CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
The story so far, and what’s next

- **Goal:** Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R’s *language*

- **Approach:** Convert R to a **finite automaton** FA and see whether s is **accepted** by FA
 - Details: Convert R to a *nondeterministic FA* (NFA), which we then convert to a *deterministic FA* (DFA),
 - which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if *any path* ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for (a|b)*abb
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- \textit{aba}
 - Has paths to states S0, S1

- \textit{ababa}
 - Has paths to S0, S1
 - Need to use \(\epsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\[b(b | a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b \mid a+b?) \]

A.

B.

C.

D. None of the above
A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma\) is an alphabet
- \(Q\) is a nonempty set of states
- \(q_0 \in Q\) is the start state
- \(F \subseteq Q\) is the set of final states
- \(\delta : Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions

What's this definition saying that \(\delta\) is?

A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S_0, S_1\}$
- $q_0 = S_0$
- $F = \{S_1\}$
- δ

<table>
<thead>
<tr>
<th>symbol</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as \{ (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) \}
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {
 symbol = getchar();
 switch (cur_state) {
 case 0: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 } break;
 case 1: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 } break;
 default: printf("unknown state; I'm confused\n"); break;
 }
}
Implementing DFAs (generic)

More generally, use generic table-driven DFA

<table>
<thead>
<tr>
<th>given components $(\Sigma, Q, q_0, F, \delta)$ of a DFA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>let $q = q_0$</td>
</tr>
<tr>
<td>while (there exists another symbol σ of the input string)</td>
</tr>
<tr>
<td>\hspace{1cm} $q := \delta(q, \sigma)$;</td>
</tr>
<tr>
<td>if $q \in F$ then</td>
</tr>
<tr>
<td>\hspace{1cm} accept</td>
</tr>
<tr>
<td>else reject</td>
</tr>
</tbody>
</table>

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma, Q, q_0, F\) as with DFAs
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\varepsilon,S3)\}\)

- An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA’s start state to a final state.
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string \(s \)
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and \(\varepsilon \)-transitions
 - If any current state is final when done then accept \(s \)

- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
 - Since S3 is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

![Diagram showing relationships between REs, DFAs, and NFAs]

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Reducing Regular Expressions to NFAs

- **Goal:** Given regular expression A, construct NFA: $\langle A \rangle = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall $F = \text{set of final states}$

- Will define $\langle A \rangle$ for base cases: $\sigma, \varepsilon, \emptyset$
 - Where σ is a symbol in Σ

- And for inductive cases: $AB, A|B, A^*$
Reducing Regular Expressions to NFAs

- Base case: σ

$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
- Σ is the alphabet
- Q is set of states
- q_0 is starting state
- F is set of final states
- δ is transition relation
Reduction

- Base case: ϵ

 $<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

- Base case: \emptyset

 $<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$
Reduction: Concatenation

Induction: AB

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\]
Reduction: Concatenation

Induction: AB

$\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

$\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

$\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})$
Reduction: Union

Induction: $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: $A|B$

- $<A>$ = $(\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $$ = $(\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B>$ = $(\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0, S1\}, S0, \{S1\},$
 $\delta_A \cup \delta_B \cup \{(S0, \epsilon, q_A), (S0, \epsilon, q_B), (f_A, \epsilon, S1), (f_B, \epsilon, S1))\}$
Reduction: Closure

- Induction: A^*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$
 $\delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\})$
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.

CMSC 330 Summer 2020
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
Draw NFAs for the regular expression \((0|1)^*110^*\)
Reduction Complexity

- Given a regular expression A of size n...

 $\text{Size} = \# \text{ of symbols} + \# \text{ of operations}$

- How many states does $<A>$ have?

 - Two added for each \mid, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Reducing NFA to DFA

DFA ← NFA

can reduce

RE
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

Algorithm

- Input
 - NFA (Σ, Q, q_0, F_n, δ)

- Output
 - DFA (Σ, R, r_0, F_d, δ)

- Using two subroutines
 - ϵ-closure(δ, p) (and ϵ-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

- **We say** \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists \ p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 - \(\{p,\varepsilon,p_1\} \in \delta \), \(\{p_1,\varepsilon,p_2\} \in \delta \), \ldots, \(\{p_n,\varepsilon,q\} \in \delta \)

- **ε-closure(\(\delta \), \(p \))**
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon \)-closure(\(\delta \), \(Q \)) = \{ \(q \mid p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - **Notes**
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
\(\varepsilon\)-closure: Example 1

