CMSC 132: Object-Oriented Programming II

Shortest Paths
Shortest Paths
Shortest paths

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4→5</td>
<td>0.35</td>
</tr>
<tr>
<td>5→4</td>
<td>0.35</td>
</tr>
<tr>
<td>4→7</td>
<td>0.37</td>
</tr>
<tr>
<td>5→7</td>
<td>0.28</td>
</tr>
<tr>
<td>7→5</td>
<td>0.28</td>
</tr>
<tr>
<td>5→1</td>
<td>0.32</td>
</tr>
<tr>
<td>0→4</td>
<td>0.38</td>
</tr>
<tr>
<td>0→2</td>
<td>0.26</td>
</tr>
<tr>
<td>7→3</td>
<td>0.39</td>
</tr>
<tr>
<td>1→3</td>
<td>0.29</td>
</tr>
<tr>
<td>2→7</td>
<td>0.34</td>
</tr>
<tr>
<td>6→2</td>
<td>0.40</td>
</tr>
<tr>
<td>3→6</td>
<td>0.52</td>
</tr>
<tr>
<td>6→0</td>
<td>0.58</td>
</tr>
<tr>
<td>6→4</td>
<td>0.93</td>
</tr>
</tbody>
</table>

shortest path from 0 to 6

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→2</td>
<td>0.26</td>
</tr>
<tr>
<td>2→7</td>
<td>0.34</td>
</tr>
<tr>
<td>7→3</td>
<td>0.39</td>
</tr>
<tr>
<td>3→6</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Shortest path variants

- Which vertices?
 - **Single source**: from one vertex s to every other vertex.
 - **Source-sink**: from one vertex s to another t.
 - **All pairs**: between all pairs of vertices.

- Restrictions on edge weights?
 - Nonnegative weights.
 - Arbitrary weights.

- Cycles?
 - No directed cycles.
 - No "negative cycles."

- Simplifying assumption: Shortest paths from s to each vertex v exist.
Weighted directed edge

public class DirectedEdge

 DirectedEdge(int v, int w, double weight)

 int from()

 int to()

 double weight()

 String toString()

Weighted edge v→w
vertex v
vertex w
weight of this edge
string representation

Idiom for processing an edge e: int v = e.from(), w = e.to();
Weighted directed edge implementation

```java
public class DirectedEdge{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight){
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() { return v; }
    public int to() { return w; }
    public double weight() { return weight; }
}
```
public class EdgeWeightedDigraph

 EdgeWeightedDigraph(int V)

 void addEdge(DirectedEdge e)

 Iterable<DirectedEdge> adj(int v)

 int V()

 int E()

 Iterable<DirectedEdge> edges()

 String toString()

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation
public class EdgeWeightedDigraph{
 private final int V;
 private final Bag<DirectedEdge>[] adj;

 public EdgeWeightedDigraph(int V){
 this.V = V;
 adj = (Bag<DirectedEdge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<DirectedEdge>();
 }

 public void addEdge(DirectedEdge e){
 int v = e.from();
 adj[v].add(e);
 }

 public Iterable<DirectedEdge> adj(int v){
 return adj[v];
 }
}
Single-source shortest paths

What is the shortest distance and path from A to H?
Single-source shortest paths

- **Data structures:** Represent the Shortest Path with two vertex-indexed arrays:
 - distTo[v] is length of shortest path from s to v.
 - edgeTo[v] is last edge on shortest path from s to v.

```java
public double distTo(int v){
    return distTo[v];
}

public Iterable<DirectedEdge> pathTo(int v){
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    DirectedEdge e = edgeTo[v];
    while (e != null){
        path.push(e);
        e = edgeTo[e.from()];
    }
    return path;
}
```
Edge relaxation

- Relax edge \(e = v \rightarrow w \).
 - \(\text{distTo}[v] \) is length of shortest known path from \(s \) to \(v \).
 - \(\text{distTo}[w] \) is length of shortest known path from \(s \) to \(w \).
 - \(\text{edgeTo}[w] \) is last edge on shortest known path from \(s \) to \(w \).
 - If \(e = v \rightarrow w \) gives shorter path to \(w \) through \(v \), update both \(\text{distTo}[w] \) and \(\text{edgeTo}[w] \)

v→w successfully relaxes
Edge relaxation

- Relax edge $e = v \rightarrow w$.
 - $\text{distTo}[v]$ is length of shortest known path from s to v.
 - $\text{distTo}[w]$ is length of shortest known path from s to w.
 - $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
 - If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat until optimality conditions are satisfied:
 Relax any edge.

