
CMSC 330: Organization of Programming

Languages

Type-Safe, Low-level Programming with

Rust

CMSC 330 Summer 2021

Type Safety in Programming Languages

• In a type-safe language, the type system enforces well

defined behavior. Formally, a language is type-safe iff

G ⊢ e : t and G ⊢ A implies

A; e ⇒ v and ⊢ v : t or that e runs forever

• A; e ⇒ v says e evaluates v under environment A

• G ⊢ e : t says e has type t under type environment G

• G ⊢ A says A is compatible with G

– For all x, A(x) = v implies G(x) = t and ⊢ v : t

CMSC 330 Summer 2021

C/C++: Not Type-Safe – Spatially Unsafe

G ⊢ e : t and G ⊢ A implies

A; e ⇒ v and ⊢ v : t or that e runs forever

Type safety is violated by buffer overflows
int main() {

int x = 1, *p = &x;

int y = 0, *q = &y;

*(q+1) = 5; // overwrites p

return *p; // crash

}

CMSC 330 Summer 2021

C/C++: Not Type-Safe – Temporally Unsafe

and dangling pointers (uses of pointers to freed memory)
{ int *x = ...malloc();

free(x);

x = 5; / oops! */

}

… which can happen via the stack, too:
int *foo(void) { int z = 5; return &z; }

void bar(void) {

int *x = foo();

x = 5; / oops! */

}

CMSC 330 Summer 2021

Automatic Memory Management

• Data may be allocated explicitly or implicitly. Data
reclamation occurs automatically: No manual free

• A garbage collector traces pointers in use by the program,

starting from the stack and global variables

– Retains those objects it can reach (since could be used later)

– Reclaims those it cannot

• Related technique: Reference counting

• Both impose space and run-time costs

CMSC 330 Summer 2021

Memory Management in (Type-Safe) OCaml

• Local variables live on the stack

• Tuples, closures, and constructed types live on the heap

let x = (3, 4) (* heap-allocated *)

let f x y = x + y in f 3

(* result heap-allocated *)

type ‘a t = None | Some of ‘a

None (* not on the heap–just a primitive *)

Some 37 (* heap-allocated *)

• Heap data reclaimed via garbage collection

CMSC 330 Summer 2021

In sum: What choice do programmers have?

C/C++

• Type-unsafe

• Low level control

• Performance over safety and

ease of use

• Manual memory management,

e.g., with malloc/free

Java, OCaml, Go, Ruby…

• Type safe

• High level, less control

• Ease-of-use and safety over

performance

• Automatic memory

management via garbage

collection

• No explicit malloc/free

CMSC 330 Summer 2021

Something in between … ?

Rust: Type-safe (and Thread-safe), and Fast

• A Mozilla-sponsored, public
project since 2010
– Started in 2006 by Graydon

Hoare while at Mozilla

• Most loved programming
language in Stack Overflow
annual surveys every year
from 2016 through 2020

• Key properties: Type safety,
and no data races, despite use
of concurrency and manual
memory management

CMSC 330 Summer 2021

Rust in the Real World

• Firefox Quantum and Servo components

– https://servo.org

• REmacs port of Emacs to Rust

– https://github.com/Wilfred/remacs

• Amethyst game engine

– https://www.amethyst.rs/

• Magic Pocket filesystem from Dropbox

– https://www.wired.com/2016/03/epic-story-dropboxs-exodus-

amazon-cloud-empire/

• OpenDNS malware detection components

• https://www.rust-lang.org/en-US/friends.html
CMSC 330 Summer 2021

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Features of Rust

• Lifetimes and Ownership

– Key feature for ensuring safety

• Traits as core of object(-like) system

• Variable default is immutability

• Data types and pattern matching

• Type inference

– No need to write types for local variables

• Generics (aka parametric polymorphism)

• First-class functions

• Efficient C bindings

CMSC 330 Summer 2021

Takes ideas from
functional and OO
languages, and
recent research

Installing Rust

• Instructions, and stable installers, here:

• On a Mac or Linux (VM), open a terminal and run

• On Windows, download+run rustup-init.exe

https://www.rust-lang.org/en-US/install.html

curl https://sh.rustup.rs -sSf | sh

https://static.rust-lang.org/rustup/dist/i686-pc-windows-

gnu/rustup-init.exe

CMSC 330 Summer 2021

Rust Compiler, Build System

• Rust programs can be compiled using rustc

– Source files end in suffix .rs

– Compilation, by default, produces an executable

• No –c option

• Preferred: Use the cargo package manager

– Will invoke rustc as needed to build files

– Will download and build dependencies

– Based on a .toml file and .lock file

• You won’t have to mess with these for this class

– Like ocamlbuild or dune

CMSC 330 Summer 2021

Using cargo

• Make a project, build it, run it

% cargo new hello_cargo --bin

% cd hello_cargo

% ls

Cargo.toml src/

% ls src

main.rs

% cargo build

Compiling hello_cargo v0.1.0 (file:///…)

Finished dev [unoptimized + debuginfo] …

% ./target/debug/hello_cargo

Hello, world!

fn main() {

println!("Hello, world!”)

