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Formal languages

 

We can view the syntax of a programming language as a game with the goal of distin-
guishing correct from incorrect programs. Given a program and the syntax rules of the lan-
guage, you play the game by answering only one question: is this a correctly formed 
program? If the program matches the patterns in the rules you say ‘Yes”; if the program 
does match the rules you say “No.”

Our game starts with strings of ASCII characters. Some of these strings look like C pro-
grams, such as the examples above; other sequences look nothing like C such as 

 

“This is 
English” 

 

or 

 

“*^%#HDF3DFF#”

 

. The goal of a syntax for C is to sort all the possible ASCII 
strings into valid and invalid C programs. From this point of view the language C is simply 
the set of strings that meet our rules.

In our game if we say “Yes,” a string is valid C, then we are saying the string is in this set. 
If we say “No,” then we are saying the string is not in this set. This is all we mean by the 
term formal language; a formal language is a set of strings that meet a well-defined set of 
patterns or forms.

A

 

 formal grammar

 

 is a systematic way to define a formal language so we can distinguish 
strings in the language from strings outside the language. We will do this with a subset of 
C, simple arithmetic expressions that involve addition, subtraction and single digit num-
bers. A formal grammar has four parts: an 

 

alphabet

 

 of characters in the language, a set of 

 

syntax names

 

 not in the language but used in its definition, a distinguished syntax name 
called the 

 

start symbol

 

, and a set of 

 

syntax rules

 

. Formal grammar like this one are often 
called BNF for Backus-Naur Form, a notation developed by Backus and Naur for Algol.

 

Formal Grammar:

 

 

 

Simple arithmetic expressions in C - version 1

 

Alphabet: the digits and operations

 

 0 1 2 3 4 5 6 7 8 9 + *

 

Syntax names: 

 

<E> 

 

Start symbol:

 

 

 

<E>

 

Rule 1 <E> ->
<E> + <E>

Rule 2 <E> -> 
<E> * <E>

Rule 3 <E> ->
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 

Syntax names are written inside angle brackets 

 

<>

 

. For our simple example we have only 
one, 

 

<E>

 

, where E is short for Expression. When we talk about the syntax of English we 
use syntax names like “noun” and “verb”; the difference is that “noun” is a English word 
but 

 

<E>

 

 is not part of our simple arithmetic language.

 

C program Is it valid?

 

main () {
  int X;
  X = 1;
  }

 

Yes.

 

main [] {
  integer X;
  X = 1
  }

 

No. The brackets should 
be parentheses and a semi-
colon is missing.
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Syntax rules are read as follows: whenever you see the symbol on the left-hand side in a 
formula, you can replace it with the right-hand side (the arrow means “<E> 

 

goes to

 

 <E> + 
<E>”). Whenever you see a vertical bar | it means you can choose between alternatives for 
the replacement (so the last rule is read “<E> 

 

goes to

 

 1

 

 or

 

 2 

 

or

 

 3 etc.”) To use the grammar 
is to create a 

 

derivation

 

 that produces valid formulas in the grammar. Here is a derivation 
for a simple formula “

 

1+2

 

”:

We start with the formula consisting of only the Start Symbol and make substitutions 
according to the rules, one step at a time, until we eliminate all syntax names; the result is 
a formula valid under this grammar. The set of all strings generated by the grammar is said 
to be the language defined by the grammar. We can apply the rules in any order that works 
so this is also a derivation of “

 

1+2

 

”; here we replace the “

 

1

 

” with 

 

<E>

 

 before the “

 

2

 

”.

