CMSC 330: Organization of Programming
Languages

Type-Safe, Low-level Programming with
Rust

CMSC 330 Summer 2021

Type Safety in Programming Languages

* |In a type-safe language, the type system enforces well
defined behavior. Formally, a language is type-safe iff

GFe:tand G Aimplies
A:e=> vand F v: torthat e runs forever

A, e = v says e evaluates v under environment A
* G e: tsays e has type t under type environment G
« G I Asays A is compatible with G

— Forall x, A(x) = v impliesG(x)=tand - v: t

CMSC 330 Summer 2021

C/C++: Not Type-Safe — Spatially Unsafe

GFe:tand G Aimplies
A:e=> vand F v: t orthat e runs forever

Type safety is violated by buffer overflows
int main() {
int x =1, *p = &x;
int y =0, *q = &y’
*(g+l) = 5; // overwrites p
return *p; // crash

}

CMSC 330 Summer 2021

C/C++: Not Type-Safe — Temporally Unsafe

and dangling pointers (uses of pointers to freed memory)
{ int *x = ...malloc();
free (x);
x = 5; / oops! */

}
... which can happen via the stack, too:

int *foo(void) { int z = 5; return &z; }
void bar (void) {

int *x = foo();

x = 5; / oops! */

CMSC 330 Summer 2021

Automatic Memory Management

« Data may be allocated explicitly or implicitly. Data
reclamation occurs automatically: No manual £ree

« A garbage collector traces pointers in use by the program,
starting from the stack and global variables

— Retains those objects it can reach (since could be used later)
— Reclaims those it cannot

« Related technique: Reference counting

« Both impose space and run-time costs

CMSC 330 Summer 2021

Memory Management in (Type-Safe) OCam|

« Local variables live on the stack
« Tuples, closures, and constructed types live on the heap
let x = (3, 4) (*heap-allocated *)
let £f xy=x+y in £ 3
(* result heap-allocated *)
type ‘a t = None | Some of ‘a
None (* not on the heap—just a primitive *)
Some 37 (* heap-allocated *)

« Heap data reclaimed via garbage collection

CMSC 330 Summer 2021

In sum: What choice do programmers have?

C/C++ Java, OCaml, Go, Ruby...
 Type-unsafe « Type safe
 Low level control « High level, less control

« Performance over safety and
ease of use

« Manual memory management,
e.g., with malloc/free

Something in between ... ?

CMSC 330 Summer 2021

Ease-of-use and safety over
performance

Automatic memory
management via garbage
collection

* No explicit malloc/free

Rust: Type-safe (and Thread-safe), and Fast

* A Mozilla-sponsored, public
project since 2010

— Started in 2006 by Graydon
Hoare while at Mozilla

* Most loved programming
language in Stack Overflow
annual surveys every year
from 2016 through 2020

« Key properties: Type safety,
and no data races, despite use
of concurrency and manual
memory management

CMSC 330 Summer 2021

Rust in the Real World

« Firefox Quantum and Servo components
— https://servo.org

REmacs port of Emacs to Rust

— https://github.com/Wilfred/remacs
Amethyst game engine

— https://www.amethyst.rs/

Magic Pocket filesystem from Dropbox

— https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

OpenDNS malware detection components
 https://www.rust-lang.org/en-US/friends.html

CMSC 330 Summer 2021

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Features of Rust

 Lifetimes and Ownership
— Key feature for ensuring safety

« Traits as core of object(-like) system
« Variable default is immutability
» Data types and pattern matching

» Type inference
— No need to write types for local variables

« Generics (aka parametric polymorphism)
* First-class functions
» Efficient C bindings

CMSC 330 Summer 2021

Takes ideas from
functional and OO
languages, and
recent research

Installing Rust

e |nstructions, and stable installers, here:

https.//www.rust-lang.org/en-US/install.html

 On a Mac or Linux (VM), open a terminal and run
curl https://sh.rustup.rs -sSf | sh

* On Windows, download+run rustup-init.exe

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

CMSC 330 Summer 2021

Rust Compiler, Build System

« Rust programs can be compiled using rustc
— Source files end in suffix .rs

— Compilation, by default, produces an executable
* No —c option

» Preferred: Use the cargo package manager
— Will invoke rustc as needed to build files
— Will download and build dependencies

— Based on a .toml file and .lock file
* You won’t have to mess with these for this class

— Like ocamlbuild or dune

CMSC 330 Summer 2021

Using cargo

« Make a project, build it, run it

Use cargo to run tests,
cargo new hello cargo --bin too; will discuss later
cd hello cargo

1s

Cargo.toml src/

$ ls src fn mai?() ¢
_ println! ("Hello, world!”)
main.rs

o —

% cargo build

Compiling hello_cargo v0.1.0 (file:///..) |Uses rustc, the
Finished dev [unoptimized + debuginfo] .. | Rust compiler

% ./target/debug/hello cargo
Hello, world!

