
CMSC 132: Object-Oriented Programming II

Inheritance

1CMSC 330 Summer 2021

Mustang vs Model T

2

Ford Mustang

Ford Model T

CMSC 330 Summer 2021

Interior: Mustang vs Model T

3CMSC 330 Summer 2021

Frame: Mustang vs Model T

4

Mustang

Model T
CMSC 330 Summer 2021

Compaq: old and new

5

Price: US$3590

Weight: 28 pounds

CPU: Intel 8088, 4.77MHz

RAM: 128K, 640K max

CMSC 330 Summer 2021

Object Oriented Programming

An Object-Oriented Language supports the following fundamental

concepts:

• Polymorphism

• Inheritance

• Encapsulation

• Abstraction

• Classes

• Objects

• Instance

• Method

6CMSC 330 Summer 2021

Object

Objects have states and behaviors.

Example: A dog has states - color, name, breed as well as

behaviors – wagging the tail, barking, eating.

An object is an instance of a class.

• If we consider the real-world, we can find many objects around

us, cars, dogs, humans, etc. All these objects have a state and a

behavior.

CMSC 330 Summer 2021 7

Class

A class can be defined as a template/blueprint that

describes the behavior/state that the object of its type

support.

CMSC 330 Summer 2021 8

public class Bicycle{

public int gear;

public int speed;

public Bicycle(int startSpeed, int startGear) {

gear = startGear;

speed = startSpeed;

}

public void setGear(int v){gear = v;}

public void applyBrake(int dec){speed -= dec;}

public void speedUp(int inc) { speed += inc; }

}

Java Class Example

Fraction Class

• Numerator

• Denominator

• Reduce a Fraction to Lowest Terms

• Addition, Multiplication

• …

• Now, let us implement the Fraction class.

• Code will be posted on course site.

CMSC 330 Summer 2021 9

Inheritance

• Classes can be derived from other classes, thereby inheriting fields

and methods from those classes.

• A class that is derived from another class is called a subclass (also

a derived class, extended class, or child class).

• The class from which the subclass is derived is called a superclass

(also a base class or a parent class).

• Derived (Child) class can be base (parent) class

10
CMSC 330 Summer 2021

Inheritance

11

Shape

Circle RectangleTriangle

Right -Triangle Equilateral -

Triangle

Motivation: In real life objects have a hierarchical structure:

Square

CMSC 330 Summer 2021

Inheritance

Define a general class

Later, define specialized classes based on the general

class

These specialized classes inherit properties from the

general class

12

Person

Student Employee

Faculty StaffUndergrad Grad

CMSC 330 Summer 2021

Inheritance

13

Person

Student Employee

Faculty StaffUndergrad Grad

Person: name, address, phone, email

Student: college, major, gpa

Employee: Salary, dateHired, office

Faculty: rank, officeHours

Staff: title

Undergrad: freshman, sophomore, junior, or senior)

Grad: advisor, level (ms or phd)

CMSC 330 Summer 2021

Inheritance cont.

What are some properties of a Person?

• name, height, weight, age

How about a Student?

• ID, major, gpa

Does a Student have a name, height, weight, and age?

• Student inherits these properties from Person

14
CMSC 330 Summer 2021

is-a relationship

This inheritance relationship is known as an is-a relationship

A Grad student is a Student

A Student is a Person.

Is a Person a Student? – Not necessarily!