- Following NFA contains
 - \(p_1 \xrightarrow{\varepsilon} p_2\)
 - \(p_2 \xrightarrow{\varepsilon} p_3\)
 - \(p_1 \xrightarrow{\varepsilon} p_3\)
 - Since \(p_1 \xrightarrow{\varepsilon} p_2\) and \(p_2 \xrightarrow{\varepsilon} p_3\)

- \(\varepsilon\)-closures
 - \(\varepsilon\)-closure\((p_1) = \{ p_1, p_2, p_3 \}\)
 - \(\varepsilon\)-closure\((p_2) = \{ p_2, p_3 \}\)
 - \(\varepsilon\)-closure\((p_3) = \{ p_3 \}\)
 - \(\varepsilon\)-closure\((\{ p_1, p_2 \}) = \{ p_1, p_2, p_3 \} \cup \{ p_2, p_3 \}\)
ε-closure: Example 2

Following NFA contains

- p1 $\xrightarrow{\varepsilon}$ p3
- p3 $\xrightarrow{\varepsilon}$ p2
- p1 $\xrightarrow{\varepsilon}$ p2

Since p1 $\xrightarrow{\varepsilon}$ p3 and p3 $\xrightarrow{\varepsilon}$ p2

ε-closures

- ε-closure(p1) = \{ p1, p2, p3 \}
- ε-closure(p2) = \{ p2 \}
- ε-closure(p3) = \{ p2, p3 \}
- ε-closure(\{ p2, p3 \}) = \{ p2 \} \cup \{ p2, p3 \}
ε-closure Algorithm: Approach

- **Input:** NFA \((\Sigma, Q, q_0, F_n, \delta)\), State Set \(R\)
- **Output:** State Set \(R'\)

Algorithm

1. Let \(R' = R\) \hspace{1cm} \text{// start states}
2. Repeat
 1. Let \(R = R'\) \hspace{1cm} \text{// continue from previous}
 2. Let \(R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}\) \hspace{1cm} \text{// new \(\varepsilon\)-reachable states}
3. Until \(R = R'\) \hspace{1cm} \text{// stop when no new states}

This algorithm computes a **fixed point**
ε-closure Algorithm Example

Calculate ϵ-closure(δ, {p_1})

R R'
{p_1} {p_1}
{p_1} {p_1, p_2}
{p_1, p_2} {p_1, p_2, p_3}
{p_1, p_2, p_3} {p_1, p_2, p_3}

Let $R' = R$
Repeat
 Let $R = R'$
 Let $R' = R \cup \{ q | p \in R, (p, \epsilon, q) \in \delta \}$
Until $R = R'$
Calculating move(p,\sigma)

move(\delta,p,\sigma)

- Set of states reachable from p using exactly one transition on symbol \sigma
 - Set of states q such that \{p, \sigma, q\} \in \delta
 - move(\delta,p,\sigma) = \{ q \mid \{p, \sigma, q\} \in \delta \}
 - move(\delta,Q,\sigma) = \{ q \mid p \in Q, \{p, \sigma, q\} \in \delta \}
 - i.e., can “lift” move() to a set of states Q

Notes:

- move(\delta,p,\sigma) is \emptyset if no transition (p,\sigma,q) \in \delta, for any q
- We write move(p,\sigma) or move(R,\sigma) when \delta clear from context
move(p, σ) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - move(p1, a) = \{ p2, p3 \}
 - move(p1, b) = \emptyset
 - move(p2, a) = \emptyset
 - move(p2, b) = \{ p3 \}
 - move(p3, a) = \emptyset
 - move(p3, b) = \emptyset
 - move({p1,p2}, b) = \{ p3 \}
move(p, σ) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(p_1, a) = \{ p_2 \}$
 - $\text{move}(p_1, b) = \{ p_3 \}$
 - $\text{move}(p_2, a) = \{ p_3 \}$
 - $\text{move}(p_2, b) = \emptyset$
 - $\text{move}(p_3, a) = \emptyset$
 - $\text{move}(p_3, b) = \emptyset$
 - $\text{move}({p_1, p_2}, a) = \{ p_2, p_3 \}$
NFA → DFA Reduction Algorithm ("subset")

- **Input** NFA \((\Sigma, Q, q_0, F_n, \delta)\), **Output** DFA \((\Sigma, R, r_0, F_d, \delta')\)

- **Algorithm**

 Let \(r_0 = \varepsilon\text{-closure}(\delta, q_0)\), add it to \(R\)

 While \(\exists\) an unmarked state \(r \in R\)

 Mark \(r\)

 For each \(\sigma \in \Sigma\)

 Let \(E = \text{move}(\delta, r, \sigma)\)

 Let \(e = \varepsilon\text{-closure}(\delta, E)\)

 If \(e \notin R\)

 Let \(R = R \cup \{e\}\)

