CMSC 132: Object-Oriented
Programming l|

Shortest Paths

Sion h<?) Sellman rv DT VIS Q
nore = | U g s
: . S 2
Den, Hillandale & 31 min | £ - 2%
evy A | 18.8 miles & s %
2 View —_— g 5
— S &
495 £ &
£ 3
r 3
Adelphi Greenbelt
Idge Ry 520 550
vy Chase D Ele_m;‘yn =
Wl g eights
— . Silver Spring Langley Park College Park 507 Goddard
©24C% pr = @D 195
£ i, Greenbelt RPark &
2 '/\/;/«4-@) S5 o
3 L
£ Y £4954
(A7)
< 410 :
7 ‘ — New Lanham
) % Chilum = % fm) 27 min { Carrollton
S, Military RON 2 143 miles
SHIP % = - J
. 2 X 704
g% = >
2 w?/z) ,
% MURaier Landover Hills P
z NORTHWEST Bladensburg 14954 |
WASHINGTON
nian National ® oL UL G
ological Park = HEIGHTS enarden
2
2 0/} . Y
Z QX 4
= NORAMEAST)%r% Sheriff R 202
Washi ngton WASEINGTON ‘/\o,;/’({ FedExField ® . Lake
oy, % €na p,
" Phwy NOMA 1 St NE o Qe 2 {
@ €ning Ry NE ’17&
= ¥
’V .
United States Capitol) E Capitol St SE -
)\ CAPITOL HILL 2 Capitol s
2 Heights 02954
(4. B 5 / Lar¢
S SOUTHWEST R Walker Mill
WL WASHINGTON < & 3
SOUTHEAST &€ Coral Hills
Sl 088

WASHINGTON

@7 N

Shortest paths

Given an edge-weighted digraph, find the shortest path
fromstot.

edge-weighted digraph

4->5 0.35
S->4 0.35 (OD—
4->7 0.37 w®/
5->7 0.28 ~—2)
7->5 0.28 ‘k’/,(:)ﬂz;‘;::::<:>
5->1 0.32
0--1 038 (W= °
0->2 0.26
7->3 0.39 shortest path from 0to 6
=2 e 0->2 0.26
2->7 0.34
2->7 0.34
6->2 0.40
7->3 0.39
3->6 0.52 3->6 0.52
6->0 0.58 '
6->4 0.93

Shortest path variants

Which vertices?
* Single source: from one vertex s to every other vertex.
* Source-sink: from one vertex s to another t.
* All pairs: between all pairs of vertices.
Restrictions on edge weights?
* Nonnegative weights.
* Arbitrary weights.
Cycles?
* No directed cycles.
* No "negative cycles."

Simplifying assumption: Shortest paths from s to each vertex v
exist.

Weighted directed edge

public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v—w
int from() vertex v
int to() vertex w
double weight() weight of this edge
String toString() string representation
weight

ldiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge implementation

public class DirectedEdge{
private final int v, w;
private final double weight;

public DirectedEdge (int v, int w, double weight) {
this.v = v;
this.w = w;
this.weight = weight;

}

public int from() { return v; }
public int to() { return w; }
public double weight() { return weight; }

Edge-weighted digraph

public class EdgeWeightedDigraph

EdgeWeightedDigraph (int V)

void addEdge (DirectedEdge e)

Iterable<DirectedEdge> adj(int v)

int V()

int E()
Iterable<DirectedEdge> edges|()
String toString()

Conventions. Allow self-loops and parallel edges.

edge-weighted
digraph with V
vertices

add weighted
directed edge e

edges pointing from
v

number of vertices
number of edges

all edges

string representation

Edge-weighted digraph: adjacency-lists
representation

S
LOTN,

v\:-;ij'tE ~lof2].26}—~[0[4].38]
s oo @/ ~[1]3].29]
1T B £ Sone
s1oz o —{~Clels Z Rest)
73 ol sHT T C-Ghls]
zg §§§ jis ~[s[1]32+{5]7].28~5]4].35]
So o \\|6|4|.93|—»|6|0|.58|—~|6|2.40|
oY ~7]3].39}+7]5].28]

Edge-weighted digraph implementation

public class EdgeWeightedDigraph{
private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph (int V) {
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag|[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>() ;
}

public void addEdge (DirectedEdge e) {
int v = e.from() ;
adj[v] .add(e) ;

}

public Iterable<DirectedEdge> adj(int v) {
return adj[v];

}

Single-source shortest paths

What is the shortest distance and path from A to H?

@D 11 @
15 ’ 8 17
6 @ 1
+ @ 1 16 12
3
18 (®) 9 ——(g)
> 4 10

14

©) 05 (D

10

Single-source shortest paths

Data structures: Represent the Shortest Path with two vertex-

indexed arrays:
* distTo[v] is length of shortest path from s to v.

* edgeTol|v] is last edge on shortest path from s to v.

public double distTo (int v) { DA NAL
return distTo[v]; (bﬁ// t ?\\ti)
} AE\/L\ 3 qr/ﬁf
(2) \&/

public Iterable<DirectedEdge> pathTo (int v) {
Stack<DirectedEdge> path = new Stack<DirectedEdge>() ;

DirectedEdge e = edgeTo[V];

while (e '= null) {
path.push(e) ;
e = edgeTo[e.from()];

}

return path;
11

Edge relaxation

Relax edge e = v—w.
* distTo|v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* If e = v—w gives shorter path to w through v, update both
distTo[w] and edgeTo[w]

() O/G{ 3.1
v—Ww successfully relaxes

@ 72 4.4
black edges

are in edgeTo[]

12

Edge relaxation

Relax edge e = v—w.
* distTo[v] is length of shortest known path from s to v.
* distTo[w] is length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

* If e = v—w gives shorter path to w through v, update both distTo[w] and
edgeTo[w]

private void relax (DirectedEdge e) { C}__»C>,/»({&‘

int v = e.from(), w = e.to(); Cfi: 13

if (distTo[w] > distTo[v] + e.weight()) { \
distTo[w] = distTo[v] + e.weight(); / e

e, black edges
} are in edgeTo[]

edgeTo [w]

13

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
Relax any edge.