15
CMSC 330 Summer 2021

Why inheritance is useful

Enables you to define shared properties and actions once

Derived classes can perform the same actions as base

classes without having to redefine the actions

If desired, the actions can be redefined – method

overriding

16
CMSC 330 Summer 2021

Person Class
public class Person {

private String name;
public Person(){

name = "";
}
public Person(String name){

this.name = name;
}
public void setName(String newName){

name = newName;
}
public String getName(){

return name;
}
@Override
public String toString(){

return "Name:"+name;
}

}

17

Person

-name

+Person()

+Person(String name):void

+setName(String name) : void

+getName() : String

CMSC 330 Summer 2021

Student Class
public class Student extends Person{
private int id;
public Student() {
id = 0;

}
public Student(String name, int id) {

super(name);
this.id = id;

}
public void setID(int idNumber) {

id = idNumber;
}
public int getID(){

return id;
}
@Override
public String toString(){

return "Id:"+ id +"\tName:" + getName();
}

}

18

Person

-name

+Person()

+Person(String name):void

+setName(String name) : void

+getName() : String

Student

-id

+Student()

+Student(String name, int id) : void

+setID(int id) : void

+getID(): int

+toString() : String

CMSC 330 Summer 2021

Dissecting the Student Class

• Extends: To specify that Student is a derived class (subclass) of Person we add

the descriptor “extends” to the class definition:

public class Student extends Person {

…

}

• Notice that a Student class

• Inherits everything from the Person class

• A Student IS-A Person (wherever a Person is needed, we can use a Student).

19
CMSC 330 Summer 2021

Super()

• super(): When initializing a new Student object, we need to initialize

its base class (or superclass). This is done by calling super(…).

For example, super(name) invokes the constructor Person(name)

• super(…) must be the first statement of your constructor

• If you do not call super(), Java will automatically invoke the base

class’s default constructor

• What if the base class’s default constructor is undefined? Error

• You must use “super(…)”, not “Person(…)”.

20
CMSC 330 Summer 2021

Memory Layout and Initialization Order
• When you create a new derived class object:

• Java allocates space for both the base class instance variables and the

derived class variables

• Java initializes the base class variables first, and then initializes the derived

class variables

• Example:

Person ted = new Person("Ted Goodman");

Student bob = new Student("Bob Goodstudent", 100);

21

name Ted Goodman

Bob Goodstudent

100

ted

name

id
bob

CMSC 330 Summer 2021

Inheritance
• A Student “is a” Person:

• By inheritance a Student object is also a Person object. We can
use a Student reference anywhere that a Person reference is
needed

Person robert = bob; // Okay: A Student is a Person

• We cannot reverse this. (A Person need not be a Student.)

Student bob2 = robert;

// Error! Cannot convert Person to Student

23
CMSC 330 Summer 2021

Overriding Methods

• New Methods: A derived class can define entirely new
instance variables and new methods

• Overriding: A derived class can also redefine existing
methods

public class Person {

…

public String toString() { … }

}

public class Student extends Person {

…

public String toString() { … }

}

Student bob = new Student("Bob Goodstudent", 100);

System.out.println("Bob's info: " + bob);

24

The derived class can

redefine this method.

Since bob is of type Student,

this invokes the Student toString()

CMSC 330 Summer 2021

Overriding and Overloading

• Don’t confuse method overriding with method overloading.

Overriding: occurs when a derived class defines a method with the same name

and parameters as the base class.

Overloading: occurs when two or more methods have the same name, but have

different parameters (different signature).

Example:
public class Person {

public void setName(String n) { name = n; }

…

}

public class Faculty extends Person {

public void setName(String n) {

super.setName(“The Evil Professor ” + n);

}

public void setName(String first, String last) {

super.setName(first + “ ” + last);

}

}

25

The base class defines

a method setName()

Overriding: Same name and

parameters; different

definition.

Overloading: Same name, but

different parameters.

