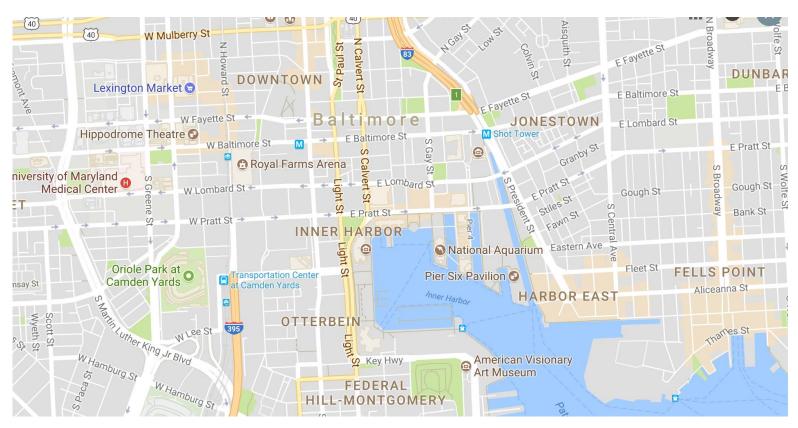

CMSC 132: Object-Oriented Programming II

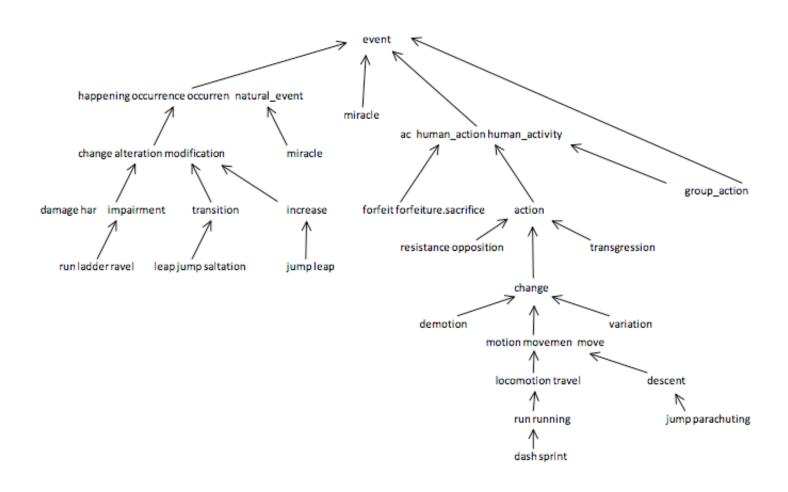
DIRECTED GRAPHS

Graphs slides are modified from COS 126 slides of Dr. Robert Sedgewick.


Directed graphs

- Digraph
 - Set of vertices connected pairwise by directed edges.

Road network


Vertex = intersection; edge = one-way street.

Baltimore inner harbor

WordNet graph

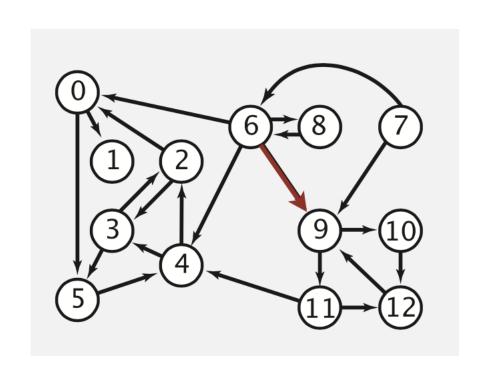
Vertex = synset; edge = hypernym relationship.

