CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether *s* is a member of *R*'s *language*
- Approach: Convert *R* to a finite automaton *FA* and see whether s is accepted by *FA*
 - Details: Convert *R* to a *nondeterministic FA* (NFA), which we then convert to a *deterministic FA* (DFA),

> which enjoys a fast acceptance algorithm

Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - > Easy to implement acceptance check
 - All examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

ε-transition

DFA transition must be labeled with symbol

• DFA is a special case of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- Has paths to either S0 or S1
- Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- ▶ aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use ε-transition

Comparing NFA and DFA for (ab|aba)*

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - > What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

CMSC 330 Summer 2020

or as { (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) }

- Q = {S0, S1}

Formal Definition: Example

0

S1

1

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA


```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                         printf("rejected\n"); return 0;
              default:
            1
            break;
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
                         printf("rejected\n"); return 0;
              default:
            break;
    default: printf("unknown state; I'm confused\n");
             break:
  }
```

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q<sub>0</sub>, F, \delta) of a DFA:
let q = q<sub>0</sub>
while (there exists another symbol \sigma of the input string)
q := \delta(q, \sigma);
if q \in F then
accept
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Nondeterministic Finite Automata (NFA)

• An *NFA* is a 5-tuple (Σ , Q, q₀, F, δ) where

- Σ, Q, q0, F as with DFAs
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several "current states"
 > Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept **s**
- Example
 - After processing "a"
 - » NFA may be in states

S1 S2 S3

Since S3 is final, s is accepted

Algorithm is slow, space-inefficient; prefer DFAs!

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them

NB. Both *transform* and *reduce* are historical terms; they mean "convert" CMSC 330 Summer 2020

Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct
 NFA: <A> = (Σ, Q, q₀, F, δ)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - > Recall F = set of final states
- Will define $\langle A \rangle$ for base cases: σ , ϵ , ϕ
 - Where σ is a symbol in Σ
- ► And for inductive cases: *AB*, *A*|*B*, *A**

Reducing Regular Expressions to NFAs

Base case: σ

S0 - S1

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where Σ is the alphabet Q is set of states q_0 is starting state F is set of final states δ is transition relation

$<\sigma> = ({\sigma}, {S0, S1}, S0, {S1}, {(S0, \sigma, S1)})$

Reduction

Base case: ε

 $<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

Base case: Ø

<Ø> = (Ø, {S0, S1}, S0, {S1}, Ø)

Reduction: Concatenation

Induction: AB

- $<\!A\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

Induction: AB

- $<\!A\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- <AB> = $(\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

► Induction: A|B

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Union

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- <A|B> = $(\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

Reduction: Closure

Induction: A*

• $<\!A\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

Reduction: Closure

Induction: A*

- $<\!\!A\!\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- <A*> = $(\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \{(f_A, \epsilon, S1), (S0, \epsilon, q_A), (S0, \epsilon, S1), (S1, \epsilon, S0)\})$

Quiz 2: Which NFA matches a* ?

Quiz 2: Which NFA matches a* ?

Quiz 3: Which NFA matches a|b*?

Quiz 3: Which NFA matches a|b*?

$\mathsf{RE}\to\mathsf{NFA}$

Draw NFAs for the regular expression (0|1)*110*

Reduction Complexity

Given a regular expression A of size n...
 Size = # of symbols + # of operations

- How many states does <A> have?
 - Two added for each , two added for each *
 - O(n)
 - That's pretty good!

Reducing NFA to DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA "current states"
- Example

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - > NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - > DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - > ϵ -closure(δ , p) (and ϵ -closure(δ , Q))
 - > move(δ , p, σ) (and move(δ , Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

We say p [€]→ q

- If it is possible to go from state p to state q by taking only $\epsilon\text{-transitions}$ in δ
- If $\exists p, p_1, p_2, \dots p_n, q \in Q$ such that
 - $\succ \left\{p,\epsilon,p_1\right\} \in \delta, \left\{p_1,\epsilon,p_2\right\} \in \delta, \ \dots \ , \left\{p_n,\epsilon,q\right\} \in \delta$
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that $p \xrightarrow{\epsilon} q$ according to δ
 - > ϵ -closure(δ , p) = {q | p $\stackrel{\epsilon}{\rightarrow}$ q in δ }
 - > ε-closure(δ, Q) = { q | p ∈ Q, p $\xrightarrow{\epsilon}$ q in δ }
 - Notes
 - > ε-closure(δ, p) always includes p
- > We write ϵ -closure(p) or ϵ -closure(Q) when δ is clear from context CMSC 330 Summer 2020 39