Efficient implementations: How to choose which edge to relax?
• Dijkstra's algorithm (nonnegative weights).
• Topological sort algorithm (no directed cycles).
• Bellman-Ford algorithm (no negative cycles).
Dijkstra's algorithm

• Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).

• Add vertex to tree and relax all edges pointing from that vertex.
Dijkstra's algorithm Demo

Pick vertex in List with minimum distance.

<table>
<thead>
<tr>
<th>V</th>
<th>distTo[]</th>
<th>edgeTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>B</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Update A’s neighbors

\[
\begin{array}{c|c|c}
V & \text{distTo[]} & \text{edgeTo} \\
\hline
A & 0 & -- \\
B & 2 & 0 \\
C & \infty & \\
D & 1 & A \\
E & \infty & \\
F & \infty & \\
\end{array}
\]
Update D’s neighbors

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>distTo[]</th>
<th>edgeTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Update B’s neighbors

No Update
Update E’s neighbors

No Update
Update C’s neighbors

```
V     distTo[]   edgeTo
A     0          --
B     2          A
C     3          D
D     1          A
E     3          D
F     8          C
G     5          D
```
Update G’s neighbors

V	distTo[]	edgeTo
A | 0 | --
B | 2 | A
C | 3 | D
D | 1 | A
E | 3 | D
F | 6 | G
G | 5 | D

Diagram:

- **V**: Number of vertices.
- **E**: Number of edges.
- **W**: Weight of edges.

Graph:

- A: 0
- B: 2
- C: 3
- D: 1
- E: 3
- F: 6
- G: 5
Update F’s neighbors

No Update
Dijkstra's algorithm Demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.
Dijkstra's algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.
Dijkstra's algorithm Implementation

```java
public class DijkstraSP{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty()){
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```
Shortest Path Demo
Shortest Path Demo
Shortest Path Demo

If the graph has negative weighted edges, Dijkstra's algorithm does not work.
Acyclic shortest paths

• Consider vertices in topological order. Relax all edges pointing from that vertex.
Acyclic shortest paths

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.
Longest paths in edge-weighted DAGs

• Formulate as a shortest paths problem in edge-weighted DAGs.
 • Negate all weights.
 • Find shortest paths.
 • Negate weights in result

• Key point. Topological sort algorithm works even with negative weights.
Longest paths in edge-weighted DAGs

- **Parallel job scheduling.**
 - Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
Critical path method

- To solve a parallel job-scheduling problem, create edge-weighted DAG:
 - Source and sink vertices.
 - Two vertices (begin and end) for each job.
 - Three edges for each job.
 - Begin to end (weighted by duration)
 - Source to begin (0 weight)
 - End to sink (0 weight)
 - One edge for each precedence constraint (0 weight).
Critical path method

Use longest path from the source to schedule each job.
Quiz 1

There are multiple shortest paths between vertices S and T. Which one will be reported by Dijkstra’s shortest path algorithm?

A. SDT
B. SBDT
C. SACDT
D. SACET
There are multiple shortest paths between vertices S and T. Which one will be reported by Dijkstra’s shortest path algorithm?

A. SDT
B. SBDT
C. SACDT
D. SACET
In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by

A. Dijkstra’s algorithm starting from S.
B. Performing a DFS starting from S.
C. Performing a BFS starting from S.
D. None of the above
Quiz 2

In an unweighted, undirected connected graph, the shortest path from a node S to every other node is computed most efficiently, in terms of time complexity by

A. Dijkstra’s algorithm starting from S.
B. Performing a DFS starting from S.
C. Performing a BFS starting from S.
D. None of the above