Efficient implementations: How to choose which edge to relax?
* Dijkstra's algorithm (nonnegative weights).

* Topological sort algorithm (no directed cycles).

* Bellman-Ford algorithm (no negative cycles).

14

Dijkstra's algorithm

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).

« Add vertex to tree and relax all edges pointing from that vertex.

15

Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

distTo[] | edgeTo
0 --

oo

oo

8
MM O|O|m| >

16

Update A’'s neighbors

o0

V | distTo[] | edgeTo
A 0 --

B 2 0

C %

D 1 A

E %

F

17

Update D’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

18

Update B's neighbors

No Update

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

19

Update E’'s neighbors

No Update

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 9 D
G 5 D

20

Update C’s neighbors

V | distTo[] | edgeTo
A 0 -
B 2 A
C 3 D
D 1 A
E 3 D
F 8 C
G 5 D

21

Update G’s neighbors

V | distTo[] | edgeTo
A 0 --
B 2 A
C 3 D
D 1 A
E 3 D
F 6 G
G 5 D

22

Update F’s neighbors

| \% | distTo[] | edgeTo |

No Update

23

Dijkstra's algorithm Demo

« Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

1 15 >

s /

@<8\1‘ 12\ ;
9 /QG N
VN

24

Dijkstra's algorithm

Consider vertices in increasing order of distance from s (non-tree
vertex with the lowest distTo[] value).
Add vertex to tree and relax all edges pointing from that vertex.

()

@

(2)

v distTo[] edgeTo[]
0 0.0 -

1 5.0 0-1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 45

6 25.0 2—6

7 8.0 0—7

25

Dijkstra's algorithm Implementation

public class DijkstraSP{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s) {
edgeTo = new DirectedEdge[G.V ()],
distTo = new double[G.V()];
pg = new IndexMinPQ<Double>(G.V())
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
pg.insert(s, 0.0);
while ('pg.isEmpty()) {
int v = pqg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

26

Shortest Path Demo

Shortest Path Demo

8 7

28

Shortest Path Demo

If the graph has negative weighted edges, Dijkstra's algorithm does
not work.

29

Acyclic shortest paths

. Consider vertices in topological order. Relax all
edges pointing from that vertex.

1 15 >
5/4 /
01475236 <@< |]2\ ?

\Q . . 9

9 T
\ L 1
S &
s — 13 \

30

Acyclic shortest paths

. Consider vertices in topological order.
Relax all edges pointing from that vertex.

01 4 7 5 2 3 6

(%)

distTo[] edgeTol[]
0.0

v
0
s 1 5.0 0—-1
2 14.0 52
3 17.0 2—3
4 9.0 0—4
5
6
7

13.0 45

O
@) @/'
@/ - o o

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
* Negate all weights.
* Find shortest paths.

* Negate weights in result

Key point. Topological sort algorithm works even with negative

weights.

longest paths input

.35
.37
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

o

OO0 OO0 O0OO0OO0OO0OO0OO0OO0o

shortest paths input

nUE
.37
-0.
-0.
.38
.26
.39
.29
.34
.40
.52
.58
.93

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

35

28
32

32

Longest paths in edge-weighted DAGs

. Parallel job scheduling.
* Given a set of jobs with durations and precedence constraints,

schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the
constraints.

job duration musgg;off:lf lete

0 41.0 1 7 9

1 51.0 2

2 50.0

3 36.0

4 38.0

5 45.0 !

6 21.0 3 8 ! 3

7 32.0 3 8 0 2 o $ 2
8 32.0 2 > 2

9 29.0 4 6 (ll 4|1 7|0 9|1 143 17|3

Parallel job scheduling solution

33

Critical path method

To solve a parallel job-scheduling problem, create edge-weighted
DAG:
* Source and sink vertices.
* Two vertices (begin and end) for each job.
* Three edges for each job.
» Begin to end (weighted by duration)
» Source to begin(0 weight)
» End to sink(0 weight)

One edge for each precedence constraint (0O weight).

job start job finish precedence constraint

N\ il ' . Cl 51 \/ (zero weight)
(:) ; \ : 50

dumTtion \
O

: 29 el @ —
N C 38 Q
: 45

34

Critical path method

Use longest path from the source to schedule each job.

\ [[| [
123 (78

. ¥

G
e
Y

>

@ 41 > —
f . \ : . 32 /@—>
/ \ critical path
@_, m 36
N

O

35

Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

SDT
SBDT
SACDT
SACET

OO wx

36

Quiz 1

There are multiple shortest paths between vertices S and T. Which
one will be reported by Dijstra’s shortest path algorithm?

o0y
wn
>
@)
O
_|

37

Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

00w >

38

Quiz 2

In an unweighted, undirected connected graph, the
shortest path from a node S to every other node is
computed most efficiently, in terms of time complexity by

Dijkstra’s algorithm starting from S.
Performing a DFS starting from S.
Performing a BFS starting from S.
None of the above

OO w>

39

