
CMSC 330: Organization of Programming
Languages

Functional Programming with Lists

1CMSC 330 - Summer 2020

2

Lists in OCaml

• The basic data structure in OCaml
– Lists can be of arbitrary length

• Implemented as a linked data structure
– Lists must be homogeneous

• All elements have the same type

• Operations
– Construct lists
– Destruct them via pattern matching

CMSC 330 - Summer 2020

3

Constructing Lists
Syntax
• [] is the empty list (pronounced “nil”)
• e1::e2 prepends element e1 to list e2

– Operator :: is pronounced "cons"
– e1 is the head, e2 is the tail

• [e1;e2;…;en] is syntactic sugar for e1::e2::…::en::[]
Examples

3::[] (* The list [3] *)

2::(3::[]) (* The list [2; 3] *)
[1; 2; 3] (* The list 1::(2::(3::[])) *)

CMSC 330 - Summer 2020

Both cons and
nil are terms
from LISP

Constructing Lists

Evaluation
• [] is a value
• To evaluate [e1;…;en], evaluate e1 to a value v1,, evaluate en

to a value vn, and return [v1;…;vn]

4CMSC 330 - Summer 2020

5

Examples
let y = [1; 1+1; 1+1+1] ;;
val y : int list = [1; 2; 3]

let x = 4::y ;;
val x : int list = [4; 1; 2; 3]

let z = 5::y ;;
val z : int list = [5; 1; 2; 3]

let m = “hello”::”bob”::[];;
val m : string list = [“hello”; “bob”]

CMSC 330 - Summer 2020

6

Typing List Construction

Nil:
[]: 'a list
i.e., empty list has type t list for any type t

Cons:
If e1 : t and e2 : t list then e1::e2 : t list

With parens for clarity:
If e1 : t and e2 : (t list) then (e1::e2) : (t list)

Polymorphic type:
like a generic type in Java

CMSC 330 - Summer 2020

7

Examples
let x = [1;"world"] ;;
This expression has type string but an expression was
expected of type int

let m = [[1];[2;3]];;
val y : int list list = [[1]; [2; 3]]

let y = 0::[1;2;3] ;;
val y : int list = [0; 1; 2; 3]

let w = [1;2]::y ;;
This expression has type int list but is here used with
type int list list

• The left argument of :: is an element, the right is a list
• Can you construct a list y such that [1;2]::y makes sense?

CMSC 330 - Summer 2020

8

Lists in Ocaml are Linked

• [1;2;3] is represented above
– A nonempty list is a pair (element, rest of list)
– The element is the head of the list
– The pointer is the tail or rest of the list

• ...which is itself a list!

• Thus in math (i.e., inductively) a list is either
– The empty list []
– Or a pair consisting of an element and a list

• This recursive structure will come in handy shortly
CMSC 330 - Summer 2020

10

Lists of Lists

• Lists can be nested arbitrarily
– Example: [[9; 10; 11]; [5; 4; 3; 2]]

• (Type int list list)

CMSC 330 - Summer 2020

11

Lists are Immutable

• No way to mutate (change) an element of a list
• Instead, build up new lists out of old, e.g., using ::

42 31
x

let x = [1;2;3;4]
let y = 5::x
let z = 6::x

5
y

6
z

CMSC 330 - Summer 2020

A. array
B. list

C. float list
D. int list

12

Quiz 1

[1.0; 2.0; 3.0; 4.0]

What is the type of the following expression?

CMSC 330 - Summer 2020

A. array
B. list

C. float list
D. int list

[1.0; 2.0; 3.0; 4.0]

13

What is the type of the following expression?

Quiz 1

CMSC 330 - Summer 2020

14

Quiz 2
What is the type of the following expression?

31::[3]

A. int
B. int list

C. int list list
D. error

CMSC 330 - Summer 2020

15

Quiz 2

A. int
B. int list

C. int list list
D. error

What is the type of the following expression?

31::[3]

CMSC 330 - Summer 2020

16

Quiz 3
What is the type of the following definition?

