
Building Security In

CMSC 330 Summer 2020

1

Security breaches
• TJX (2007) - 94 million records*

• Adobe (2013) - 150 million records, 38 million users

• eBay (2014) - 145 million records

• Anthem (2014) - Records of 80 million customers

• Target (2013) - 110 million records

• Heartland (2008) - 160 million records

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Just a few:

*containing SSNs, credit card nums, other private info

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

The 2017 Equifax Data Breach
• 148 million consumers’ personal information stolen

• They collect every details of your personal life
• Your SSN, Credit Card Numbers, Late Payments…

• You did not sign up for it

• You cannot ask them to stop collecting your data

• You have to pay to credit freeze/unfreeze

3

Defects and Vulnerabilities

2B LOC 50M LOC

……

• Many (if not all of) these breaches begin by
exploiting a vulnerability

• This is a security-relevant software defect (bug) or
design flaw that can be exploited to effect an
undesired behavior

• The use of software is growing
• So: more bugs and flaws
• Especially in places that are new to using software

4

“Internet of Things” (IOT)

5

Google Home

Amazon Alexa

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-
todays-massive-internet-outage/

Considering Correctness
• All software is buggy, isn’t it? Haven’t we been dealing with

this for a long time?

• A normal user never sees most bugs, or figures out how to
work around them

• Therefore, companies fix the most likely bugs, to save
money

9

Considering Security
Key difference:

An attacker is not a normal user!

• The attacker will actively attempt to find defects, using unusual
interactions and features

• A typical interaction with a bug results in a crash
• An attacker will work to exploit the bug to do much worse, to

achieve his goals

10

Exploitable bugs
• Some bugs can be exploited

• An attacker can control how the program runs so that any
incorrect behavior serves the attacker

• Many kinds of exploits have been developed over
time, with technical names like
• Buffer overflow
• Use after free
• SQL injection
• Command injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

15

What is a buffer overflow?
• A buffer overflow is a dangerous bug that affects programs written in

C and C++

• Normally, a program with this bug will simply crash

• But an attacker can alter the situations that cause the program to do
much worse
• Steal private information
• Corrupt valuable information
• Run code of the attacker’s choice

16

Buffer overflows from 10,000 ft
• Buffer =

• Block of memory associated with a variable

• Overflow =
• Put more into the buffer than it can hold

• Where does the overflowing data go?

Learn more in CMSC 414!
17

Data

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = abc123

Password?
abc123
Failed

X

Normal interaction

18

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!!!! 3.log in

Data

Password?
Overflow!!!!! 3.log in
Access granted

Exploitation

19

What happened?

20

strcpy(buff, “abc”);

• For C/C++ programs
• A buffer with the password could be

a local variable

• Therefore
• The input is too long, and overruns

the buffer
• The attacker’s input includes

machine instructions
• The overrun rewrites the return

address to point into the buffer, at
the machine instructions

• When the call “returns” it executes
the attacker’s code

Stopping the attack
• Buffer overflows rely on the ability to read or write outside the

bounds of a buffer

• C and C++ programs expect the programmer to ensure this
never happens
• But humans (regularly) make mistakes!

• Other languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected
• The compiler inserts checks at reads/writes
• Such checks can halt the program
• But will prevent a bug from being exploited

21

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!

Data

Password?
Overflow!!!!! 3.log in

Program halted

Preventing Exploitation

22

Key idea
• The key feature of the buffer overflow attack is the attacker getting the

application to treat attacker-provided data as instructions (code)
or code parameters

• This feature appears in many other exploits too
• SQL injection treats data as database queries
• Cross-site scripting treats data as browser commands
• Command injection treats data as operating system commands
• Etc.

• Sometimes the language helps (e.g., type safety)
• Sometimes the programmer needs to do more work

23

Attack Scenarios

24

The Internet, in one slide

Browser Web/FTP/etc.
server

Filesystem/D
atabase/etc.