CMSC 330 Summer 2021

Quiz 1: Output of following program

class Test {

int i;

}

class Main {

public static void main(String args[]){

Test t;

System.out.println(t.i);

}

}

26

A. 0

B. garbage value

C. compiler error

D. runtime error

CMSC 330 Summer 2021

Quiz 1: Output of following program

class Test {

int i;

}

class Main {

public static void main(String args[]){

Test t;

System.out.println(t.i);

}

}

27

A. 0

B. garbage value

C. compiler error: variable not initialized.

D. runtime error

CMSC 330 Summer 2021

Quiz 2: Output of following program

class Test {

int i;

}

class Main {

public static void main(String args[]){

Test t = null;

System.out.println(t.i);

}

}

28

A. 0

B. garbage value

C. compiler error

D. runtime error

CMSC 330 Summer 2021

Quiz 2: Output of following program

class Test {

int i;

}

class Main {

public static void main(String args[]){

Test t = null;

System.out.println(t.i);

}

}

29

A. 0

B. garbage value

C. compiler error

D. runtime error: Null pointer exception

CMSC 330 Summer 2021

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}

}

class Child extends Base{

void display(){System.out.print(”Child ");}

}

Base b= new Base();

Child c = new Child ();

Base ref = b;

ref.display();

ref = c;

ref.display();

30

A. Compilation error

B. Base Child

C. Child Base

D. Runtime error

CMSC 330 Summer 2021

Quiz 3: Output of following program
class Base{

void display() {System.out.print(”Base ");}

}

class Child extends Base{

void display(){System.out.print(”Child ");}

}

Base b= new Base();

Child c = new Child ();

Base ref = b;

ref.display();

ref = c;

ref.display();

31

A. Compilation error

B. Base Child

C. Child Base

D. Runtime error

CMSC 330 Summer 2021

super and this

• super: refers to the base class object

• super(…): invokes base class constructor

• super.toString(): invokes toString() of the parent class

• this: refers to the current object
• We can refer to our own data and methods using “this.” but this

usually is not needed

• We can invoke any of our own constructors using this(…). As with
the super constructor, this can only be done within a constructor,
and must be the first statement of the constructor. Example:

public Fraction(int n) {

this(n,1);

}

37
CMSC 330 Summer 2021

Memory Layout

class Base{

private int a;

protected int b;

protected int c;

protected void m1(){}

public void m2(){}

}

38

class Child extends Base{

private int d;

public void m1(){}

public void m3(){}

}

Base

Child

The Java Virtual Machine does not mandate any particular

internal structure for objects.

CMSC 330 Summer 2021

Memory Layout

class Base{

private int a;

protected int b;

protected int c;

protected void m1(){}

public void m2(){}

}

39

class Child extends Base{

private int d;

public void m1(){}

public void m3(){}

}

Pointer to m1()

Pointer to m2()

VTABLE

Pointer to

vtable

a

b

c

Base object

CMSC 330 Summer 2021

Memory Layout

class Base{

private int a;

protected int b;

protected int c;

protected void m1(){ }

public void m2(){ }

}

40

class Child extends Base{

private int d;

public void m1(){ }

public void m3(){ }

}

Pointer to m1()

Pointer to m2()

VTABLE

Pointer to

vtable

a

b

c

Pointer to m1()

Pointer to m2()

VTABLE

Pointer to m3()

Pointer to

vtable

a

b

c

d

Base object

Child object

CMSC 330 Summer 2021

Memory Layout

class Base{

private int a;

protected int b;

protected int c;

protected void m1(){}

public void m2(){}

}

41

class Child extends Base{

private int d;

public void m1(){}

public void m3(){}

}

Pointer to m1()

Pointer to m2()

VTABLE

Pointer to

vtable

a

b

c

Pointer to m1()

Pointer to m2()

VTABLE

Pointer to m3()

Pointer to

vtable

a

b

c

d

Base object

Child object

Each class has one vtable.

All objects of this class shares the vtable.

CMSC 330 Summer 2021

Memory Layout: practice

class Base{

public int x;

private int y;

protected void m1(){}

public void m2(){}

}

42

class Child extends Base{

private int z;

public void m1(){}

public void m3(){}

}

CMSC 330 Summer 2021

Base b = new Base();

Child c = new Child();

Base b2 = new Child();

Inheritance and Private

• Private members:

• Child class inherits all the private data of Base class

• However, private members of the base class cannot be accessed

directly

• Why is this? After you have gone to all the work of setting up privacy, it

wouldn’t be fair to allow someone to simply extend your class and now

have access to all the private information

43
CMSC 330 Summer 2021

Quiz 5: True/False

Except Object, which has no superclass, every class has one and only

one direct superclass.