A. string -> string
B. string list

C. string list -> string list
D. string -> string list

let f x = “alien”::[x]

CMSC 330 - Summer 2020

17

Quiz 3

let f x = “alien”::[x]

A. string -> string
B. string list

C. string list -> string list
D. string -> string list

What is the type of the following definition?

CMSC 330 - Summer 2020

18

Pattern Matching
• To pull lists apart, use the match construct
• Syntax

match e with
| p1 -> e1
| …
| pn -> en

CMSC 330 - Summer 2020

• Evaluate e to a value v
• If p1 matches v, then evaluate e1 to v1 and return v1
...
• Else if pn matches v, then evaluate en to vn and return vn
• Else, no patterns match: raise Match_failure exception

19

Pattern Matching Example
let is_empty l =
match l with
[] -> true

| (h::t) -> false

Example runs
• is_empty [] (* evaluates to true *)
• is_empty [1] (* evaluates to false *)
• is_empty [1;2](* evaluates to false *)

CMSC 330 - Summer 2020

20

Pattern Matching Example (cont.)
let hd l =
match l with
(h::t) -> h

• Example runs
– hd [1;2;3](* evaluates to 1 *)
– hd [2;3] (* evaluates to 2 *)
– hd [3] (* evaluates to 3 *)
– hd [] (* Exception: Match_failure *)

CMSC 330 - Summer 2020

21

Quiz 4

To what does the following expression evaluate?

A. []
B. [0]
C. [1]
D. [2;3]

match [1;2;3] with
[] -> [0]

| h::t -> t

CMSC 330 - Summer 2020

22

Quiz 4

To what does the following expression evaluate?

A. []
B. [0]
C. [1]
D. [2;3]

match [1;2;3] with
[] -> [0]

| h::t -> t

CMSC 330 - Summer 2020

23

"Deep" pattern matching

• You can nest patterns for more precise matches
– a::b matches lists with at least one element

• Matches [1;2;3], binding a to 1 and b to [2;3]
– a::[] matches lists with exactly one element

• Matches [1], binding a to 1
• Could also write pattern a::[] as [a]

– a::b::[] matches lists with exactly two elements
• Matches [1;2], binding a to 1 and b to 2
• Could also write pattern a::b::[] as [a;b]

– a::b::c::d matches lists with at least three
elements

• Matches [1;2;3], binding a to 1, b to 2, c to 3, and d to []
• Cannot write pattern as [a;b;c]::d (why?)CMSC 330 - Summer 2020

24

Pattern Matching – Wildcards

• An underscore _ is a wildcard pattern
– Matches anything
– But doesn’t add any bindings
– Useful to hold a place but discard the value

• i.e., when the variable does not appear in the branch expression

• In previous examples
– Many values of h or t ignored
– Can replace with wildcard _

CMSC 330 - Summer 2020

25

Pattern Matching – Wildcards (cont.)
• Code using _

– let is_empty l = match l with
[] -> true | (_::_) -> false

– let hd l = match l with (h::_) -> h
– let tl l = match l with (_::t) -> t

• Outputs
– is_empty[1](* evaluates to false *)
– is_empty[](* evaluates to true *)
– hd [1;2;3] (* evaluates to 1 *)
– hd [1] (* evaluates to 1 *)
– tl [1;2;3] (* evaluates to [2;3] *)
– tl [1] (* evaluates to [] *)

CMSC 330 - Summer 2020

26

Quiz 5

To what does the following expression evaluate?

A. []
B. [0]
C. [1]
D. [2;3]

match [1;2;3] with
| 1::[] -> [0]
| _::_ -> [1]
| 1::_::[] -> []

CMSC 330 - Summer 2020

27

Quiz 5

To what does the following expression evaluate?

