CMSC 132: Object-Oriented Programming II

Shortest Paths

Shortest Paths

Shortest paths

Given an edge-weighted digraph, find the shortest path from s to t.

Shortest path variants

- Which vertices?
- Single source: from one vertex s to every other vertex.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.
- Restrictions on edge weights?
- Nonnegative weights.
- Arbitrary weights.
- Cycles?
- No directed cycles.
- No "negative cycles."
- Simplifying assumption: Shortest paths from s to each vertex v exist.

Weighted directed edge

public class DirectedEdge
DirectedEdge(int v, int w, double weight)
int from()
int to()
double weight()
String
toString()

weighted edge $v \rightarrow w$
vertex v
vertex w
weight of this edge
string representation

Idiom for processing an edge e: int vee.from(), w = e.to();

Weighted directed edge implementation

```
public class DirectedEdge{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight) {
    this.v = v;
    this.w = w;
    this.weight = weight;
    }
    public int from() { return v; }
public int to() { return w; }
public double weight() { return weight; }
}
```


Edge-weighted digraph

public class EdgeWeightedDigraph

	EdgeWeightedDigraph (int V)	edge-weighted digraph with V vertices
void	addEdge (DirectedEdge e)	add weighted directed edge e
Iterable<DirectedEdge>	adj(int v)	edges pointing from ed
int	V()	number of vertices
int	E()	number of edges
Iterable<DirectedEdge>	edges ()	all edges
String	toString ()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph implementation

```
public class EdgeWeightedDigraph{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < v; v++)
        adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e){
        int v = e.from();
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```


Single-source shortest paths

What is the shortest distance and path from A to H ?

Single-source shortest paths

- Data structures: Represent the Shortest Path with two vertexindexed arrays:
- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

```
public double distTo(int v) {
    return distTo[v];
}
```


public Iterable<DirectedEdge> pathTo(int v) \{
Stack<DirectedEdge> path $=$ new Stack<DirectedEdge>();
DirectedEdge e = edgeTo[v];
while (e ! = null) \{
path.push (e) ;
e = edgeTo[e.from()];
\}
return path;
\}

Edge relaxation

- Relax edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$.
- distTo[v] is length of shortest known path from \mathbf{s} to \mathbf{v}.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $\mathbf{e}=\mathbf{v} \rightarrow \mathbf{w}$ gives shorter path to \mathbf{w} through v , update both distTo[w] and edgeTo[w]

$\mathrm{v} \rightarrow \mathrm{w}$ successfully relaxes

Edge relaxation

- Relax edge $\mathrm{e}=\mathrm{v} \rightarrow \mathrm{w}$.
- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ gives shorter path to w through v, update both distTo[w] and edgeTo[w]

```
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```


Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)
Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat until optimality conditions are satisfied:
Relax any edge.

Efficient implementations: How to choose which edge to relax?

- Dijkstra's algorithm (nonnegative weights).
- Topological sort algorithm (no directed cycles).
- Bellman-Ford algorithm (no negative cycles).

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

V	distTo[]	edgeTo
A	0	--
B	∞	
C	∞	
D	∞	
E	∞	
F	∞	

Update A's neighbors

V	distTo[]	edgeTo
A	0	--
B	$\mathbf{2}$	0
C	∞	
D	$\mathbf{1}$	A
E	∞	
F	∞	

Update D's neighbors

V	distTo[]	edgeTo
A	0	--
B	2	A
C	3	D
D	1	A
E	3	D
F	9	D
G	5	D

Update B's neighbors

V	distTo[]	edgeTo
A	0	--
B	$\mathbf{2}$	A
C	$\mathbf{3}$	D
D	$\mathbf{1}$	A
E	$\mathbf{3}$	D
F	$\mathbf{9}$	D
G	$\mathbf{5}$	D

No Update

Update E's neighbors

V	distTo[]	edgeTo
A	0	--
B	2	A
C	3	D
D	$\mathbf{1}$	A
E	3	D
F	9	D
G	5	D

No Update

Update C's neighbors

V	distTo[]	edgeTo
A	0	--
B	$\mathbf{2}$	A
C	$\mathbf{3}$	D
D	$\mathbf{1}$	A
E	$\mathbf{3}$	D
F	$\mathbf{8}$	C
G	$\mathbf{5}$	D

Update G's neighbors

V	distTo[]	edgeTo
A	0	--
B	2	A
C	3	D
D	$\mathbf{1}$	A
E	3	D
F	6	G
G	5	D

Update F's neighbors

V	distTo[]	edgeTo
A	0	--
B	2	A
C	3	D
D	$\mathbf{1}$	A
E	3	D
F	6	G
G	5	D

No Update

Dijkstra's algorithm Demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm Implementation

```
public class DijkstraSP{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;
    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
        distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
        int v = pq.delMin();
        for (DirectedEdge e : G.adj(v))
            relax(e);
    }
    }
}
```


Shortest Path Demo

Shortest Path Demo

Shortest Path Demo

If the graph has negative weighted edges, Dijkstra's algorithm does not work.

Acyclic shortest paths

- Consider vertices in topological order. Relax all edges pointing from that vertex.

01475236

Acyclic shortest paths

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

Longest paths in edge-weighted DAGs

- Formulate as a shortest paths problem in edge-weighted DAGs.
- Negate all weights.
- Find shortest paths.
- Negate weights in result
- Key point. Topological sort algorithm works even with negative weights.
longest paths input

$5->4$	0.35
$4->7$	0.37
$5->7$	0.28
$5->1$	0.32
$4->0$	0.38
$0->2$	0.26
$3->7$	0.39
$1->3$	0.29
$7->2$	0.34
$6->2$	0.40
$3->6$	0.52
$6->0$	0.58
$6->4$	0.93

shortest paths input

$$
\begin{array}{ll}
5->4 & -0.35 \\
4->7 & -0.37 \\
5->7 & -0.28 \\
5->1 & -0.32 \\
4->0 & -0.38 \\
0->2 & -0.26 \\
3->7 & -0.39 \\
1->3 & -0.29 \\
7->2 & -0.34 \\
6->2 & -0.40 \\
3->6 & -0.52 \\
6->0 & -0.58 \\
6->4 & -0.93
\end{array}
$$

Longest paths in edge-weighted DAGs

- Parallel job scheduling.
- Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

job	duration	must complete before		
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29.0	4	6	

Critical path method

- To solve a parallel job-scheduling problem, create edge-weighted DAG:
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
> Begin to end (weighted by duration)
> Source to begin(0 weight)
> End to sink(0 weight)
- One edge for each precedence constraint (0 weight).

Critical path method

Use longest path from the source to schedule each job.

Quiz 1

There are multiple shortest paths between vertices S and T. Which one will be reported by Dijstra's shortest path algorithm?
A. SDT
B. SBDT

C. SACDT
D. SACET

Quiz 1

There are multiple shortest paths between vertices S and T. Which one will be reported by Dijstra's shortest path algorithm?
A. SDT

B. SBDT
C. SACDT
D. SACET

Quiz 2

In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by

A. Dijkstra's algorithm starting from S.
B. Performing a DFS starting from S.
C. Performing a BFS starting from S.
D. None of the above

Quiz 2

In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by
A. Dijkstra's algorithm starting from S.
B. Performing a DFS starting from S .
C. Performing a BFS starting from S .
D. None of the above

