive data
• Even “null” is an object (called nil in Ruby), as are classes

No outside access to private object state
• Must use getters, setters

No method overloading
Class-based and Mixin inheritance
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Implicit vs. Explicit Declarations

In Ruby, variables are implicitly declared
• First use of a variable declares it and determines type

x = 37;  // no declaration needed – created when assigned to
y = x + 5

• x, y now exist, are integers

Java and C/C++ use explicit variable declarations
• Variables are named and typed before they are used

int x, y;   // declaration
x = 37;   // use
y = x + 5; // use
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Tradeoffs?

Explicit Declarations Implicit Declarations

More text to type Less text to type

Helps prevent typos Easy to mistype variable name

12

var = 37
If (rare-condition)
y = vsr + 5

Typo!
Only caught when this line is actually run.
Bug could be latent for quite a while
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Static Type Checking (Static Typing)

Before program is run 
• Types of all expressions are determined
• Disallowed operations cause compile-time error

Ø Cannot run the program

Static types are often explicit (aka manifest)
• Specified in text (at variable declaration)

Ø C, C++, Java, C#
• But may also be inferred – compiler determines type based on 

usage
Ø OCaml, C# and Go (limited)
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Dynamic Type Checking

During program execution
• Can determine type from run-time value
• Type is checked before use
• Disallowed operations cause run-time exception

Ø Type errors may be latent in code for a long time

Dynamic types are not manifest
• Variables are just introduced/used without types
• Examples

Ø Ruby, Python, Javascript, Lisp
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Static and Dynamic Typing

Ruby is dynamically typed, C is statically typed

Notes
• Can always run the Ruby program; may fail when run
• C variables declared, with types

Ø Ruby variables declared implicitly
Ø Implicit declarations most natural with dynamic typing

# Ruby
x = 3
x = "foo"  # gives x a

# new type
x.foo      # NoMethodError

# at runtime

/* C */
int x;
x = 3;
x = "foo"; /* not allowed */
/* program doesn’t compile */
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Tradeoffs?
Static type checking
• More work for programmer (at first)

Ø Catches more (and subtle) errors at compile time
• Precludes some correct programs

Ø May require a contorted rewrite
• More efficient code (fewer run-time checks)

Dynamic type checking
• Less work for programmer (at first)

Ø Delays some errors to run time
• Allows more programs

Ø Including ones that will fail
• Less efficient code (more run-time checks)
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Java: Mostly Static Typing

In Java, types are mostly checked statically
Object x = new Object();
x.println(“hello”);   // No such method error at compile time

But sometimes checks occur at run-time
Object o = new Object();
String s = (String) o;  // No compiler warning, fails at run time
// (Some Java compilers may be smart enough to warn about above cast)
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Quiz 1: Get out your clickers!

True or false: This program has a type error

18

# Ruby
b = “foo”
a = 30
a = b 

A. True
B. False
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Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

19

# Ruby
b = “foo”
a = 30
a = b 

A. True

B. False

/* C */
void foo() {
int a = 3;
char *b = “foo”;
a = b;

} 

A. True
B. False
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Quiz 1: Get out your clickers!

True or false: This program has a type error

True or false: This program has a type error

20

# Ruby
b = “foo”
a = 30
a = b

A. True
B. False

/* C */
void foo() {
int a = 3;
char *b = “foo”;
a = b;

} 

A. True
B. False
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Control Statements in Ruby

A control statement is one that affects which instruction is 
executed next
• While loops
• Conditionals

if grade >= 90 then
puts "You got an A"

elsif grade >= 80 then
puts "You got a B"

elsif grade >= 70 then
puts "You got a C"

else
puts "You’re not doing so well"

end

21

i = 0
while i < n
i = i + 1

end
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Conditionals and Loops Must End!

All Ruby conditional and looping statements must be 
terminated with the end keyword.
Examples
• if grade >= 90 then

puts "You got an A"
end

• if grade >= 90 then
puts "You got an A"

else
puts “No A, sorry"

end

22

• i = 0
while i < n
i = i + 1

end
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What is True?

The guard of a conditional is the expression that 
determines which branch is taken

The true branch is taken if the guard evaluates to anything 
except
• false
• nil

Warning to C programmers: 0 is not false!

if grade >= 90 then
...

Guard
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Quiz 2: What is the output?

26

x = 0
if x then 
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end 

A. Nothing –
there’s an 

error
B. “false”
C. “== 0”
D. “true”
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Quiz 2: What is the output?
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x = 0
if x then 
puts “true”

elsif x == 0 then
puts “== 0”

else
puts “false”

end 

A. Nothing –
there’s an 

error

B.“false”
C. “== 0”
D. “true”
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x is neither false nor nil so 

the first guard is satisfied