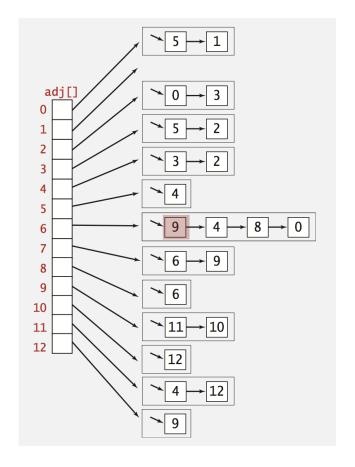
Digraph applications

digraph	vertex	edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Some digraph problems

- Path:
 - Is there a directed path from s to t?
- Shortest path:
 - What is the shortest directed path from s to t?
- Topological sort:
 - Can you draw a digraph so that all edges point upwards?
- Strong connectivity:
 - Is there a directed path between all pairs of vertices?
- Transitive closure:
 - For which vertices v and w is there a path from v to w?
- PageRank:
 - What is the importance of a web page?


Digraph Implementation


public class Digraph

```
create an empty digraph with V
                   Digraph(int V)
                                                       vertices
                                                       create a digraph from input
                   Digraph(In in)
                                                       stream
                   addEdge(int v, int w)
                                                       add a directed edge v□w
             void
Iterable<Integer> adj(int v)
                                                       vertices pointing from v
              int
                   V()
                                                       number of vertices
              int
                   E()
                                                       number of edges
         Digraph
                  reverse()
                                                       reverse of this digraph
           String toString()
                                                       string representation
```

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Adjacency-lists digraph implementation

```
public class Graph {
  private final int V;
                                                    adjacency lists
  private final Bag<Integer>[] adj; <-</pre>
  public Graph(int V) {
    this.V = V;
    adj = (Bag<Integer>[]) new Bag[V];
                                             create empty graph with
    for (int v = 0; v < V; v++)
                                              V vertices
        adj[v] = new Bag<Integer>();
  public void addEdge(int v, int w) {
       adj[v].add(w);
  public Iterable<Integer> adj(int v) {
                                                  iterator for vertices
        return adj[v];
                                                  pointing from v
```

Digraph representation

Comparisons of three different representations:

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	Е	1	E	Е
adjacency matrix	V ²	1 †	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

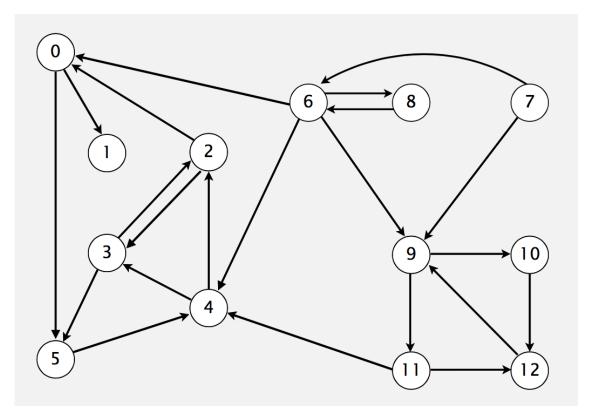
† disallows parallel edges

Depth-first search in digraphs

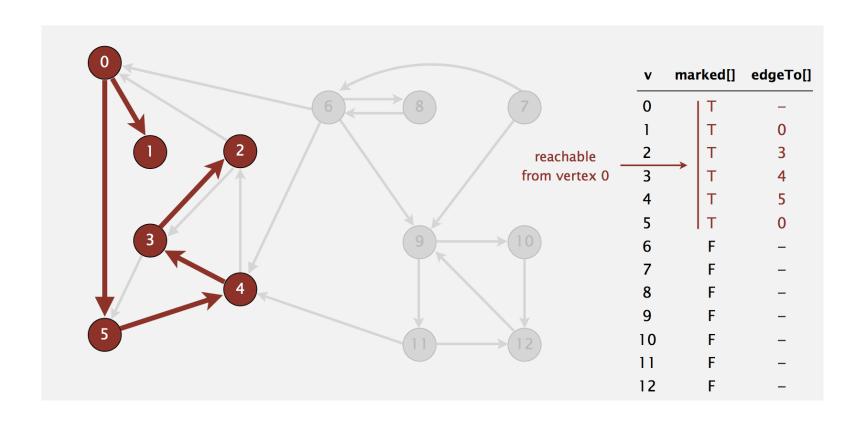
- Same method as for undirected graphs.
 - Every undirected graph is a digraph (with edges in both directions).
 - DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.