If a formula is longer and more complex our derivation will be longer but it will still con-
sist of a set of simple applications of the syntax rules. Here is a derivation for the string 
“

 

1+2*3

 

”:

 

Backwards derivations

 

So far we have done

 

 forward

 

 derivations. Forward derivations start with the start symbol 
and generate a string in the language (Chomsky called them generative grammars). In 
computer translation we have the inverse problem; given a formula, determine if it is valid 
by producing a derivation. Given “

 

3 * 1

 

”, is it valid? We solve this by using the rules 
backwards; if you can match a subexpression to the right-hand side of one rule, then 
replace the subexpression by the symbol on the left:

If we can derive the start symbol the formula is valid. Just as with forward derivations, 
longer formulas require longer derivations but each step remains simple. Here is a deriva-
tion for “

 

6 * 9 + 5

 

”  

 

<E> -> <E> + <E>

 

by Rule 1

 

-> 1 + <E>

 

by Rule 3

 

-> 1 + 2

 

by Rule 3

 

<E> -> <E> + <E>

 

by Rule 1

 

-> <E> + 2

 

by Rule 3

 

-> 1 + 2

 

by Rule 3

 

<E> -> <E> + <E>

 

by Rule 1

 

-> 1 + <E>

 

by Rule 3

 

-> 1 + <E> * <E>

 

by Rule 2

 

-> 1 + 2 * <E>

 

by Rule 3

 

-> 1 + 2 * 3

 

by Rule 3

 

3 * 1 -> <E> * 1

 

by Rule 3 With no +, Rule 1 does not apply and
without <E> Rule 2 does not apply.

 

-> <E> * <E>

 

by Rule 3

 

-> <E>

 

by Rule 2 Now Rule 2 applies.

 

6 * 9 + 5 -> <E> * 9 + 5

 

by Rule 3

 

-> <E> * <E> + 5

 

by Rule 3

 

-> <E> + 5

 

by Rule 2

 

-> <E> + <E>

 

by Rule 3

 

-> <E>

 

by Rule 1
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If we cannot derive the start symbol the formula is invalid. Consider “

 

1 # 1

 

”; no rule lets 
you replace a “

 

#

 

” so the derivation must stop at “

 

<E> # <E>

 

” Consider “1 + 1 * * 2”; no 
rule lets you replace a * *. Here is a failed derivation:

Formal grammars with forwards and backwards derivations give us a systematic way to 
determine if a string meets our syntax rules and belongs in the language. When computers 
compile your program they go through a backwards derivation.

 

Parse trees

 

A 

 

parse tree

 

 is a graphical means of presenting a derivation. The example below shows a 
parse tree for our first forward derivation of the formula “

 

1 + 2

 

”. At the top of the tree is 
the start symbol. Each time we apply a rule in our derivation, substituting for a syntax 
name, we show the substitution by drawing arrows from the syntax name downwards to 
the symbols that replaced it. In the diagram below our first rule, Rule 1, replaces 

 

<E>

 

 by 

 

<E>

 

, 

 

+

 

 and 

 

<E>

 

 and yields the three arrows from 

 

<E>

 

 to its replacements. 

Here is a parse tree for the forwards derivation of “

 

1 + 2 * 3

 

”.

In summary, formal grammars are intended to answer one question: does this string belong 
to the language defined by this grammar? Parse trees, forward derivation and backwards 
derivations are three techniques for applying a formal grammar to this question. Each 
technique has strengths, but all will come with the same result.

 

3 * 1 + -> <E> * 1 +

 

by Rule 3

 

-> <E> * <E> +

 

by Rule 3

 

-> <E> +

 

by Rule 2

 

-> ?

 

No rule matches -  derivation fails.
We cannot reach a single <E>.

 

Figure 1. 
Parse Tree for Example 1: 1 + 2

Figure 2. 
Parse tree for “1+2*3”

<E>

<E> <E>

1 2

+

<E> -> <E> + <E> by Rule 1
-> 1 + <E> by Rule 3
-> 1 + 2 by Rule 3

<E>

<E>

<E>1

2

+ <E>

<E> *

3

<E> -> <E> + <E> by Rule 1
-> 1 + <E> by Rule 3
-> 1 + <E> * <E> by Rule 2
-> 1 + 2 * <E> by Rule 3
-> 1 + 2 * 3 by Rule 3
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Exercises for 8.1.1

 

1. Give forward derivations and parse trees for the following expressions using the 
expression grammar given in this section. 

a.  6 * 7 
b.  3 * 6 * 8
c.  1 + 2 + 3 
d.  7 + 3 * 1 + 2

2. Give backwards derivations for the following expressions with the same grammar.
a.  2 + 5
b.  7 * 5 + 4

3. How far could can you get before a forwards derivation for * 8 + 3 + 4 must fail ? 
4. Extend the grammar to include the operations subtraction -, division / and exponentia-

tion ^. Add any rules you need and use the extended grammar to give a forwards deri-
vation of the expression 3^6 * 4 - 8/2 .