Client Server

(Private)
Data

FS/DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

Need to protect this
state from illicit access

and tampering

25

Interception

Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

26

Malicious clients

Application
Service provider

Client Remote service

CALL xfFHSd

• Server needs to protect itself against malicious clients
• Won’t run the software the server expects
• Will probe the limits of the interface

Exploit

27

Passing the buck

Application
Service provider

Client Remote service

CALL 7df0sdf

• Server needs to protect good clients from malicious clients that
will try to launch attacks via the server

• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

28

Defensive measures
• Two key actions the server can take:

• Validate that client inputs are well formed
• Fallacy: Focus on testing that good inputs produce

good behavior
• Must (also) ensure that malformed inputs result in

benign behavior

• Mitigate harm that might result by minimizing the
trusted computing base

• Isolate trusted components, or minimize privilege to
precisely what is needed, in case something goes
wrong

29

Quiz 1: What are reasonable assumptions?
Suppose you are writing a PDF viewer that is leaner and better than
Acrobat Reader. Which can you assume?

A. PDF files given to your reader will always be well-formed
B. PDF files will never exceed a particular size
C. You viewer will never be used as part of an Internet-hosted

service
D. None of the above

30

Quiz 1: What are reasonable assumptions?
Suppose you are writing a PDF viewer that is leaner
and better than Acrobat Reader. Which can you
assume?

A. PDF files given to your reader will always be well-
formed

B. PDF files will never exceed a particular size
C. You viewer will never be used as part of an

Internet-hosted service
D. None of the above

31

Validating inputs

32

What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

33

> ls
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!
> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then
puts "required argument: textfile path”

…
> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> ls
catwrapper.rb

Possible Interaction

34

Quiz 2: What happened?
A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string
as having two commands, and
executed them both

C. cat was given three files –
hello.txt; and rm and
hello.txt – but halted when it
couldn’t find the second of
these

D. ARGV[0] contains hello.txt
(only), which was then catted

35

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Quiz 2: What happened?
A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string
as having two commands, and
executed them both

C. cat was given three files –
hello.txt; and rm and
hello.txt – but halted when it
couldn’t find the second of
these

D. ARGV[0] contains hello.txt
(only), which was then catted

36

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Possible deployment

Browser Web server

catwrapper.rb

Client Server

GET foo.txtfoo.txt

<output>

37

Consequences?
• If catwrapper.rb is part of a web service

• Input is untrusted — could be anything
• But we only want requestors to read (see) the contents of the files, not

to do anything else
• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs
https://www.owasp.org/index.php/Command_Injection

38

https://www.owasp.org/index.php/Command_Injection

Equifax: What happened
• Equifax used Struts which failed to properly vet input prior to using deserialization. Ruby

had a similar bug sometime back.

• Vulnerability was discovered in a popular open-source software package Apache
Struts, a programming framework for building web applications in Java

• The framework’s popular REST plugin is vulnerable. The REST plugin is used to handle
web requests, like data sent to a server from a form a user has filled out.

• The vulnerability relates to how Struts parses that kind of data and converts it into
information that can be interpreted by the Java programming language.

• When the vulnerability is successfully exploited, malicious code can be hidden inside of
such data, and executed when Struts attempts to convert it.

• Intruders can inject malware into web servers, without being detected, and use it to
steal or delete sensitive data, or infect computers with ransomware, among other things.

39

Input Validation
• We expect input of a certain form

• But we cannot guarantee it always has it
- it’s under the attacker’s control

• So we must validate it before we trust it

• Making input trustworthy
• Sanitize it by modifying it or using it it in such a way that the result is

correctly formed by construction
• Check it has the expected form, and reject it if not

40

system("cat "+ARGV[0])

Checking: Blacklisting
• Reject strings with possibly bad chars: ’ --;

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject inputs
that have ; in
them

if ARGV[0] =~ /;/ then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

41

Sanitization: Blacklisting
• Delete the characters you don’t want: ’ --;