44

A. True

B. False

CMSC 330 Summer 2021

Quiz 5: True/False

Except Object, which has no superclass, every class has one and only

one direct superclass.

45

A. True

B. False

CMSC 330 Summer 2021

Quiz 6:

class Base {

public void foo(){

println("Base");

}

}

class Derived extends Base {

private void foo(){

println("Derived");

}

}

…

Base b = new Derived();

b.foo();

…
46

A. Base

B. Derived

C. Compiler Error

D. Runtime Error

CMSC 330 Summer 2021

Quiz 6:

class Base {

public void foo(){

println("Base");

}

}

class Derived extends Base {

private void foo(){

println("Derived");

}

}

…

Base b = new Derived();

b.foo();

…
47

A. Base

B. Derived

C. Compiler Error

D. Runtime Error

It is compiler error to give

more restrictive access to a

derived class function which

overrides a base class

function.

CMSC 330 Summer 2021

Quiz 7:

48

class Animal has a subclass Mammal. Which of the following

is true:

A. Because of single inheritance, Mammal can have no

subclasses.

B. Because of single inheritance, Mammal can have no other

parent than Animal.

C. Because of single inheritance, Animal can have only one

subclass.

D. Because of single inheritance, Mammal can have no siblings.

CMSC 330 Summer 2021

Quiz 7:

49

class Animal has a subclass Mammal. Which of the

following is true:

A. Because of single inheritance, Mammal can have no

subclasses.

B. Because of single inheritance, Mammal can have no other

parent than Animal.

C. Because of single inheritance, Animal can have only one

subclass.

D. Because of single inheritance, Mammal can have no siblings.

CMSC 330 Summer 2021

Access level

50

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

CMSC 330 Summer 2021

Object

• Object is the superclass of all java classes

• The class Object has no instance variables, but defines a

number of methods. These include:

toString(): returns a String representation of this object

equals(Object o): test for equality with another object o

• Every class you define should, overrides these two methods

with something that makes sense for your class (hashCode

method is also included in the group)

51
CMSC 330 Summer 2021

Early and Late Binding

• Motivation: Consider the following example:

Base b = new Child();

b.toString();

• Q: Should this call Base’s toString or Child’s toString?

• A: There are good arguments for either choice:

Early (static) binding: The variable b is declared to be of type Base.

Therefore, we should call the Base’s toString

Late (dynamic) binding: The object to which b refers was created as a “new

Child”. Therefore, we should call the Child’s toString

Pros and cons: Early binding is more efficient, since the decision can be made

at compile time. Late binding provides more flexibility

• Java uses late binding (by default): so Faculty toString is called

(Note: C++ uses early binding by default.)

52
CMSC 330 Summer 2021

Polymorphism

• Java’s late binding makes it possible for a single reference variable to refer to

objects of many different types. Such a variable is said to be polymorphic

(meaning having many forms)

• Example: Create an array of various university people and print

Shape[] list = new Shape[3];

list[0] = new Rect(10,20);

list[1] = new Circle (10);

list[2] = new Triangle(3,4,5)

for (int i = 0; i < list.length; i++)

System.out.println(list[i].getArea());

• What type is list[i]? It can be a reference to any object that is derived from Shape.