ε-closure: Example 1

- Following NFA contains
 - $p1 \xrightarrow{\epsilon} p2$
 - $p2 \xrightarrow{\epsilon} p3$
 - $p1 \xrightarrow{\epsilon} p3$ > Since $p1 \xrightarrow{\epsilon} p2$ and $p2 \xrightarrow{\epsilon} p3$

- ε-closures
 - ε-closure(p1) = { p1, p2, p3 }
 - ε-closure(p2) = { p2, p3 }
 - ε-closure(p3) = { p3 }
 - ϵ -closure({ p1, p2 }) = { p1, p2, p3 } \cup { p2, p3 }

ε-closure: Example 2

- Following NFA contains
 - $p1 \xrightarrow{\epsilon} p3$
 - $p3 \xrightarrow{\epsilon} p2$
 - $p1 \xrightarrow{\epsilon} p2$
 - > Since p1 $\xrightarrow{\epsilon}$ p3 and p3 $\xrightarrow{\epsilon}$ p2

- ε-closures
 - ε-closure(p1) = { p1, p2, p3 }
 - ε-closure(p2) = { p2 }
 - ε-closure(p3) = { p2, p3 }
 - ε-closure({ p2,p3 }) = { p2 } ∪ { p2, p3 }

ε-closure Algorithm: Approach

- ▶ Input: NFA (Σ, Q, q_0 , F_n , δ), State Set R
- ► Output: State Set R'
- Algorithm

```
Let R' = R
```

```
Repeat
```

Let R = R'

```
Let R' = R \cup {q | p \in R, (p, \varepsilon, q) \in \delta}
```

```
Until R = R'
```

// continue from previous
// new ε-reachable states
// stop when no now states

// start states

// stop when no new states

This algorithm computes a fixed point

ε-closure Algorithm Example

Calculate ε-closure(δ,{p1})

R	R'
{p1}	{p1}
{p1}	{p1, p2}
{p1, p2}	{p1, p2, p3}
{p1, p2, p3}	{p1, p2, p3}

Let R' = R Repeat Let R= R' Let R' = R \cup {q | p \in R, (p, ε , q) \in δ } Until R = R'

Calculating move(p,σ)

- move(δ,p,σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - > Set of states q such that {p, σ , q} $\in \delta$
 - $\succ move(\delta,p,\sigma) = \{ q \mid \{p, \sigma, q\} \in \delta \}$
 - $\succ move(\delta,Q,\sigma) = \{ q \mid p \in Q, \{p, \sigma, q\} \in \delta \}$
 - i.e., can "lift" move() to a set of states Q
 - Notes:
 - > move(δ ,p, σ) is Ø if no transition (p, σ ,q) ∈ δ , for any q
 - > We write move(p, σ) or move(R, σ) when δ clear from context

move(p,σ) : Example 1

- Following NFA
 - Σ = { a, b }

Move

- move(p1, a) = { p2, p3 }
- move(p1, b) = \emptyset
- move(p2, a) = Ø
- move(p2, b) = { p3 }
- move(p3, a) = Ø
- move(p3, b) = Ø

move({p1,p2},b) = { p3 }

$move(p,\sigma)$: Example 2

- Following NFA
 - Σ = { a, b }

Move

- move(p1, a) = { p2 }
- move(p1, b) = { p3 }
- move(p2, a) = { p3 }
- move(p2, b) = Ø
- move(p3, a) = Ø
- move(p3, b) = Ø

move({p1,p2},a) = {p2,p3}

NFA → DFA Reduction Algorithm ("subset")

