CMSC 132: Object-Oriented
Programming l|

DIRECTED GRAPHS

Graphs slides are modified from COS 126 slides of
Dr. Robert Sedgewick.

Directed graphs

Digraph

* Set of vertices connected pairwise by directed edges.

vertex of
outdegree 4
and indegree 2

o y

directed path @ di d

irectea pa @ e 1cr;/ecclt§
(4

fromorroZ\;{ p;
e

Road network

Vertex = intersection; edge = one-way street.

v W @) T > » . EZD - ‘é
W Mulberry St d. 6& \‘@ ,‘é’ 3 =
z % A\ Q D Q = St 3)
EB = 8 334 < = e = i
) = 2 Z.)) 5
R s 0‘? S > - = <
p) o N
3 Tician von e I IBOWNTOWNY &2 2 DUNB‘;';
2 exington lviarke %) it 1] St E Baltimore St
% . g
W RaYSRSt] JONESTOWN ' ombard St
Hippodrome Theatre & ltimore St @ Shot Tower
W Baltimore St m E Balti %) = £ Pratt St
= 2) & () 2
@ Royal Farms Arena § = (S 5 1
niversity of Maryland » I = i @ =
i == Lom, » o
Medical Center @ @ W Lombard St &2 E\LOMbgrd st S ?‘a‘\% ARIREY g Gough st S
i o = £ S < (558 S o
5 - Ae2 =
i ® 2 £ pratt St % o\ & 2 Bank St
Q W Pratt St) > QB\N“]
INNER HARBOR R & z
) @ National Aquarium EastemAve »
=5 o
; ~ t
Oriole Park at (o) 2] Transportation Center 2 Pier Six: Pavilion @ Fleet S FELLS POINT
nsay St Camden Yards at Camden Yards A loeanna st
1) i 61 Harpy, HARBOR EAST (
=8 %‘% oLl OTTERBEIN |
el = 4 \ee St € o Qes St
9 T o f/7@ : W o ,“\’b
& n ~ Tk Q
J ’7ng 2 : L g
W"‘/an, Blyy 0_Key Hwy ® American Visionary.
& ugg Art Museum
& H FEDERAL
(17 amb o
3 Urg g, HILL-MONTGOMERY =
A Q"

Baltimore inner harbor

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happening oocurrence oocurren natural_event

miracle
ac hurman_action human_activity

chiange alteration madification miracle
/ \ \ group_action
damage har impairment transition Increase farfeit farfeiture sacrifice action
/ﬂ 3 F\\\
resistance opposition transgression
runladderravel leapjump saltation jump leap
change
/-—-—:7 J""‘-

demaotion variation

motion movemen mowve

T T

lcomotion travel descent
FUR FURRINE jump parachuting

i

dash sprint

Digraph applications

digraph vertex edge
transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

Some digraph problems

Path:

* |sthere a directed path fromstot?
Shortest path:

* What is the shortest directed path fromstot?
Topological sort:

 Can you draw a digraph so that all edges point upwards?
Strong connectivity:

* Is there a directed path between all pairs of vertices?
Transitive closure:

* For which vertices v and w is there a path from v tow ?
PageRank:

* What is the importance of a web page?

Digraph Implementation

public class Digraph

void
lterable<Integer>
int

int

Digraph

String

Digraph(int V)

Digraph(In in)

addEdge(int v, int w)
adj(int v)

V()

E()

reverse()

toString()

create an empty digraph with V
vertices

create a digraph from input
Stream

add a directed edge v lw
vertices pointing from v
number of vertices
number of edges

reverse of this digraph

String representation

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

~B -

~o 3]
~5 2]
B2
~4]

o
.
—

N o0

~-l4 {810

~6—{9]
~[6]
~[12f—1]
~12]
~[4—12

=[]

6)o
O

I

N
H O Lo NGO VA WNRE O

LTI T[]

77T TN

=
N

Adjacency-lists digraph implementation

public class Graph ({

private final int V;
private final Bag<Integer>[] adj; <« adjacency lists
public Graph (int V) {

this.V = V;)

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>() ;

create empty graph with
V vertices

} —

public void addEdge (int v, int w) ({
adj[v] .add(w) ;

}

public Iterable<Integer> adj(int v) { iterator for vertices

return adj[v]; pointing from v

Digraph representation

Comparisons of three different representations:

insert edge edge from iterate over vertices
representation space .
fromvtow v to w? pointing from v?

list of edges E

adjacency matrix V2 1t 1 \Y

outdegree(v) outdegree(v)

adjacency lists

t disallows parallel edges

10

Depth-first search in digraphs

» Same method as for undirected graphs.

* Every undirected graph is a digraph (with edges in both
directions).

* DFS is adigraph algorithm.

DFS (to visit a vertex v)
Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.

11

Depth-first search demo

To visit a vertex v :
Mark vertex v as visited.
Recursively visit all unmrked vertices pointing from v.

12

Depth-first search demo

v marked[] edgeTol]
0 T =
1 T 0
reachable 2 T 3
from vertex 0 3—> T 4
4 T 5
5 T 0
6 F =
7 F =
8 F -
9 F -
10 F =
11 F =
12 F =

Depth-first search Implementation

Code for directed graphs identical to undirected one.

public class DirectedDFS {
private boolean[] marked;
public DirectedDFS (Digraph G, int s) {
marked = new boolean[G.V ()]
dfs (G, s);
}
private void dfs (Digraph G, int v) {
marked[v] = true;
for (int w : G.adj(v))
if ('marked([w]) dfs (G, w);
}
public boolean visited(int v) ({
return marked|[v];

}

14

Reachability application: program
control-flow analysis

» Every program is a digraph.