 

8.1.2 Formal rules for semantics

 

So far we have used our formal grammar to understand the syntax of expressions and clas-
sify strings as valid or invalid expressions. We now add semantic rules to our grammar to 
allow us to assign meanings to each expression.

Since we have simple arithmetic expressions with no variables the meaning of each 
expression is its numerical value. The value of “

 

7

 

” is 7; the value of “

 

5 + 4 + 5

 

” is 14. 
Notice that we distinguish between the symbol “

 

7

 

” and its numerical value 7. We will rep-
resent the value of an expression by the notation “

 

5 + 4

 

”: 9 ; the expression will be fol-
lowed by a colon and its value. This notation will apply to syntax names so if we use 

 

<E>

 

 
to derive the expression “

 

5 + 4

 

” we can say 

 

<E>

 

:9 . We will use parse trees to keep track 
of different instances of 

 

<E>

 

.

We will add a semantic rule for each syntax rule that tells us how to interpret an expression 
created by that syntax rule. If we create an expression by the Rule 3, 

 

<E> -> 8

 

, then we 
say the meaning of 

 

<E>

 

 is 

 

<E>

 

:8. In each of the semantics rules below we are talking about 
how to give a meaning to the syntax name 

 

<E>

 

 on the left-hand side of the rule.

Our semantic rules allow us to “bubble up” a meaning for a parse tree. At the bottom of 
every parse tree will be expressions that are single numerical digits; these we can immedi-
ately give values. Once the subexpressions for an expression have been assigned a value 

 

TABLE 1. 

 

Semantic rules for simple arithmetic grammar.

 

Rule Syntax Rule Corresponding Semantic Rule

 

1

 

<E> -> <E> + <E> <E>

 

 gets the sum of the two subexpressions.
2

 

<E> -> <E> * <E> <E>

 

 gets the product of the two subexpressions.
3

 

<E> -> 1 | 2 | 3 ... | 9 <E>

 

 gets the value of the numerical digit.
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we can compute, by addition or multiplication, a value for that expression and then bubble 
the value up. Here is an example for the expression “

 

1 + 2 * 3

 

”.

 

Ambiguity

 

Since our semantic rules are tied to our syntax rules the value of an expression becomes 
dependent on the sequence of rules used to derive it. If we reverse the order of the applica-

 

Steps in interpretation Parse tree with attached values

 

Use Semantic Rule 3 to 
give values to all 
expressions that are sin-
gle digits.

Now apply Semantic 
Rule 2 to give a value 6 
to the multiplication 
subexpression.

Finally apply Semantic 
Rule 1 to give a value to 
the entire expression by 
bubbling up the value 7 
to the top.

<E>

<E>:2

<E>:31

2

+ <E>

<E>:2 *

3

<E>

<E>:2

<E>:31

2

+ <E>:6

<E>:2 *

3

<E>:7

<E>:2

<E>:31

2

+ <E>:6

<E>:2 *

3
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tion of rules 1 and 2 in the derivation of “1 + 2 * 3” we can get a second value for the 
expression as follows:

The meaning of this parse tree is 9, different from the value of 7 we gave to the earlier 
parse tree for “1 + 2 * 3”. The two values result from either doing addition first, so we 
have (1 + 2) * 3, or multiplication first, so we have 1 + (2 * 3). This expression is said to be 
ambiguous because it has two parse trees.

A grammar that allows more than one parse tree and value for any expression is also said 
to be ambiguous. We do not want this for programming languages; we want single, clear 
meanings for programs. In standard C multiplication is done before addition; the value of 
this expression should be 7, not 9. To correct this we will develop a more complex gram-
mar that treats multiplication differently from addition. We have also added subtraction 
and division for completeness.