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
cat: rm: No such file or directory
Hello world!
> ls hello.txt
hello.txt

delete
occurrences
of ; from input
string

system(“cat ”+ARGV[0]) system(“cat ”+ARGV[0].tr(“;”,“”))

42

Sanitization: Escaping
• Replace problematic characters with safe ones

• change ’ to \’
• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the
interpreter the string will be handed to

• Web browser/server for URIs
- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

43

Sanitization: Escaping

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape
occurrences
of ‘, “”, ; etc.
in input string

system(“cat ”+ARGV[0])

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end

system(“cat ”+escape_chars(ARGV[0]))

44

Quiz 3: Is this escaping sufficient?
A. No, you should also

escape character &
B. No, some of the escaped

characters are dangerous
even when escaped

C. Both of the above
D. Yes, it’s all good

45

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system(“cat ”+escape_chars(ARGV[0]))

catwrapper.rb:

Quiz 3: Is this escaping sufficient?
A. No, you should also

escape character &
B. No, some of the escaped

characters are dangerous
even when escaped

C. Both of the above
D. Yes, it’s all good

46

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system(“cat ”+escape_chars(ARGV[0]))

catwrapper.rb:

Escaping not always enough
> ls ../passwd.txt
passwd.txt
> ruby catwrapper.rb “../passwd.txt”
bob:apassword
alice:anotherpassword

• A web service probably only wants to give access
to the files in the current directory

• the .. sequence should have been disallowed

• Previous escaping doesn’t help because . is
replaced with \. which the shell interprets as .

47

Path traversal
This is called a path traversal vulnerability. Solutions:

• Delete all occurrences of the . character
• Will disallow legitimate files with dots in them

(hello.txt)

• Delete occurrences of .. sequences
• Safe, but disallows foo/../hello.txt where foo is a

subdirectory in the current working directory (CWD)

• Ideally: Allow any path that is within the CWD or one
of its subdirectories

https://www.owasp.org/index.php/Path_Traversal
48

https://www.owasp.org/index.php/Path_Traversal

Checking: Whitelisting
• Check that the user input is known to be safe

• E.g., only those files that exactly match a filename in the current
directory

• Rationale: Given an invalid input, safer to reject than to fix
• “Fixes” may result in wrong output, or vulnerabilities
• Principle of fail-safe defaults

49

system("cat "+ARGV[0])

Checking: Whitelisting

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

files = Dir.entries(".").reject {|f| File.directory?(f) }

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

reject inputs that
do not mention a
legal file name

50

Validation Challenges
• Cannot always delete or sanitize problematic characters

• You may want dangerous chars, e.g., “Peter O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to eliminate

• Cannot always identify whitelist cheaply or completely
• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper names”)

51

Key Questions
• Which inputs in my program should not be trusted?

• These start from input from untrusted sources
• And these inputs influence (“taint”) other data that flows through my

program
- And could be stored in files, databases, etc.

• How to ensure that untrusted inputs, no matter what they are, will
produce benign results?

• Sanitization, checking, etc. as early as possible
- How to do this depends on the program, and how the inputs are used

52

Quiz 4: As a developer, security is
A. Something I can help address by writing better code
B. Something that writing better code can do little to

address
C. Something that is the purview of the government,

e.g., DHS
D. Something that will never be solved so long as

market forces do not value security

(Pick an answer you think is best)

53

Security
for the
Web

Thanks to Dave Levin for
some slides

The Web
• Security for the World-Wide Web (WWW) presents new

vulnerabilities to consider:
• SQL injection,
• Cross-site Scripting (XSS),

• These share some common causes with memory safety
vulnerabilities; like confusion of code and data
• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

Interacting with web servers

http://www.cs.umd.edu/~mwh/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol
ftp
https
tor

Hostname/server
Translated to an IP address by DNS
(e.g., 128.8.127.3)

Path to a resource

http://facebook.com/delete.php

Path to a resource
Here, the file delete.php is dynamic content
i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments

Here, the file index.html is static content
i.e., a fixed file returned by the server

http://www.cs.umd.edu/~mwh/index.html

Basic structure of web traffic

Browser Web server

Client Server

Database(Private)
Data

• HyperText Transfer Protocol (HTTP)
• An “application-layer” protocol for exchanging

collections of data

HTTP

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)

Basic structure of web traffic

HTTP GET requests
http://www.reddit.com/r/security

User-Agent is typically a browser
but it can be wget, JDK, etc.

http://www.reddit.com/r/security

Referrer URL: the site from which
this request was issued.

HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

Browser Web server

Client Server

HTTP Request

User clicks

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HTTP Response

Basic structure of web traffic

<html> …… </html>

H
ea

de
rs

D
at

a
HTTP

version
Status
code

Reason
phrase

HTTP responses

Quiz 1
HTTP is

65

A. The Hypertext Transfer Protocol
B. The main communication protocol of the WWW
C. The means by which clients access resources hosted
by web servers
D. All of the above

Quiz 1
HTTP is

66

A. The Hypertext Transfer Protocol
B. The main communication protocol of the WWW
C. The means by which clients access resources hosted
by web servers
D. All of the above

SQL injection

67

Defending the WWW

Browser Web server

Database

Client Server

(Private)
Data

Long-lived state, stored
in a separate database

Need to protect this
state from illicit access

and tampering
68

Server-side data
• Typically want ACID transactions

• Atomicity
- Transactions complete entirely or not at all

• Consistency
- The database is always in a valid state

• Isolation
- Results from a transaction aren’t visible until it is complete

• Durability
- Once a transaction is committed, its effects persist despite, e.g.,

power failures

• Database Management Systems (DBMSes)
provide these properties (and then some)

69

SQL (Standard Query Language)

Users
Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Table
Table name

Column

Row
(Record)

SELECT Age FROM Users WHERE Name=‘Dee’; 28
UPDATE Users SET email=‘readgood@pp.com’

WHERE Age=32; -- this is a comment

readgood@pp.com

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);
DROP TABLE Users;

70

http://pp.com
http://pp.com
http://pp.com
http://pp.com
http://pp.com
http://pp.com
http://pp.com

Server-side code

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results
How could you exploit this?

71

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

72

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true
(so: dumps whole user DB) Commented out

SQL injection

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1;
DROP TABLE Users; --’ AND Password=‘whocares’;”;

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

73

http://xkcd.com/327/

75

76

SQL injection
countermeasures

77

The underlying issue

• This one string combines the code and the data
• Similar to buffer overflows
• and command injection

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

78

The underlying issue
result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passuser

Should be
data, not code

79

Intended AST
for parsed
SQL query

Defense: Input Validation
Just as with command injection, we can defend by
validating input, e.g.,

• Reject inputs with bad characters (e.g.,; or --)

• Remove those characters from input

• Escape those characters (in an SQL-specific
manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

80

Sanitization: Prepared Statements
• Treat user data according to its type

• Decouple the code and the data

result = db.execute("SELECT * FROM Users WHERE
Name = ? AND Password = ?", [user, pass])

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders
parsed as strings

81

Arguments

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Using prepared statements
result = db.execute("SELECT * FROM Users WHERE

Name = ? AND Password = ?", [user, pass])

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied
to the leaves, so the
structure of the AST
is fixed

user passfrank’
OR 1=1);
--

82

Quiz 2
What is the benefit of using “prepared statements” ?

83

A. With them it is easier to construct a SQL query
B. They ensure user input is parsed as data, not (potentially) code
C. They provide greater protection than escaping or filtering
D. User input is properly treated as commands, rather than as

secret data like passwords

Quiz 2
What is the benefit of using “prepared statements” ?

84

A. With them it is easier to construct a SQL query
B. They ensure user input is parsed as data, not code
C. They provide greater protection than escaping or filtering
D. User input is properly treated as commands, rather than as

secret data like passwords