* Vertex = basic block of
Instructions (straight-line
program).

* Edge = jump.

» Dead-code elimination.

* Find (and remove)
unreachable code.

15

Reachabillity application: mark-sweep
garbage collector

» Every data structure is a
digraph.
* Vertex = object.
* Edge = reference.

» ROOts:

* Objects known to be directly
accessible by program (e.g.,
stack).

» Reachable objects:

* Objects indirectly accessible by
program (starting at a root and
following a chain of pointers).

16

Breadth-first search in digraphs

Same method as for undirected graphs. Every undirected
graph is a digraph (with edges in both directions). BFS is
a digraph algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited. Repeat
until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to E + V.

17

Directed breadth-first search demo

Repeat until queue is empty:
Remove vertex v from queue.
Add to queue all unmarked vertices pointing from v and mark them.

18

Directed breadth-first search demo

Repeat until queue is empty:
Remove vertex v from queue.

Add to queue all unmarked vertices pointing from v and mark them.

edgeTo[] distTol]

0

Vv
0
1

2
3
4
5

w N B O O |

1
1
3
2
4

19

Multiple-source shortest paths

» Given a digraph and a set of source vertices, find
shortest path from any vertex in the set to each other

vertex.
» Use BFS, but initialize by enqueuing all source vertices

0
Example: Q @

S={1,7,10}.

Shortest path to 4 is 7—6—4. 1 @ e

Shortest path to 5 is 7—-6—0—-5

Shortest path to 12 is 10—12. é 9
O

20

Topological Sort

« Directed Acyclic Graph (DAG).

 linear ordering of its vertices such that for every directed
edge uv from vertex u to vertex v, u comes before v in

the ordering.

: : i

21

Precedence scheduling

» Goal:

* Given a set of tasks to be completed with
precedence constraints, in which order should we
schedule the tasks? o

» Digraph model:
* vertex =task;
* edge = precedence constraint.

0.CMSC216 0 ;
1.CMSC330 X \
2.CMSC351

G)—() §D

3.CMSC131 7
4.CMSC420 @
5.CMSC250 ¢

6.CMSC132 6

OO

Topological sort demo

» Run depth-first search.
» Return vertices in reverse postorder

0
. postorder
N 4,1,2,5,0,6,3
topological order
3,6,0,5,2,1,4
/

Depth-first search order

public class DepthFirstOrder ({
private boolean[] marked;
private Stack<Integer> reversePost;
public DepthFirstOrder (Digraph G) ({
reversePost = new Stack<Integer> () ;
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if ('marked|[v]) dfs (G, Vv);
}
private void dfs (Digraph G, int wv) {
marked([v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
reversePost.push (v) ;

}

public Iterable<Integer> reversePost() {
return reversePost;

}
}

Topological sort

>

2.

2

Kahn's algorithm
* First described by Kahn (1962),

find a vertex which has no incoming edges

Insertitinto asetS; atleast one such vertex must exist in a
non-empty acyclic graph.

. Remove outgoing edges from that vertex, and repeat 1

@/@

26

https://en.wikipedia.org/wiki/Topological_sorting#CITEREFKahn1962

Quiz 1

One advantage of adjacency list representation
over adjacency matrix representation of a graph is
that in adjacency list representation, space Is
saved for sparse graphs.

A. True
B. False

27

Quiz 1

One advantage of adjacency list representation
over adjacency matrix representation of a graph is
that in adjacency list representation, space Is
saved for sparse graphs.

A. True
B. False

28

Quiz 2

Traversal of a graph is different from tree because

A. There can be a loop in graph so we must maintain a visited flag
for every vertex

B. DFS of a graph uses stack, but inorder traversal of a tree is
recursive

C. BFS of a graph uses queue, but a time efficient BFS of a tree is
recursive.

D. All of the above

29

Quiz 2

Traversal of a graph is different from tree because

A. There can be a loop in graph so we must maintain a visited flag
for every vertex

B. DFS of a graph uses stack, but inorder traversal of a tree is
recursive

C. BFS of a graph uses queue, but a time efficient BFS of a tree is
recursive.

D. All of the above

30

Quiz 3

One possible order of Breadth First Search on the
following graph

MNOPQR
NQMPOR
QMNPRO
QMNPOR

00w

31

Quiz 3

One possible order of Breadth First Search on the
following graph

MNOPQR
NQMPOR
QMNPRO
QMNPOR

00wy

32

Quiz 4

Given two vertices in a graph 1 and 6, which of the two
traversals (BFS and DFS) can be used to find if there is
path from 1 to 67

Only BFS

Only DFS e

Both BFS and DFS
Neither BFS nor DFS

00w >

33

Quiz 4

Given two vertices in a graph 1 and 6, which of the two
traversals (BFS and DFS) can be used to find if there is
path from 1 to 67

Only BFS

Only DFS e

Both BFS and DFS
Neither BFS nor DFS

0O w>

34

Quiz 5

Consider the DAG with Consider V ={1, 2, 3, 4, 5, 6},
shown below. Which of the following is NOT a topological
ordering?

123456
132456
132465
324165

o0 Wy

Quiz 5

Consider the DAG with Consider V ={1, 2, 3, 4, 5, 6},
shown below. Which of the following is NOT a topological
ordering?

2 5
1 4
" 6
3
A. 123456
B. 132456
C. 132465
D. 324165