A. []
B. [0]
C. [1]
D. [2;3]

match [1;2;3] with
| 1::[] -> [0]
| _::_ -> [1]
| 1::_::[] -> []

CMSC 330 - Summer 2020

28

Pattern Matching – An Abbreviation

• let f p = e, where p is a pattern
– is shorthand for let f x = match x with p -> e

• Examples
– let hd (h::_) = h
– let tl (_::t) = t
– let f (x::y::_) = x + y
– let g [x; y] = x + y

• Useful if there’s only one acceptable input

CMSC 330 - Summer 2020

29

• If e and p1, ..., pn each have type ta
• and e1, ..., en each have type tb
• Then entire match expression has type tb

• Examples

Pattern Matching Typing match e with
| p1 -> e1
| …
| pn -> en

let hd l =
match l with
(h::_) -> h

ta = ‘a list

tb = ‘a

tb

let rec sum l =
match l with
[] -> 0

| (h::t) -> h+sum
t

tb

ta = int list tb = int

type: ‘a list -> ‘a type: int list -> int

CMSC 330 - Summer 2020

30

Polymorphic Types
• The sum function works only for int lists
• But the hd function works for any type of list

– hd [1; 2; 3] (* returns 1 *)
– hd ["a"; "b"; "c"] (* returns "a" *)

• OCaml gives such functions polymorphic types
– hd : 'a list -> 'a

– this says the function takes a list of any element type 'a, and
returns something of that same type

• These are basically generic types in Java
– 'a list is like List<T>

CMSC 330 - Summer 2020

31

Examples Of Polymorphic Types
• let tl (_::t) = t

tl [1; 2; 3];;
- : int list = [2; 3]
tl [1.0; 2.0];;
- : float list = [2.0]
(* tl : 'a list -> 'a list *)

• let fst x y = x
fst 1 “hello”;;
- : int = 1
fst [1; 2] 1;;
- : int list = [1; 2]
(* fst : 'a -> 'b -> 'a *)

CMSC 330 - Summer 2020

32

Examples Of Polymorphic Types
• let eq x y = x = y (* let eq x y = (x = y) *)

eq 1 2;;
- : bool = false
eq “hello” “there”;;
- : bool = false
eq “hello” 1 -- type error
(* eq : 'a -> ’a -> bool *)

CMSC 330 - Summer 2020

33

Quiz 6

What is the type of the following function?

A. ‘a -> ‘b -> int
B. ‘a -> ‘a -> bool

C. ‘a -> ‘a -> int
D. int

let f x y =
if x = y then 1 else 0

CMSC 330 - Summer 2020

34

Quiz 6

What is the type of the following function?

A. ‘a -> ‘b -> int
B. ‘a -> ‘a -> bool

C. ‘a -> ‘a -> int
D. int

let f x y =
if x = y then 1 else 0

CMSC 330 - Summer 2020

36

Pattern matching is AWESOME

1. You can’t forget a case
– Compiler issues inexhaustive pattern-match warning

2. You can’t duplicate a case
– Compiler issues unused match case warning

3. You can’t get an exception
– Can’t do something like List.hd []

4. Pattern matching leads to elegant, concise,
beautiful code

CMSC 330 - Summer 2020

39

Lists and Recursion

• Lists have a recursive structure
– And so most functions over lists will be recursive

– This is just like an inductive definition
• The length of the empty list is zero
• The length of a nonempty list is 1 plus the length of the tail

– Type of length?
• ‘a list -> int

let rec length l = match l with
[] -> 0

| (_::t) -> 1 + (length t)

CMSC 330 - Summer 2020

40

More Examples
• sum l (* sum of elts in l *)

let rec sum l = match l with
[] -> 0

| (x::xs) -> x + (sum xs)

• negate l (* negate elements in list *)
let rec negate l = match l with

[] -> []
| (x::xs) -> (-x) :: (negate xs)

• last l (* last element of l *)
let rec last l = match l with

[x] -> x
| (x::xs) -> last xs

CMSC 330 - Summer 2020

41

More Examples (cont.)
(* return a list containing all the elements in the list l

followed by all the elements in list m *)
• append l m

let rec append l m = match l with
[] -> m

| (x::xs) -> x::(append xs m)

• rev l (* reverse list; hint: use append *)
let rec rev l = match l with

[] -> []
| (x::xs) -> append (rev xs) [x]

• rev takes O(n2) time. Can you do better?
CMSC 330 - Summer 2020