}

More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.htmlCMSC 330 Summer 2021

Use cargo to run tests,

too; will discuss later

Uses rustc, the

Rust compiler

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, Interactively

• Rust has no top-level a

la OCaml or Ruby

• There is an in-browser

execution environment

– https://play.rust-lang.org/

CMSC 330 Summer 2021

Rust Documentation

• Rust documentation is a good
reference, and way to learn

– https://doc.rust-
lang.org/stable/

• This contains links to

– the Rust Book (on which
most of our slides are
based)

– the reference manual, and

– short manuals on the
compiler, cargo, and more

CMSC 330 Summer 2021

https://doc.rust-lang.org/stable/

Rust Basics

CMSC 330 Summer 2021

Functions

// comment

fn main() {

println!(“Hello, world!”);

}

Hello, world!

CMSC 330 Summer 2021

Let Statements

{

let x = 37;

let y = x + 5;

y

}//42

{

let x = 37;

let x = x + 5;

x

}//42

{

let x = 37;

x = x + 5;//err

x

}

{

let mut x = 37;

x = x + 5;

x

}//42

{ //err:

let x:u32 = -1;

let y = x + 5;

y

}

{

let x:i16 = -1;

let y:i16 = x+5;

y

}//4

Redefining a

variable shadows

it (like OCaml);

aim to avoid

Variables

immutable by
default; use mut

to allow updates

Types inferred by

default; optional

annotations must be

consistent (may
override defaults)

CMSC 330 Summer 2021

Conditionals

fn main() {

let n = 5;

if n < 0 {

print!("{} is negative", n);

} else if n > 0 {

print!("{} is positive", n);

} else {

print!("{} is zero", n);

}

}

5 is positive

CMSC 330 Summer 2021

Conditionals are Expressions (like OCaml)

fn main() {

let n = 5;

let x = if n < 0 {

10

} else {

"a"

};

print!("{:?}|",x);

}

Type error

CMSC 330 Summer 2021

Factorial in Rust (recursively)

fn fact(n:i32) -> i32

{

if n == 0 { 1 }

else {

let x = fact(n-1);

n * x

}

}

fn main() {

let res = fact(6);

println!(“fact(6) = {}”,res);

}

fact(6) = 720

CMSC 330 Summer 2021

A. 6

B. 7

C. 5

D. Error

{ let x = 6;

let y = "hi";

if x == 5 { y } else { 5 };

7

}

Quiz: What does this evaluate to?

CMSC 330 Summer 2021

A. 6

B. 7

C. 5

D. Error – if and else have incompatible types

{ let x = 6;

let y = "hi";

if x == 5 { y } else { 5 };

7

}

Quiz: What does this evaluate to?

CMSC 330 Summer 2021

A. 6

B. true

C. false

D. error

{ let x = 6;

let y = 4;

y = x;

x == y

}

Quiz: What does this evaluate to?

CMSC 330 Summer 2021

A. 6

B. true

C. false

D. error – y is immutable

Quiz: What does this evaluate to?

CMSC 330 Summer 2021

{ let x = 6;

let y = 4;

y = x;

x == y

}

Using Mutation

• Mutation is useful when performing iteration

– As in C and Java

infinite loop

(break out)

fn fact(n: u32) -> u32 {

let mut x = n;

let mut a = 1;

loop {

if x <= 1 { break; }

a = a * x;

x = x - 1;

}

a

}

CMSC 330 Summer 2021

Other Looping Constructs

• While loops

– while e block

• For loops

– for pat in e block

• More later – e.g., for iterating through collections

for x in 0..10 {

println!("{}", x); // x: i32

}

CMSC 330 Summer 2021

Other Looping Constructs

• These (and loop) are expressions

– They return the final computed value

• unit, if none

– break may take an expression, which is the loop’s final value

let mut x = 5;

let y = loop {

x += x - 3;

println!("{}", x);// 7 11 19 35

x % 5 == 0 { break x; }

};

print!("{}",y); //35

CMSC 330 Summer 2021

A. 1

B. 6

C. 0

D. error

let mut x = 1;

for i in 1..6 {

let x = x + 1;

}

x

Quiz: What does this evaluate to?

CMSC 330 Summer 2021

Quiz: What does this evaluate to?