Recursively visit all unmarked vertices w pointing from v.

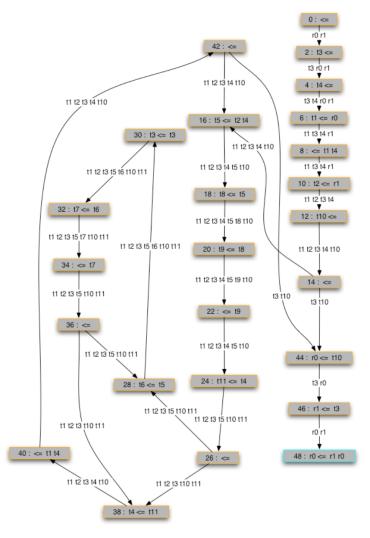
Depth-first search demo


To visit a vertex *v*:

Mark vertex *v* as visited.

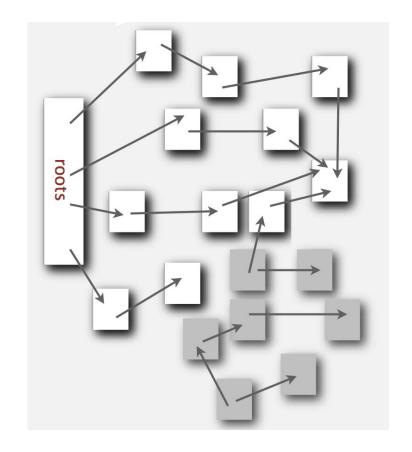
Recursively visit all unmrked vertices pointing from v.

Depth-first search demo


Depth-first search Implementation

Code for directed graphs identical to undirected one.

```
public class DirectedDFS {
  private boolean[] marked;
  public DirectedDFS(Digraph G, int s) {
    marked = new boolean[G.V()];
    dfs(G, s);
  private void dfs(Digraph G, int v) {
     marked[v] = true;
     for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
  public boolean visited(int v) {
      return marked[v];
```


Reachability application: program control-flow analysis

- Every program is a digraph.
 - Vertex = basic block of instructions (straight-line program).
 - Edge = jump.
- Dead-code elimination.
 - Find (and remove) unreachable code.

Reachability application: mark-sweep garbage collector

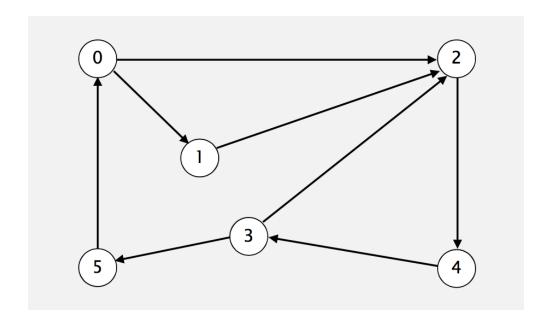
- Every data structure is a digraph.
 - Vertex = object.
 - Edge = reference.
- Roots:
 - Objects known to be directly accessible by program (e.g., stack).
- Reachable objects:
 - Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Breadth-first search in digraphs

Same method as for undirected graphs. Every undirected graph is a digraph (with edges in both directions). BFS is a digraph algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited.

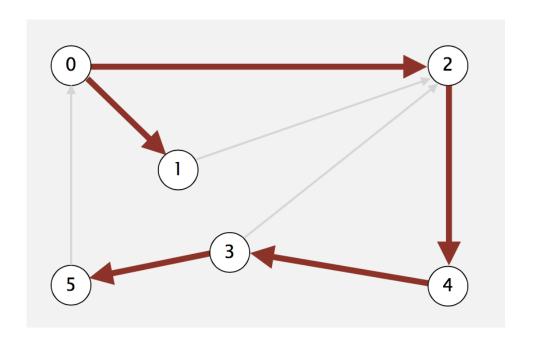

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to E + V.

