Heaps and Priority Queue

Reference: Chapter 2, Algorithms, 4rd Edition, Robert Sedgewick, Kevin Wayne

Priority Queue

Binary Heaps

Implementation and demo

HeapSort

7/15/2021 Prioriry Queue

- EDF (Earliest Deadline First) Scheduling
Tasks wait in the queue
A task with a shorter deadline has a higher priority
Executes a job with the earliest deadline

Q‘Tl‘ T

3

7/15/2021 Prioriry Queue

Task Tz is dispatched and removed from the Task waiting
queue.

B o -

Before T1is completed, Task Tn+1 arrives. It has the earliest
deadline. Tn+1 will be dispatched next.

Q | T ‘ T,

7/15/2021 Prioriry Queue

* EDF scheduler processes Tasks in order. But not necessarily
in full sorted order and not necessarily all at once.

* An appropriate data type for Task Waiting Queue supports
two operations: remove the maximum priority task and
insert new tasks. Such a data type is called a priority queue.

* Priority queues are characterized by the remove the
maximum and insert operations.

7/15/2021 Prioriry Queue

(/(public interface PriorityQueue <T extends Comparable<T> >
{
void insert(T t);
void remove () throws EmptyQueueException;
T top() throws EmptyQueueException;

boolean empty () ;

7/15/2021 Prioriry Queue

* Find the largest M items in a stream of N items
(N huge, M large)
* Nis huge, cannot sortin memory

* Mislarge, insert, remove must be fast.

Order of growth of finding the largest M in a stream of N items

Implementation Time Space
Sort N log N M
Array N M M

7/15/2021 Prioriry Queue

Unordered Array: 8 7|6
Ordered Array: 2 s | s 8

Linked List: 42;34445:|647_43

Binary Tree
Order-of-growth of running time for priority queue with N
items

Implementation Insert Remove Max Max
Unordered Array 1 N

Ordered Array N 1

Linked List (unsorted) 1 N

Goal Log N Log N

7/15/2021 Prioriry Queue

* Complete Binary Tree
* Each node is larger than (or equal to) its two children (if

any).

7/15/2021 Prioriry Queue

* The largest is found at the root.
* Height of complete tree with N nodesis | Ilg N|
* Height only increases when N is a power of 2

7/15/2021 Prioriry Queue

* Array representation of a complete binary tree
* Take nodesin level order
* No explicit links needed

7/15/2021 Prioriry Queue

* Largest key is a[1], which is
root of binary tree.

* (Canuse array indices to move
through tree.

 Parentof node at kis at k/2.
e two children of the node at k
are in positions 2k and 2k + 1.

Heap representations

7/15/2021 Prioriry Queue

Promotion: Child's key becomes larger key than its parent's key.

To eliminate the violation:
* Exchange key in child with key in parent.
* Repeat until heap order restored.

private void swim(int k) { " violates heap order

(larger key than parent)

while (k > 1 && less(k/2,
swap (k, k/2);
k = k/2;

7/15/2021 Prioriry Queue

Insertion in a heap:
* Insert. Add node at end, then swim it up.
e Cost. At most Ig N compares.

/

public void insert (T t) {
pgArray.add(t) ;
Size++;

- add key to heap

SW1m (Size) ’ violates heap order

7/15/2021 Prioriry Queue

Demotion: Parent's key becomes smaller than one (or both) of its children's keys.
o .] violates heap order

To eliminate the violation: (smaller than a child)

* Exchange key in parent with key in larger child.

* Repeat until heap order restored.

//;;ivate volid sink (int k) {
while (2 * k <= Size) {
int J = 2*k;
1f(3J< Size && less(j,3+1))
if(!less(k,]j)) break;
swap (k,J) ;
k = 3;

Top-down reheapify (sink)

7/15/2021 Prioriry Queue

Remove the maximum in a heap:

* Delete max: Replace root with node at end,
then sink it down.

e Cost: At most 2 Ilg N compares.

/6£blic volid remove () {

1f(Size == 0) {

throw new EmptyQueueException ("Queue is

empty.") ;

}

pgArray.set (1,pgArray.get(Size));

PgArray.remove (Size) ;

Size—-—;

sink (1) ;

remove the maximum

<— key to remove

(S) ’!‘
(N OEEONO
® O & @ s

wolam

sink down __
By~ 3

Insertion

SN2
e @ @ ° Insert 34

Violation.
swim

7/15/2021 Prioriry Queue

Insertion

o
® O ®E

Violation.
swim

7/15/2021 Prioriry Queue

Insertion

@@é

" B i

7/15/2021 Prioriry Queue

Violation.

Insertion

Violation.