CMSC 330 Summer 2021

A. 1

B. 6

C. 0

D. error

let mut x = 1;

for i in 1..6 {

let x = x + 1;

}

x

Data: Scalar Types

• Integers

– i8, i16, i32, i64, isize

– u8, u16, u32, u64, usize

• Characters (unicode)

– char

• Booleans

– bool = { true, false }

• Floating point numbers

– f32, f64

• Note: arithmetic operators (+, -, etc.) overloaded

CMSC 330 Summer 2021

Defaults (from inference)

Machine word size

Compound Data: Tuples

• Tuples

– n-tuple type (t1,…,tn)

• unit () is just the 0-tuple

– n-tuple expression(e1,…,en)

– Accessed by pattern matching or like a record field

let tuple = ("hello", 5, 'c');

assert_eq!(tuple.0, "hello");

let(x,y,z) = tuple;

CMSC 330 Summer 2021

fn dist(s:(f64,f64),e:(f64,f64)) -> f64 {

let (sx,sy) = s;

let ex = e.0;

let ey = e.1;

let dx = ex - sx;

let dy = ey - sy;

(dx*dx + dy*dy).sqrt()

}

Compound Data: Tuples

Distance between two points s and e

CMSC 330 Summer 2021

fn dist2((sx,sy):(f64,f64),(ex,ey):(f64,f64)) -> f64 {

let dx = ex - sx;

let dy = ey - sy;

(dx*dx + dy*dy).sqrt()

}

Compound Data: Tuples

Can include patterns in parameters directly, too

We’ll see Rust structs later. They generalize tuples.

CMSC 330 Summer 2021

Arrays: Standard Operations

• Creating an array (can be mutable or not)

– But must be of fixed length

• Indexing an array

• Assigning at an array index

CMSC 330 Summer 2021

let nums = [1,2,3]; // type is [i32;3]

let strs = ["Monday","Tuesday","Wednesday"]; //[&str;3]

let x = nums[0]; // 1

let s = strs[1]; // "Tuesday"

let mut xs = [1,2,3];

xs[0] = 1; // OK, since xs mutable

let i = 4;

let y = nums[i]; //fails (panics) at run-time

Arrays: Iteration

• Rust provides a way to iterate over a collection

– Including arrays

– a.iter() produces an iterator, like a Java iterator

• This is a method call, a la Java. More about these later

– The special for syntax issues the .next() call until no

elements are left

• No possibility of running out of bounds

CMSC 330 Summer 2021

let a = [10,20,30,40,50];

for element in a.iter() {

println!("the value is: {}", element);

}

fn f(n:[u32]) -> u32 {

n[0]

}

Quiz: Will this function type check?

A. Yes

B. No

CMSC 330 Summer 2021

A. Yes

B. No – because

array length not

known. Need to
fill in len

fn f(n:[u32;len]) -> u32 {

n[0]

}

Quiz: Will this function type check?

CMSC 330 Summer 2021

Testing

• In any language, there is the need to test code

• In most languages, testing requires extra libraries:

– Minitest in Ruby

– Ounit in Ocaml

– Junit in Java

• Testing in Rust is a first-class citizen!

– The testing framework is built into cargo

CMSC 330 Summer 2021

Unit Testing In Rust

• Unit testing is for local or private functions

• Put such tests in the same file as your code

• Use assert! to test that something is true

• Use assert_eq! to test that two things that implement

the PartialEq trait are equal

• E.g., integers, booleans, etc.

• We’ll explain traits later on

CMSC 330 Summer 2021

Unit Testing In Rust

fn bad_add(a: i32, b: i32) -> i32 {

a - b

}

#[cfg(test)]

mod tests {

#[test]

fn test_bad_add() {

assert_eq!(bad_add(1,2),3);

}

}

Indicates that

this module

contains tests

Indicates

that this

function is

a test

This is a

module,
tests

CMSC 330 Summer 2021

Integration Testing In Rust

• Integration testing is for APIs and whole programs

• Create a tests directory

• Create different files for testing major functionality

• Files don’t need #[cfg(test)] or a special module

– But they do still need #[test] around each function

• Tests refer to code as if it were an external library

– Declare it as an external library using extern crate

– Include the functionality you want to test with use

CMSC 330 Summer 2021

Integration Testing In Rust

pub fn add(a: i32, b: i32) -> i32 {

a + b

}

src/lib.rs

extern crate my-project-name;

use my-project-name::add;

#[test]

pub fn test_add() {

assert_eq!(add(1,2), 3));

}

#[test]

pub fn test_negative_add() {

assert_eq!(add(1,-2), -1));

}

tests/test_add.rs

CMSC 330 Summer 2021

Running Tests

• cargo test runs all of your tests

• cargo test s runs all tests that contain s in the name

• By default, console output is hidden

• Use cargo test -- --nocapture to un-hide it

CMSC 330 Summer 2021

Fun Fact

• The original Rust compiler was written in OCaml

– Betrays the sentiments of the language’s designers!

• Now the Rust compiler is written in … Rust

– How is this possible? Through a process called bootstrapping:

• The first Rust compiler written in Rust is compiled by the Rust compiler

written in OCaml

• Now we can use the binary from the Rust compiler to compile itself

• We discard the OCaml compiler and just keep updating the binary through

self-compilation

• So don’t lose that binary! ☺

CMSC 330 Summer 2021