Directed breadth-first search demo

Repeat until queue is empty:

Remove vertex *v* from queue.

Add to queue all unmarked vertices pointing from *v* and mark them.



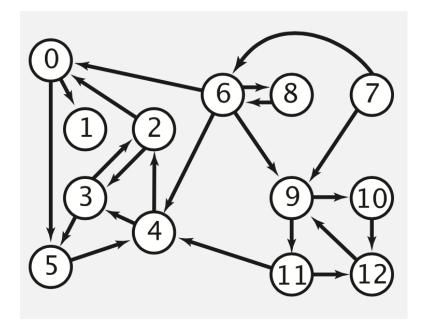
Directed breadth-first search demo

Repeat until queue is empty:

Remove vertex *v* from queue.

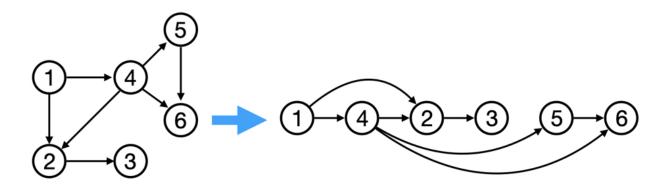
Add to queue all unmarked vertices pointing from *v* and mark them.

v	edgeTo[]	distTo[]
0	_	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4


Multiple-source shortest paths

- Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.
- Use BFS, but initialize by enqueuing all source vertices

Example:


$$S = \{1, 7, 10\}.$$

Shortest path to 4 is $7\rightarrow 6\rightarrow 4$. 1 Shortest path to 5 is $7\rightarrow 6\rightarrow 0\rightarrow 5$ Shortest path to 12 is $10\rightarrow 12$.

Topological Sort

- Directed Acyclic Graph (DAG).
- linear ordering of its vertices such that for every directed edge <u>uv</u> from <u>vertex</u> <u>u</u> to <u>vertex</u> <u>v</u>, <u>u</u> comes before <u>v</u> in the ordering.

Precedence scheduling

Goal:

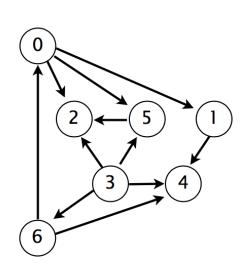
 Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model:

- vertex = task;
- edge = precedence constraint.

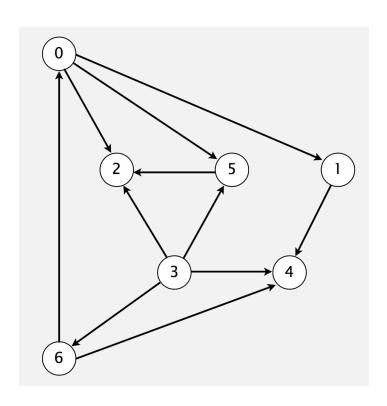
0.CMSC216

1.CMSC330


2.CMSC351

3.CMSC131

4.CMSC420


5.CMSC250

6.CMSC132

Topological sort demo

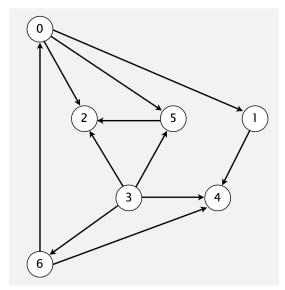
- Run depth-first search.
- Return vertices in reverse postorder

postorder

4,1,2,5,0,6,3

topological order

3,6,0,5,2,1,4


Depth-first search order

```
public class DepthFirstOrder {
  private boolean[] marked;
  private Stack<Integer> reversePost;
  public DepthFirstOrder(Digraph G) {
     reversePost = new Stack<Integer>();
     marked = new boolean[G.V()];
     for (int v = 0; v < G.V(); v++)
        if (!marked[v]) dfs(G, v);
  private void dfs(Digraph G, int v) {
     marked[v] = true;
     for (int w : G.adj(v))
     if (!marked[w]) dfs(G, w);
     reversePost.push(v);
public Iterable<Integer> reversePost() {
  return reversePost;
```