Formal Grammar: Simple arithmetic expressions in C - version 2

Alphabet: digits, operations 0 1 2 3 4 5 6 7 8 9 + - * /
Syntax names: <E> <T> <N> This version adds T (term) and N (number)
Start name: <E>

Rule 1 <E> ->
<E> + <T> | <E> - <T>

Rule 2 <E> -> 
<T>

Rule 3 <T> ->
<T> * <N> | <T> / <N>

Rule 4 <T> -> 
<N>

Rule 5 <N> ->
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Our new rules and syntax names force the grammar to recognize multiplication (*) before 
addition (+), and to recognize them left to right, giving the traditional operator precedence 

Figure 3. 
Second parse tree for “1 + 2 * 3”

<E>:9

<E>:3

<E>:1

1 2

+

<E>:3

<E>:2

*

3
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rules for C. The grammar does this by requiring the rules defines terms <T> and numbers 
<N> (rules 3, 4 and 5) to match the formula before you can use the rules defining <E>.

Here is a derivation and semantic interpretation using our second formal grammar.

If we take our semantics from derivation 4, we get only one possible meaning: 7. The con-
straints in our second formal grammar allow us to construct only on possible tree. This 
grammar is unambiguous.

Natural language grammars and ambiguity

Consider the sentence

Bill saw Ann with the telescope.

This sentence has two reasonable meanings:

Bill looked through the telescope and saw Ann.

Bill saw Ann while she had the telescope.

If we construct a grammar for simple English sentences we will find we can construct 
multiple parse trees for this example. Here is a possible grammar:

TABLE 2. Semantic rules for simple arithmetic grammar - version 2

Rule Syntax Rule Corresponding Semantic Rule
1 <E> -> <E> + <T> <E> gets the value of the sum.

     | <E> - <T> <E> gets the value of the difference. 
2 <E> -> <T> <E> gets the value of <T>
3 <T> -> <T> * <N> <T> gets the value of product.

     | <T> / <N> <T> gets the value of the division.
4 <T> -> <N> <T> gets the value of <N>
5 <N> -> 1 | 2 | 3 ... | 9 <N> gets the value of the digit.

Figure 4. 
Parse Tree for Example 2

<E>:7

<E>:1

<T>:1

1

2

+ <E>:6

<T>:1

*

3

<E> -> <E> + <T> by Rule 1
-> <E> + <T> * <N> by Rule 3
-> <E> + <T> * 3 by Rule 5
-> <E> + <N> * 3 by Rule 4
-> <E> + 2 * 3 by Rule 5
-> <T> + 2 * 3 by Rule 2
-> <N> + 2 * 3 by Rule 4
-> 1 + 2 * 3 by Rule 5

<E>:2 <E>:3

<T>:1 <T>:1

<N>:1 <N>:1
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Formal Grammar: A very simple grammar for English sentences

Alphabet: 
Syntax names: <S> sentence  <NP> noun phrase   <VP> verb phrase
               <PP> prepositional phrase <N> noun    <V> verb   <D> determiner 
Start name: <S>

Rule 1 <S> ->
<NP> <VP>

Rule 2 <NP> -> 
 <N> | <D> <N> | <D> <N> <PP> 

Rule 3 <PP> ->
<P> <NP>

Rule 4 <VP> -> 
<V> <NP> | <V> <NP> <PP>

Rule 5 <N> ->
noun: examples Bill, Ann, telescope

Rule 6 <V> -> 
verb: example saw

Rule 7 <D> -> 
determiner: example the

Rule 8 <P> ->
preposition: example with

The syntax names in this grammar represent typical parts of English speech. Sentences 
<S> are composed of a noun phrase <NP> and a verb phrase <VP> indicating someone 
and what they did. Both noun phrases and verb phrases can be modified by prepositional 
phrases <PP> indicating exactly who or what was done. 