- ▶ Input NFA (Σ, Q, q₀, F_n, δ), Output DFA (Σ, R, r₀, F_d, δ')
- Algorithm

```
Let r_0 = \varepsilon-closure(\delta,q_0), add it to R
While \exists an unmarked state \mathbf{r} \in \mathbf{R}
       Mark r
        For each \sigma \in \Sigma
               Let E = move(\delta, r, \sigma)
               Let e = \varepsilon-closure(\delta,E)
                lf e ∉ R
                       Let R = R \cup \{e\}
               Let \delta' = \delta' \cup \{r, \sigma, e\}
Let \mathbf{F}_d = \{\mathbf{r} \mid \exists \mathbf{s} \in \mathbf{r} \text{ with } \mathbf{s} \in \mathbf{F}_n\}
```

// DFA start state

- // process DFA state r
- // each state visited once
- // for each symbol σ
- // states reached via $\boldsymbol{\sigma}$
- // states reached via $\boldsymbol{\epsilon}$
- // if state e is new
- // add e to R (unmarked)
- // add transition r \rightarrow e on σ
- // final if include state in F_n

$NFA \rightarrow DFA$ Example 1

- Start = ε-closure(δ,p1) = { {p1,p3} }
- R = { {p1,p3} }
- $r \in R = \{p1, p3\}$
- move(δ ,{p1,p3},a) = {p2}
 - ightarrow e = ε -closure(δ ,{p2}) = {p2}

• move(δ ,{p1,p3},b) = Ø

NFA

NFA \rightarrow DFA Example 1 (cont.)

- R = { {p1,p3}, {p2} }
- $r \in R = \{p2\}$
- move(δ,{p2},a) = Ø
- move(δ,{p2},b) = {p3}
 - ightarrow e = ε -closure(δ ,{p3}) = {p3}
 - ▷ R = R ∪ {{p3}} = { {p1,p3}, {p2}, {p3} }
 - $\succ \delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}$

DFA

{2}

D

a

.3

3

NFA \rightarrow DFA Example 1 (cont.)

- R = { {p1,p3}, {p2}, {p3} }
- $r \in R = \{p3\}$
- Move({p3},a) = Ø
- Move({p3},b) = Ø
- Mark {p3}, exit loop
- $F_d = \{\{p1, p3\}, \{p3\}\}$ > Since $p3 \in F_n$
- Done!

$NFA \rightarrow DFA Example 2$

NFA

$$R = \{ \{A\}, \{B,D\}, \{C,D\} \}$$

Quiz 4: Which DFA is equiv to this NFA?

CMSC 330 Summer 2020

Quiz 4: Which DFA is equiv to this NFA?

Actual Answer

NFA \rightarrow DFA Example 3

$NFA \rightarrow DFA Example$

CMSC 330 Summer 2020

$\mathsf{NFA} \to \mathsf{DFA} \ \mathsf{Practice}$

$NFA \rightarrow DFA$ Practice

Analyzing the Reduction

- ► Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - Since a set with n items may have 2ⁿ subsets
 - Corollary
 - Reducing a NFA with n states may be O(2ⁿ)

Recap: Matching a Regexp R

- ▶ Given *R*, construct NFA. Takes time O(*R*)
- Convert NFA to DFA. Takes time O(2^{|R|})
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast

Closing the Loop: Reducing DFA to RE

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

CMSC 330 Summer 2020

DFA to RE example

CMSC 330 Summer 2020

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input
- Algorithm
 - Construct initial partition
 - > Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

Splitting Partitions (cont.)

Need to split partition {S,T,U} into {S,T}, {U}

- Transitions on a from S,T lead to partition P2
- Transition on a from U lead to partition P3

Resplitting Partitions

Need to reexamine partitions after splits

- Initially no need to split partition {S,T,U}
- After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}

Initial partitions

Split partition

CMSC 330 Summer 2020

- ► Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P2
 - move(T,a) = T ∈ P2

 $-move(S,b) = R \in P1$

- move (T,b) = R \in P1

- Reject { S, T } = P2
- ▶ Split partition? → Yes, different partitions for B
 - move(S,a) = $T \in P2$
 - move(T,a) = $T \in P2$

 $-move(S,b) = T \in P2$

- move (T,b) = R \in P1

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

 $\succ \Sigma = \{a,b\}$

Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - $\mathsf{RE} \to \mathsf{NFA}$
 - > Concatenation, union, closure
 - NFA \rightarrow DFA
 - > ε-closure & subset algorithm
- DFA
 - Minimization, complementation