Topological sort

Kahn's algorithm

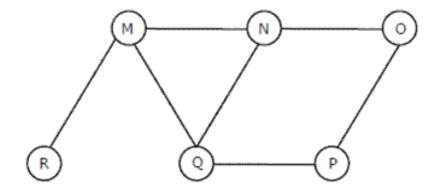
- First described by <u>Kahn (1962)</u>,
- 1. find a vertex which has no incoming edges
- insert it into a set S; at least one such vertex must exist in a non-empty acyclic graph.
- 2. Remove outgoing edges from that vertex, and repeat 1

One advantage of adjacency list representation over adjacency matrix representation of a graph is that in adjacency list representation, space is saved for sparse graphs.

- A. True
- B. False

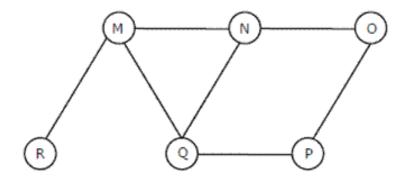
One advantage of adjacency list representation over adjacency matrix representation of a graph is that in adjacency list representation, space is saved for sparse graphs.

- A. True
- B. False


Traversal of a graph is different from tree because

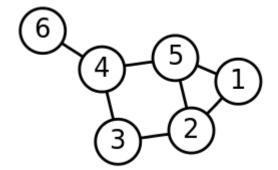
- A. There can be a loop in graph so we must maintain a visited flag for every vertex
- B. DFS of a graph uses stack, but inorder traversal of a tree is recursive
- C. BFS of a graph uses queue, but a time efficient BFS of a tree is recursive.
- D. All of the above

Traversal of a graph is different from tree because

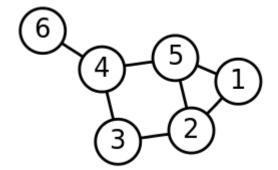

- A. There can be a loop in graph so we must maintain a visited flag for every vertex
- B. DFS of a graph uses stack, but inorder traversal of a tree is recursive
- C. BFS of a graph uses queue, but a time efficient BFS of a tree is recursive.
- D. All of the above

One possible order of Breadth First Search on the following graph

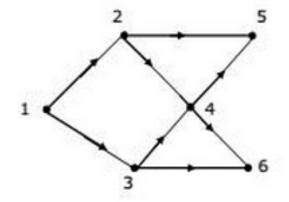
- A. MNOPQR
- B. NQMPOR
- C. QMNPRO
- D. QMNPOR


One possible order of Breadth First Search on the following graph

- A. MNOPQR
- B. NQMPOR
- C. QMNPRO
- D. QMNPOR

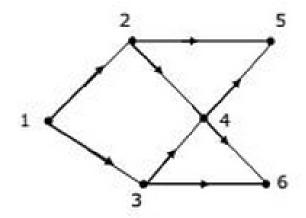

Given two vertices in a graph 1 and 6, which of the two traversals (BFS and DFS) can be used to find if there is path from 1 to 6?

- A. Only BFS
- B. Only DFS
- C. Both BFS and DFS
- D. Neither BFS nor DFS



Given two vertices in a graph 1 and 6, which of the two traversals (BFS and DFS) can be used to find if there is path from 1 to 6?

- A. Only BFS
- B. Only DFS
- C. Both BFS and DFS
- D. Neither BFS nor DFS



Consider the DAG with Consider $V = \{1, 2, 3, 4, 5, 6\}$, shown below. Which of the following is NOT a topological ordering?

- A. 123456
- B. 132456
- C. 132465
- D. 324165

Consider the DAG with Consider $V = \{1, 2, 3, 4, 5, 6\}$, shown below. Which of the following is NOT a topological ordering?

- A. 123456
- B. 132456
- C. 132465
- D. 324165