The example sentence, Bill saw Ann with the telescope, is ambiguous because the preposi-
tional phrase “with the telescope” can modify either the verb phrase or the noun phrase 
with Ann. If “with the telescope” modifies the verb phrase it indicates that Bill used the 
telescope so we have our first interpretation. If “with the telescope” modifies the noun 
phrase it indicates that Ann had the telescope so we have our second interpretation. Parse 
trees for the two interpretations are given in the diagram below.

We could change our grammar to force one or the other interpretation, but this would be 
an artificial view of English. English allows both interpretations; it is not the grammar that 
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is ambiguous but the language itself. We use information other than the sentence (Does 
Bill have a telescope? Does Ann?) to disambiguate English sentences.

Computer languages have less forgiving rules of syntax than natural languages. You and I 
could figure out “Ball here now throw,” and we could even guess that the algebraic for-
mula “(12+2” should be 14 but a parentheses is missing. Computers are less flexible than 
us, hence the brittle syntax of their languages. This is a major source of frustration for 
beginning programmers. However, the brittle syntax is often a design choice. Computers 
can and frequently do correct simple errors like the last one by adding the parentheses, but 
the more choices you let the computer make in correcting your programs the more likely 
the computer may introduce an error.

Exercises for 8.1.2
1. Using the first version of the expression grammar, draw parse trees for the following 

expressions and label the trees with the values given by the first set of semantic rules.
a.  3 + 5 * 3 
b.  7 *  2 + 6 
c.  8 * 9 + 3 * 4

2. Use expression (a) above to show that the first version of the expression grammar is 

Figure 5. 
Two parse trees for an English sentence

. 

Bill   saw   Ann   with   the   telescope.

<S>

<NP>
<VP>

<N> <V>

<NP>

<PP>

<P> <D> <N>

<NP>

<N>

Bill   saw   Ann   with   the   telescope.

<S>

<NP>

<VP>

<N> <V>

<NP>

<PP>

<P> <D> <N>

<NP>

<N>
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ambiguous.
3. Use the second version of the expression grammar to draw parse trees for expressions 

(a), (b) and (d) in exercise 1.
4. Label the parse trees you drew in exercise 3 with values given by the second set of 

semantic rules.
5. Using the grammar for English sentences, give a parse tree for the following sentences.

a.  Ann threw Bill.
b.  Ann threw Bill over the hedge.
c.  A hedgehog with attitude threw Ann over the hedge. 

8.1.3 Using grammars for language translation

How would a compiler translate the C assignment statement

Y = 3 + 2 * X;

into machine language? Our examples in the previous section showed how to use semantic 
rules to compute a numerical value for an expression, but a compiler needs to do more to 
translate high-level language elements into machine instructions. Compilers use semantic 
rules that translate parts and pieces of high-level code into small sections of machine code, 
and then put those small sections together into a complete program.

In Section 7.2.2 we presented a translation of the statement above into the SIMPLE 
machine language, but we did not show how this translation might be algorithmically 
derived. In this section we will show how to use the formal grammar techniques from 
8.1.1 to do the translation.

TABLE 3. SIMPLE machine language translation of Y = 3 + 2 * X;

Memory 
Address

Assembly Code 
or Data

Machine or Binary 
Code Translation Interpretation of contents

0 2 0000 0010 Storage for constant 2
1 3 0000 0011 Storage for constant 3
2 5 0000 0101 Storage for variable X
3 0 0000 0000 Storage for variable Y
4 0 0000 0000 Storage for 2*X
5 0 0000 0000 Storage for 2*X + 3
6 Load 0,A 000 00000 Load constant 2 into A
7 Load 2,B 000 10010 Load value of X into B
8 Mult A,B,4 100 00100 Multiply 2 by X, store in 4
9 Load 4,A 000 00100 Load value of 2*X into A
10 Load 1,B 000 10001 Load constant 3 into B
11 Add A,B,5 010 00101 Add 2*X to 3, store in 5
12 Load 5,A 000 00101 Load value of 2*X+3 into A
13 Store A,3 001 00011 Store 2*X+3 into Y
14 0 0000 0000
15 0 0000 0000
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To translate this formula we will need to add two syntax rules to the second version of the 
formal grammar for expression in C. The two rules will adopt the grammar to allow vari-
ables as part of a expression and will give form to the assignment statement.