o0 o oP°

CMSC 330 Summer 2021 More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, Interactively

4 C @ [0 & play.rust-lang.org

° RUSt haS no top-level a T SIGPLAN Blog Co.. @ Reload @ UMCP
la OCaml or Ruby BN o o

- fn main() {
println!("Hello, world!");
}

 There Is an In-browser
execution environment

— https://play.rust-lang.org/
Execution

Compiling playground v&.8.1 (/playground)
Finished dev [unoptimized + debuginfo] target(s) in ©.98s
Running " target/debug/playground”’

Hello, world!
CMSC 330 Summer 2021

Rust Documentation

* Rust documentation is a good
reference, and way to learn THE RUST
— https://doc.rust- PROGRAMMING
lang.org/stable/ LANGUAGE

* This contains links to

— the Rust Book (on which
most of our slides are
based)

— the reference manual, and

— short manuals on the
compiler, cargo, and more

CMSC 330 Summer 2021

https://doc.rust-lang.org/stable/

Rust Basics

CMSC 330 Summer 2021

Functions

// comment
fn main() {
println! (“Hello, world!”);

}

Hello, world!

CMSC 330 Summer 2021

Let Statements

{

{
let x = 37;
X =x + 5;//err
x

}

{ //err:
let x:u32
let y =x + 5;

y

I
I
[

}

{

{

let x = 37;
let y =x + 5;
Y
}//42
{
let x = 37;
let x = x + 5;
X
}//42
Redefining a
variable shadows
it (like OCaml);
aim to avoid

CMSC 330 Summer 2021

let mut x = 37; let x:116 = -1;
x=x+ 5; let y:116 = x+5;
X y

}//42 Y/ /4
Variables Types inferred by

immutable by
default; use mut
to allow updates

default; optional

annotations must be

consistent (may
override defaults)

Conditionals

fn main() {
let n = 5;
if n < 0 {
print! ("{} is negative", n);
} else if n > 0 {
print! ("{} is positive", n);
} else {
print! ("{} is zero", n);
}
}

5 1s positive

CMSC 330 Summer 2021

Conditionals are Expressions (like OCaml)

fn main() {
let n = 5;
let x = 1f n < 0 {
10

/

} else {
"g"
}i
print! ("{:?}|",x);
}

Type error

CMSC 330 Summer 2021

Factorial in Rust (recursively)

fn fact(n
{
if n ==
else {
let x
n * x
}
}

fn main ()
let res

:132) -> 132

0

{

{1}

fact(n-1);

fact (6) ;

println! (“fact (6)

}
fact (6)

CMSC 330 Summer 2021

720

= {}”,xres);

Quiz: What does this evaluate to?

{ let x = 6;
let y = "hi";
if x =5 {y } else { 5 };

CMSC 330 Summer 2021

Quiz: What does this evaluate to?

{ let x = 6;
let y = "hi";
if x == 5 {y } else { 5 };
7

}

o N O

A.
B.
C.
D. Error —if and else have incompatible types

CMSC 330 Summer 2021

Quiz: What does this evaluate to?

{ let x
let y
Y = X,
X ==Yy

}

6
4

o
14
o
14

A. 6

B. true
C. false
D. error

CMSC 330 Summer 2021

Quiz: What does this evaluate to?

{ let x
let y
Y = X,
X ==Yy

}

6;
4;

A. 6

B. true

C. false

D. error —y is immutable

CMSC 330 Summer 2021

Using Mutation

« Mutation is useful when performing iteration
— As in C and Java

fn fact(n: u32) -> u32 {
let mut x = n;
let mut a = 1;

loop {
if x <=1 { break; } qfinite loop
= * ;
a =a?*x; (break out)
X =x - 1;

CMSC 330 Summer 2021

Other Looping Constructs

* While loops
—while e block

* For loops
— for pat in e block
» More later — e.q., for iterating through collections

for x in 0..10 {
println! ("{}", x); // x: i32
}

CMSC 330 Summer 2021

Other Looping Constructs

 These (and loop) are expressions

— They return the final computed value
* unit, if none
— break may take an expression, which is the loop’s final value

let mut x = 5;

let y = loop {
X += x - 3;
println!' ("{}", x);//71119 35
X $ 5 =0 { break x; }

}i

print! ("{}",y); //35

CMSC 330 Summer 2021

Quiz: What does this evaluate to?

14

let mut x =

1
for 1 in 1..6 {
let x = x + 1;

}
X

A 1

B. 6

C.0

D. error

CMSC 330 Summer 2021

Quiz: What does this evaluate to?