The appropriate getArea will be called

53

Output:

CMSC 330 Summer 2021

getClass and instanceof

• Objects in Java can access their type information dynamically

• getClass(): Returns a representation of the class of any object

Person bob = new Person(…);

Person ted = new Student(…);

if (bob.getClass() == ted.getClass()) // false (ted is

really a Student)

• instanceof: You can determine whether one object is an instance of (e.g., derived from)

some class using instanceof. Note that it is an operator (!) in Java, not a method call

54
CMSC 330 Summer 2021

Up-casting and Down-casting

• We have already seen that we can assign a derived class

reference anywhere that a base class is expected

Upcasting: Casting a reference to a base class (casting up

the inheritance tree). This is done automatically and is

always safe

Downcasting: Casting a reference to a derived class. This

may not be legal (depending on the actual object type).

You can force it by performing an explicit cast

• Illegal downcasting results in a ClassCastException run-time

error

55
CMSC 330 Summer 2021

Safe Downcasting

• Can we check for the legality of a cast before trying it?

• A: Yes, using instanceof.

56

For(s:Shape){

if(s instanceof Circle){

Circle c = (Circle)s;

int r = c.getRadius();

}

}

Only Circle has getRadius method

CMSC 330 Summer 2021

Disabling Overriding with “final”

• Sometimes you do not want to allow method overriding

Correctness: Your method only makes sense when applied

to the base class. Redefining it for a derived class might

break things

Efficiency: Late binding is less efficient than early binding.

You know that no subclass will redefine your method. You

can force early binding by disabling overriding

• We can disable overriding by declaring a method to be “final”

57
CMSC 330 Summer 2021

Disabling Overriding with “final”

• final: Has two meanings, depending on context:

• Define symbolic constants:

public static final int MAX_BUFFER_SIZE = 1000;

• Indicate that a method cannot be overridden by derived classes

public class Parent {

…

public final void someMethod() { … }

}

public class Child extends Parent {

…

public void someMethod() { … }

}

58

Subclasses cannot

override this method

Illegal! someMethod is

final in base class.

CMSC 330 Summer 2021

Quiz 8

class Base {

final public void show() {

println("Base");

}

}

class Derived extends Base {

public void show() {

println("Derived");

}

}

class Main {

public static void(String[] args){

Base b = new Derived();

b.show();

}

}

59

A. Base

B. Derived

C. Compiler Error

D. Runtime Error

CMSC 330 Summer 2021

Quiz 8

class Base {

final public void show() {

println("Base");

}

}

class Derived extends Base {

public void show() {

println("Derived");

}

}

…

Base b = new Derived();

b.show();

…

60

A. Base

B. Derived

C. Compiler Error

D. Runtime Error

Final methods cannot be

overridden. Compiler

Error: overridden method

is final

CMSC 330 Summer 2021

Quiz 9

class Base {

public static void show() {

println("Base”);

}

}

class Derived extends Base {

public static void show() {

println("Derived");

}

}

…

Base b = new Derived();;

b.show();

…
61

A. Base

B. Derived

C. Compiler Error

CMSC 330 Summer 2021

Quiz 9

class Base {

public static void show() {

println("Base”);

}

}

class Derived extends Base {

public static void show() {

println("Derived");

}

}

…

Base b = new Derived();;

b.show();

…
62

A. Base

B. Derived

C. Compiler Error

when a function is static,

runtime polymorphism

doesn't happen.

CMSC 330 Summer 2021

Abstract Class

Abstract classes cannot be instantiated, but

they can be subclassed.

It may or may not include abstract methods.

63

public abstract class Shape {

private String id;

public Shape (String id) {this.id = id};

public abstract double getArea();

public String getId() {return id;}

}

This abstract method must be defined in a

concrete subclass.

CMSC 330 Summer 2021

Abstract Class

64

public abstract class Shape {

private String id;

public Shape (String id) {this.id = id};

public abstract double getArea();

public String getId() {return id;}

}

public class Circle extends Shape {

private double radius;

public Circle (double r) {

super(“Circle”); radius = r;

}

double getArea(){return Math.PI * radius * radius;}

public double getRadius() {return radius;}

public void setRadius(double r) {radius = r}

}

Must implement

CMSC 330 Summer 2021