Formal Grammar: Simple arithmetic expressions in C - version 3: additions for vari-
ables and assignment statements

New syntax name: <assignment-statement>

Rule 6 <variable> -> 
A | B | C | X | Y | Z

Rule 7 <N> -> <variable>

Rule 8 <assignment-statement> ->
<variable> = <E> ;

Here is a backwards derivations of our assignment statement: 

Semantic records

We also need to modify the semantic rules. Instead of keeping only a single numeric value 
for every syntax name in our derivation, we will keep a semantic record that includes two 
parts. A semantic record of an data object like a variable, constant or expression will have 
an address where the value of that object is stored. A semantic record of a operation 
object, like an assignment statement or expression, will have machine code that gives 
show how to compute the object. Notice that expressions will have both; an expression 
gives a set of instructions that result in a data value. Variables and constants will only need 
the address, while many statements will only need the code. Semantic rules will direct 
how to create a semantic record for a given language element.

Here are semantic records for a single constant, 3, and an addition expression, 3 + 4. The 
constant is stored in a memory location (remember, SIMPLE uses addresses 0-15.) When 
we first translate 3, we may not know where it will be stored so it gets a memory location 
represented by the variable M1. Similarly, in the expression 3 + 4 the constant 4 will get 
a variable memory location M2. To add two constants, SIMPLE first loads them into regis-
ters A and B, and then uses the Add instruction. This is the code part of the semantic 

Y = 3 + 2 * X; -> Y = 3 + <N> * X; by Rule 5
-> Y = 3 + <T> * X; by Rule 4
-> Y = 3 + <T> * <variable>; by Rule 6
-> Y = 3 + <T> * <N>; by Rule 7
-> Y = 3 + <T>; by Rule 3
-> Y = <N> + <T>; by Rule 5
-> Y = <T> + <T>; by Rule 4
-> Y = <E> + <T>; by Rule 2
-> Y = <E>; by Rule 1
-> <variable> = <E>; by Rule 6
-> <assignment-statement> by Rule 8
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record of the expression 3 + 4. Since the addition results in a value, this value must be 
given a temporary location M3.

Compilers use a symbol table to keep track of the memory locations for constants, vari-
ables and temporary locations. After the compiler has figured out how many locations it 
needs, it replaces variables like M1, M2 and M3 with real locations.

The figure below shows how the we might attach semantic records to a parse tree of the 
expression <E> -> <E> + <E>. The semantic records are labeled T1, T2 and T3 to distin-
guish them. The semantic record T3 for the entire expression glues together the semantic 
records for the two subexpressions. The code in T3 sequences the code for T1 and T2 
before the code required to compute the addition operation.

On a small scale, this is how a compiler translates a program. The compiler starts by creat-
ing semantic records for data objects at the bottom of the parse tree and then passes these 
records up the parse tree, gluing them together at each syntax name.

Figure 6. 
Parse Tree for Example 2

Figure 7. 
Parse Tree for Example 2

Semantic record for the 
constant 3

Address Code
M1 none needed

Semantic record for the
expression 3 + 4

Address Code
M3 Load M1,A

Load M2,B
Add A,B,M3

<E>:T3

<E>:T1

+

<E>:T2

Semantic record T2

Address Code
M2 code for T2

Semantic record T1

Address Code
M1 code for T1

Semantic record T3

Address Code
M3 code for T1

code for T2
Load M1,A
Load M2,B
Add A,B,M3
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Finishing our original goal: translating Y = 3 + 2 * X

Let us use the methods just explained to translate Y = 3 + 2 * X. From our backwards 
derivation we have the parse tree:

In this parse tree each syntax name has an attached semantic record; the records are 
labeled T1 to T7. Many of the derivation steps do not change the semantic records, so they 
are passed up the tree unchanged; for example, on the right the record T2 is passed up four 
levels before it is combined into T3. The semantic records are given in the table below, 
indexed by their label.