7/15/2021 Prioriry Queue

Remove max:

e @ | Delete the
last leaf

:- 2 Move the last
6

leaf to root

7/15/2021 Prioriry Queue

A

of

7/15/2021 Prioriry Queue

©

~ | 3

7/15/2021 Prioriry Queue

Prioriry Queue

7/15/2021

File name Description

PriorityQueue.java Interface

MaxPQ.java PQ implementation
GraphVizWrite.java Visualize the heap
EmptyQueueException.java Exception
MaxPQTest.java main method
InputHelper.java input utility

Prioriry Queue

7/15/2021

Implementation

Unordered Array
Ordered Array

Linked List (unsorted)
Binary Heap

Insert
1
N
1
Log N

Remove Max
N

1

N

Log N

Prioriry Queue

Max

* Assumption: client does not change keys while they're on the PQ.
* Best practice: use immutable keys.

Immutability: implementing in Java
Immutable data type. Can't change the data type value once

created.

Immutable. String, Integer, Double, Color, Vector, Transaction,
Point2D.

Mutable. StringBuilder, Stack, Counter, Java array.

7/15/2021 Prioriry Queue

Sort an array using heap representations

worst case running time O(nlgn)

an in-place sorting algorithm: only a constant number of array elements are

stored outside the input array at any time. thus, require at most O(1)
additional memory

7/15/2021 Prioriry Queue

* Idea:
1. Create max-heap with all N keys.
2. Repeatedly remove the maximum key.

Original Array

Sorted Array

7/15/2021 Prioriry Queue

Build heap using bottom-up method
for (int k = N/2; k >=1; k--)
sink(k, N); o

Arbitrary Array

7/15/2021 Prioriry Queue

Build heap using bottom-up method sink(3, 11)
for (int k = N/2; k >=1; k--)
sink(k, N);

sink(2, 11)

(1)
Arbitrary Array Q 0
W ® ©

7/15/2021 Prioriry Queue

Build heap using bottom-up method)
for (int k = N/2; k >=1; k--) sink(1l, 11)
sink(k, N);

Max-heap

Arbitrary Array

7/15/2021 Prioriry Queue

Remove the maximum, one at a time e)_(ch(l, 11)
Leave in array, instead of nulling out. sink(1l, 10)
while (N > 1) {

exch(l, N--);
sink (1, N);

@ ® @ x

exch(1l, 10)
sink(1, 9)

Heap ordered array

7/15/2021 Prioriry Queue

Remove the maximum, one at a time

Leave in array, instead of nulling out.

while (N > 1) {
exch(l, N--);
sink (1, N);

Heap ordered array

7/15/2021

exch(l, 9)
sink(1, 8)

exch(l, 8)
sink(1, 7)

Prioriry Queue

Remove the maximum, one at a time exch(1, 7)
sink(1l, 6)

e 9 \
SN '
of 0 ¢

Leave in array, instead of nulling out.

while (N > 1) {
exch(l, N--);
sink (1, N);

}

Heap ordered array

7/15/2021 Prioriry Queue 3 6

Remove the maximum, one at a time

exch(l, 5)
Leave in array, instead of nulling out. sink(1l, 4)
while (N > 1) {
exch(l, N--);
sink (1, N);

exch(1, 4)
sink(1, 3)

A)

Heap ordered array

7/15/2021 Prioriry Queue

Remove the maximum, one at a time

xch(1l, 3
Leave in array, instead of nulling out. g-inkE]_II 2% @
while (N > 1) | ®/
exch(l, N--);

sink (1, N);
}

exch(1l, 2) @

sink(1, 1)
E

Heap ordered array

7/15/2021 Prioriry Queue

Remove the maximum, one at a time

Leave in array, instead of nulling out.

while (N > 1) {
exch(l, N--);
sink (1, N);

Sorted Result

9 10 11

Heap ordered array

7/15/2021 Prioriry Queue 3 9

7/15/2021 Prioriry Queue

* Heap construction uses fewer than 2 N compares and
exchanges.

* Heapsort uses at most 2 N Ig N compares and exchanges.
Significance:
In-place sorting algorithm with N log N worst-case.

Mergesort: no, linear extra space.
Quicksort: no, quadratic time in worst case.
Heapsort: yes
Heapsort is optimal for both time and space,
Disadvantages:
* Makes poor use of cache memory.
* Not stable.

7/15/2021 Prioriry Queue

I Yy e [

Quick 2NlogN NlogN
Sort

Merge v NlogN NlogN NlogN
Sort

Heap v 2NlogN 2NlogN NlogN
Sort

? v v NlogN NlogN NlogN

7/15/2021 Prioriry Queue