 Let \(\delta' = \delta' \cup \{r, \sigma, e\}\)

 Let \(F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}\)

 // DFA start state

 // process DFA state \(r\)

 // each state visited once

 // for each symbol \(\sigma\)

 // states reached via \(\sigma\)

 // states reached via \(\varepsilon\)

 // if state \(e\) is new

 // add \(e\) to \(R\) (unmarked)

 // add transition \(r \rightarrow e\) on \(\sigma\)

 // final if include state in \(F_n\)
NFA → DFA Example 1

- Start = ϵ-closure(δ,p1) = \{ \{p1,p3\} \}
- R = \{ \{p1,p3\} \}
- r \in R = \{p1,p3\}
- move(δ,\{p1,p3\},a) = \{p2\}
 - e = ϵ-closure(δ,\{p2\}) = \{p2\}
 - R = R \cup \{\{p2\}\} = \{ \{p1,p3\}, \{p2\} \}
 - $\delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}
- move(δ,\{p1,p3\},b) = \emptyset
NFA → DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\} \}$
- $r \in R = \{p2\}$
- $\text{move}(\delta,\{p2\},a) = \emptyset$
- $\text{move}(\delta,\{p2\},b) = \{p3\}$
 - $e = \varepsilon\text{-closure}(\delta,\{p3\}) = \{p3\}$
 - $R = R \cup \{\{p3\}\} = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
 - $\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}$

NFA

```
• R = { {p1,p3}, {p2} }
• r ∈ R = {p2}
• move(δ, {p2}, a) = Ø
• move(δ, {p2}, b) = {p3}
  ➢ e = ε-closure(δ, {p3}) = {p3}
  ➢ R = R ∪ {{p3}} = { {p1,p3}, {p2}, {p3} }
  ➢ δ' = δ' ∪ {{p2}, b, {p3}}
```
NFA → DFA Example 1 (cont.)

- \(R = \{ \{p1, p3\}, \{p2\}, \{p3\} \} \)
- \(r \in R = \{p3\} \)
- \(\text{Move}(\{p3\}, a) = \emptyset \)
- \(\text{Move}(\{p3\}, b) = \emptyset \)
- \(\text{Mark } \{p3\}, \text{ exit loop} \)
- \(F_d = \{\{p1, p3\}, \{p3\}\} \)
 - Since \(p3 \in F_n \)
- Done!
NFA → DFA Example 2

R = \{ \{A\}, \{B,D\}, \{C,D\} \}
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:

- p0
- p1
- p2

Transitions:
- a from p0 to p1
- b from p1 to p2
- ε from p0 to p1
- a from p1 to p0

- p0
- p1
- p2

Transitions:
- a from p0 to p1
- b from p1 to p2
- a from p2 to p0
- b from p2 to p0
- a from p1 to p2
- b from p1 to p0
NFA → DFA Example 3

NFA

DFA

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]
NFA → DFA Example
NFA → DFA Practice
NFA → DFA Practice
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$

\[\text{NFA} \quad \begin{array}{c}
A \\
\downarrow 0 \\
B \\
\downarrow 1 \\
C \\
\downarrow 0 \\
D \\
\downarrow 1
\end{array} \quad \begin{array}{c}
A \\
\downarrow 1 \\
B \\
\downarrow 1 \\
C \\
\downarrow 0 \\
D \\
\downarrow 0
\end{array} \quad \begin{array}{c}
A \\
\downarrow 0 \\
BC \\
\downarrow 1 \\
CD \\
\downarrow 0
\end{array} \quad \text{DFA} \]
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Closing the Loop: Reducing DFA to RE

- DFA can be reduced to NFA
- DFA can transform to RE
- NFA can transform to RE
- RE can transform to DFA

CMSC 330 Summer 2020
Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0, 1\}$ such that every string is a multiple of 3 in binary

$$(0 + 1(0 \ 1^* \ 0)1)^*$$
DFA to RE example

RE: \((ab \mid (b \mid aa)(ba)^*(a \mid bb))^*\)
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states
No need to split partition \{S,T,U,V\}

- All transitions on \(a\) lead to identical partition \(P_2\)
- Even though transitions on \(a\) lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**

- **Split partition**
Minimizing DFA: Example 1

- DFA

- Initial partitions
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P2
 - move(S,b) = R ∈ P1
 - move(T,a) = T ∈ P2
 - move(T,b) = R ∈ P1
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition?** → Yes, different partitions for B
 - move(S,a) = T ∈ P2
 - move(T,a) = T ∈ P2
 - move(S,b) = T ∈ P2
 - move(T,b) = R ∈ P1

DFA already minimal
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a,b\}$
Complement of DFA

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- **Note this only works with DFAs**
 - Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complementation