Figure 8. 
Parse Tree for Example 2

TABLE 4. 

Semantic 
record label Address Code Expression translated
T1 0 The constant 2.
T2 2 The variable X.
T3 4 Load 0,A

Load 2,B
Mult A,B,4

The expression 2*X

T4 1 The constant 3.
T5 5 Load 0,A

Load 2,B
Mult A,B,4
Load 4,A
Load 1,B
Add A,B,5

The expression 3 + 2*X

<E>:T5

<E>:T4

<T>:T4

3

2

+ <E>:T3

<T>:T4

*

X

<E>:T1 <E>:T2

<T>:T1 <T>:T2

<N>:T1

<variable>:T2

Y

<assignment-statement>:T7

=<variable>:T6

<N>:T2
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As you can imagine, for a large program the number and complexity of the semantic 
records may become immense. The compiler must have rules for all types of expressions, 
control structures like if and for, function calls and much more. But, compilation is not a 
magic process; each step can be written down and straightforwardly explained.

Exercises for 8.1.3
1. Give a parse tree with semantic records for the statement Z = 2 + 2. Show the 

assembly language translation that results.
2. Give a parse tree with semantic records for the statement C = 9 * 4 * 5. Show the 

assembly language translation that results. 
3. Why is a symbol table needed? Why is it that a constant or variable cannot be given an 

address immediately, when its semantic record is created?
4. Give a set of semantic rules for generating semantic records. Your set should have 

seven rules to correspond with the seven syntax rules.

8.1.4 Grammars for Fractal trees

Formal grammars have not just been applied to natural and computer languages. They 
have a wide range of applications throughout the arts and sciences. A wonderful applica-
tion that merges art and science is the generation of artificial plants. Botanist Aristid Lin-
dermeyer started working on artificial plants in the 1960s and from his work came a 
specialized set of grammars called L-systems. L-systems are used to model the growth of 
plants. Algebraic equations can model the rate of growth of single cells, tissues and stems, 
but have a hard time with branching structures; as you can imagine from our parse trees, 
formal grammars can easily model the production of branches.

An L-system is very similar to a formal grammar, with one major difference; the interpre-
tation of the resulting language. Instead of treating the language as mathematical formulas 
or English sentences, we will interpret each string as a set of instructions for a drawing a 
figure. We will use Turtle graphics as we did in Chapter 3 to draw fractal trees, but this 
time L-systems will substitute for recursion C calls.

T6 3 The variable Y.
T7 Load 0,A

Load 2,B
Mult A,B,4
Load 4,A
Load 1,B
Add A,B,5
Load 5,A
Store A,3

The assignment statement
Y = 3 + 2*X.

TABLE 4. 

Semantic 
record label Address Code Expression translated
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Turtle graphics using command strings

To review, Turtle graphics uses an imaginary turtle that draws on in an (x,y) coordinate 
system according to a few short rules. The turtle has a state (x,y,A), where it is at position 
(x,y) and pointed a direction defined by the angle A.

For our L-system application we will reduce our turtle to three commands, each expressed 
as a single symbol: F, + and -. F means more ahead a distance d; + means rotate delta 
degrees left; and - means rotate delta degrees right. The values of d and delta are fixed in 
advanced of each figure; all the Fs during one session means the same distance d. After a 
command the turtle updates its state (x,y,A).

We can now command our turtle by giving it a string composed of Fs, +s and -s. To draw a 
box, we set d = 1 inch and delta = 90 degrees. We start with the turtle facing up at the ori-
gin of our coordinate system, so the initial state is (0,0,90). The string for drawing a box 

Figure 9. 
Definition of the Graphics Turtle

Figure 10. 
Definition of Turtle Graphics Commands

x

y

A
The turtle has a
position (x,y) and
an angle A relative to
upright.

d

F
forward d

+
rotate delta
degrees 
left

-
rotate delta
degrees 
right

delta
delta
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would be F+F+F+F, an F for each of the four sides. The figure below shows how the turtle 
draws F+F to start the box.