14

let mut x =

1
for 1 in 1..6 {
let x = x + 1;

}
X

A. 1l

B. 6

C.0

D. error

CMSC 330 Summer 2021

Data: Scalar Types

* Integers
- i8,i16, 132,164, isize
—u8,ul6, u32, u

Characters (unicode)

— char

Booleans
— bool ={ true, fa

Floating point wdmbers
- £32, £64

Machine word size

Defaults (from inference)

Note: arithmetic operators (+, -, etc.) overloaded

CMSC 330 Summer 2021

Compound Data: Tuples

« Tuples
— n-tuple type (t1,.., tn)
« unit () isjust the O-tuple
— n-tuple expression (el, ..., en)
— Accessed by pattern matching or like a record field

let tuple = ("hello"™, 5, 'c¢');
assert eq! (tuple.0, "hello");
let(x,y,z) = tuple;

CMSC 330 Summer 2021

Compound Data: Tuples

Distance between two points s and e

let ex

let dx
let dy
(dx*dx

let ey =

fn dist(s: (£f64,£f64) ,e: (f64,£64))
let (sx,sy) = s;

e.0;

e.l;

ex - sX;

ey - Sy:
dy*dy) .sqgrt ()

-> 64 {

CMSC 330 Summer 2021

Compound Data: Tuples

Can include patterns in parameters directly, too

fn dist2((sx,sy): (£f64,£f64), (ex,ey) : (f64,£f64)) -> f64 {
let dx = ex - sx;
let dy = ey - sy,
(dx*dx + dy*dy) .sqrt()

We’'ll see Rust structs later. They generalize tuples.

CMSC 330 Summer 2021

Arrays: Standard Operations

« Creating an array (can be mutable or not)
— But must be of fixed length

* Indexing an array
« Assigning at an array index

let nums = [1,2,3]; // type is [i32;3]

let strs = ["Monday", "Tuesday", "Wednesday"]; //[&str;3]
let x = nums[0]; // 1

let s = strs[l]; // "Tuesday"

let mut xs = [1,2,3];

xs[0] = 1; // OK, since xs mutable
let 1 = 4;
let y = nums[i]; //fails (panics) at run-time

CMSC 330 Summer 2021

Arrays: Iteration

* Rust provides a way to iterate over a collection
— Including arrays

let a = [10,20,30,40,50];
for element in a.iter () {
println! ("the value is: {}", element);

}

— a.iter () produces an iterator, like a Java iterator
« This is a method call, a la Java. More about these later

— The special for syntax issues the .next () call until no
elements are left
* No possibility of running out of bounds

CMSC 330 Summer 2021

Quiz: Will this function type check?

fn £(n:[u32]) -> u32 {
nf[0]
}

A. Yes
B. No

CMSC 330 Summer 2021

Quiz: Will this function type check?

fn £(n:[u32;1len]) -> u32 {
nf[0]
}

A. Yes

B. No — because
array length not

known. Need to
fill In 1en

CMSC 330 Summer 2021

Testing

* In any language, there is the need to test code

* In most languages, testing requires extra libraries:
— Minitest in Ruby
— Ounit in Ocaml
— Junit in Java

« Testing in Rust is a first-class citizen!
— The testing framework is built into cargo

CMSC 330 Summer 2021

Unit Testing In Rust

« Unit testing is for local or private functions
« Put such tests in the same file as your code

 Use assert! to test that something is true

* Use assert eq! to test that two things that implement
the PartialEq trait are equal

* E.g., Integers, booleans, etc.
« We'll explain traits later on

CMSC 330 Summer 2021

Unit Testing In Rust

fn bad add(a: 132, b: 1i32)

-> 132 {

a-»>b Indicates that

This is a } this module
module, contains tests
tests\\#@fg (tesd)]

mod tests {

tes
fn test bad add() {

}

assert eq! (bad add(1,2),3);

CMSC 330 Summer 2021

Indicates
that this
function is
a test

Integration Testing In Rust

* Integration testing is for APIs and whole programs

Create a tests directory

Create different files for testing major functionality
Files don't need #[cfg(test)] or a special module
— But they do still need #[test] around each function

Tests refer to code as if it were an external library
— Declare it as an external library using extern crate
— Include the functionality you want to test with use

CMSC 330 Summer 2021

Integration Testing In Rust

src/lib.rs

pub fn add(a: 132, b: 132)
a+b

-> 132 {

tests/test_add.rs

extern crate my-project-name;

use my-project-name: :add;

#[test]

pub fn test_add() {
assert eq!(add(1,2), 3));

}

#[test]

pub fn test negative add() {
assert _eq! (add(1,-2), -1));

}

CMSC 330 Summer 2021

Running Tests

« cargo test runs all of your tests
« cargo test s runs all tests that contain s in the name

« By default, console output is hidden
» Use cargo test -- --nocapture to un-hide it

CMSC 330 Summer 2021

Fun Fact

« The original Rust compiler was written in OCaml
— Betrays the sentiments of the language’s designers!

* Now the Rust compiler is written in ... Rust

— How is this possible? Through a process called bootstrapping:

» The first Rust compiler written in Rust is compiled by the Rust compiler
written in OCaml

« Now we can use the binary from the Rust compiler to compile itself

« We discard the OCaml compiler and just keep updating the binary through
self-compilation

« So don’t lose that binary! ©

CMSC 330 Summer 2021