Drawing a branch

You can draw all types of figures with the simple commands F, + and -, but they do force 
the turtle to draw in one continuous line as if the turtle had a pen that could not leave the 
paper. One way to solve this is to give the turtle a little bit of memory, so the turtle can 
draw one part of a figure, remember where it is, go someplace else and draw another part 
of the figure, and then return to where it was. To go back to where it was earlier, the turtle 
must remember its previous state with location and direction. We used recursion in Chap-
ter 3 to remember where the turtle was, but this time we will not.

This time we will give our turtle a stack for memory. A stack is a special kind of memory 
that can store as many previous states as we would like, but that only allows the turtle to 
retrieve the most recently stored state. Imagine that to remember a state, our little turtle 
writes down (x,y,A) on a sheet of paper and drops in the sheet on top of a pile. When the 
turtle wants to retrieve a location, it must pick up a sheet and read the state. But, a stack 

Figure 11. 
Example of Turtle Graphic Commands
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restricts the turtle to the most recent sheet. The turtle cannot leaf through the pile looking 
for a particular place, it must take the one on top. When it reads a state, it throws it away.

To command the turtle to remember where it is, we will use two new symbols. An opening 
bracket, [, tells the turtle to place its current state on the stack. A closing bracket, ], tells 
the turtle to take the current state off the top of the stack and move to that location. Here is 
a example of how to draw a branch with the commands F[-F]F; d is set to 1/2 inch and 
delta to 45°. 

Figure 12. 
Example of Turtle Graphic Commands

Figure 13. 
Example of Turtle Graphic Commands

(0,0,90)

. 

F [ - F ] F
Remember
(0,1,90°)

Return to
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Here is a example of how to draw a branch with the commands F[F[+F]F]-F with the 
same values for d and delta. In this case the stack has to contain two states to handle two 
branches.

An L-System using Turtle graphics

Our L-systems will use this modified Turtle graphics to create strings of commands and 
then draw them. The L-systems use a BNF to generate a string, and then Turtle graphics to 
interpret the string; Turtle graphics are the semantics of the system. Here is an L-system 
for a symmetric bush. The system has only one syntax name and one rule.

Formal Grammar: L-system for a symmetric bush

Alphabet:  F + -  [ ]
Start character: F
Parameters: Distance = 1, Delta = 45°

Rule F ->
F[+F]F[-F]F

To use this grammar, you generate a derivation of n steps; at each step, you replace all pos-
sible Fs simultaneously. So if n=2, we’d have:

As you can see, the strings get very long very soon, hence the need for a computer to han-
dle the details. For n=3 the string has 301 characters. Once you have a string you send it to 

Figure 14. 
Example of Turtle Graphic Commands

F -> F[+F]F[-F]F

-> F[+F]F[-F]F[+F[+F]F[-F]F]F[+F]F[-F]F[-F[+F]F[-F]F]F[+F]F[-F]F

. 

F     [     F     [     +     F     ]     F     ]      -       F
Remember
(2,0,90°)
(1,0,90°)

Remember
(1,0,90°)

Return to
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Return to
(1,0,90°)
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a turtle for interpretation, and it draws the bush. Here are three generations of this L-sys-
tem: 

Other examples of L-Systems

The examples in the next figure appear in The Algorithmic Beauty of Plants by Przemys-
law Prusinkiewicz and Aristid Lindermayer. The upper two and lower left are plants, the 
lower right an abstract curve that could be a coastline. The next figure also comes from 
this book, but it uses a more complex form of Turtle graphics to draw a model of the bush 

Figure 15. 
Example of Turtle Graphic Commands

N=1 N=2 N=3
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in a full three dimensions before the picture is created. Another example is included on 
color plate XX.

Figure 16. 
Parse Tree for Example 2

n = 5, delta = 25.7°
Rule: F -> F[+F]F[-F]

n = 4, delta = 22.5°
Rule:F-> FF- [-F+ F+F]+[+F-F-F] 

n = 5, delta = 25.7°
Rule: F -> F[+F]F[-F][F]

n = 4, delta = 90°
Rule: F -> F-F+F-F-F
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