
CMSC 330

Organization of Programming Languages

Code Blocks

1CMSC 330 - Summer 2021

Code Blocks

A code block is a piece of code that is invoked by another

piece of code

Code blocks are useful for encapsulating repetitive

computations

2CMSC 330 - Summer 2021

Array Iteration with Code Blocks

The Array class has an each method

• Takes a code block as an argument

a = [1,2,3,4,5]

a.each { |x| puts x }

code block delimited by { }’s

parameter name
(optional)

body

3CMSC 330 - Summer 2021

Array Iteration with Code Blocks

The Array class has an each method

• Takes a code block as an argument

a = [1,2,3,4,5]

a.each do |x| puts x end

or delimited by do ... end

4CMSC 330 - Summer 2021

So, What Are Code Blocks?

A code block is like a special kind of method

{ |y| x = y + 1; puts x } is almost the same as

def m(y) x = y + 1; puts x end

The each method invokes the given code block
• This is called higher-order programming

➢ In other words, methods take other (almost-)methods as arguments

5CMSC 330 - Summer 2021

Quiz 1: What is the output?

A. 10

B. 30

C. 20

D. 0

a = [1,2,3,4]

sum = 0

a.each { |x| sum += 2*x }

puts sum

6CMSC 330 - Summer 2021

Quiz 1: What is the output?

A. 10

B. 30

C. 20

D. 0

a = [1,2,3,4]

sum = 0

a.each { |x| sum += 2*x }

puts sum

7CMSC 330 - Summer 2021

More Code Blocks for Arrays

Code block in each does not modify array

a.find returns first element of a for which the block

returns true

a.collect applies block to each element of a and

returns new array; collect! modifies a

a = [1,2]

a.each { |x| x = x*x }

puts a[1]

outputs 2, not 4

8CMSC 330 - Summer 2021

[1,2,3,4,5].find { |y| y % 2 == 0 }

[5,4,3].collect { |x| -x }

Quiz 2: What is the output

A. 10

B. 15

C. 225

D. 400

a = [20,15,10,5]

a.collect! { |x| x*x }

puts a[1]

9CMSC 330 - Summer 2021

Quiz 2: What is the output

A. 10

B. 15

C. 225

D. 400

a = [20,15,10,5]

a.collect! { |x| x*x }

puts a[1]

10CMSC 330 - Summer 2021

Code Blocks for Numbers, Strings

• n.times runs code block n times

• n.upto(m) runs code block for integers n..m

• s.split(x) splits the string according to delimiter x, invoking

the code block on each segment

3.times { puts "hello"; puts "goodbye" }

5.upto(10) { |x| puts(x + 1) }

11CMSC 330 - Summer 2021

s = "Student,Sally,099112233,A"

s.split(',').each { |x| puts x }

(“delimiter” = symbol used to denote boundaries)

Code Blocks for Files

• open method takes code block with file argument

➢ File automatically closed after block executed

• readlines reads all lines from a file and returns an array of

the lines read

➢ Use each to iterate

• Can do something similar on strings directly:

• "r1\nr2\n\nr4".each_line { |rec| puts rec }

➢ Apply code block to each newline-separated substring

File.open("test.txt", "r") do |f|

f.readlines.each { |line| puts line }

end

12

recall alternative syntax: do … end instead of { … }

CMSC 330 - Summer 2021

Standard Library: File

Lots of convenient methods for IO
File.new("file.txt", "rw") # open for rw access

f.readline # reads the next line from a file

f.readlines # returns an array of all file lines

f.eof # return true if at end of file

f.close # close file

f << object # convert object to string and write to f

$stdin, $stdout, $stderr # global variables for standard UNIX IO

By default, $stdin reads from keyboard, and $stdout and $stderr both

write to terminal

File inherits some of these methods from IO

13CMSC 330 - Summer 2021

Code Blocks for Hashes

Can iterate over keys and values separately
p.keys.each { |k|

print “key: ”, k, “ value: ”, p[k]

}

p.values.each { |v|

print “value: ”, v

}

14

p = {}

p[“USA”] = 319

p[“Italy”] = 60

p.each { |k,v|

puts “pop. of #{k} is #{v} million”

}

key

value

CMSC 330 - Summer 2021

pop. of USA is 319 million

pop. of Italy is 60 million

Using Yield to Call Code Blocks

Any method call can include a code block

• Inside the method, the block is called with yield

After the code block completes

• Control returns to the caller after the yield instruction

def twocalls

return "No block" unless block_given?

yield

yield

end

twocalls

twocalls { puts "foo" }
No block

foo

foo
15CMSC 330 - Summer 2021

Yield Can Take an Argument

def countx(x)

for i in (1..x)

puts "foo"

yield i

end

end

countx(4) { |x| puts x }

foo

1

foo

2

foo

3

foo

4

16CMSC 330 - Summer 2021

• yield can take any number of arguments

➢ Code block {|x,y| …} invoked via yield arg1,arg2

➢ Code block {|x,y,z| … } would be invoked via yield

arg1,arg2,arg3

➢ Etc.

Quiz 3: What is the output

A. 3

B. 3 9

C. 9 81

D. 9 nil

def myFun(x)

yield x

end

myFun(3) { |v| puts "#{v} #{v*v}” }

17CMSC 330 - Summer 2021

Quiz 3: What is the output

A. 3

B. 3 9

C. 9 81

D. 9 nil

def myFun(x)

yield x

end

myFun(3) { |v| puts "#{v} #{v*v}” }

18CMSC 330 - Summer 2021

Code Blocks are not Objects

Code blocks are limited in their use

• They cannot be stored in variables, or passed to or

returned from methods

Only code block literals are permitted, and can only

be passed as the last “argument”

• And only one code block, not more

CMSC 330 - Summer 2021 19

a = [1,2,3]

a.collect! { |z| z+1 } # ok

y = { |z| z+1 } # syntax error

a.collect! y # syntax error

Procs: First-class “code blocks”

Proc can make an object out of a code block
• t = Proc.new {|x| x+2}

Proc objects can be passed around, stored,

and have their code invoked via call

CMSC 330 - Summer 2021 20

def say(p)

p.call 10

end

puts say(t) 12

Procs are a Little Clumsy

Stringing them together is a little (syntactically)

heavyweight

• We will see with OCaml a better integration into the

language

CMSC 330 - Summer 2021 21

def say(y)

t = Proc.new {|x| Proc.new {|z| z+x+y }}

return t

end

s = say(2).call(3)

puts s.call(4)
9

Procs vs. code blocks

Lightweight syntax

Common in libraries,

programming idioms

“Second class” status

• Can only be last, implicit function

argument, as a literal

• Can invoke only from within called

method

➢ Can’t make one and call it in the same

method

CMSC 330 - Summer 2021 22

Code block

Heavier-weight syntax:

Must make a Proc from

code block first

Not commonly used in

standard libraries

“First class” status

• Can pass as argument (or

more than one), return as

result, store in fields, etc.

• Call anywhere, directly

Proc

Exceptions

Use begin...rescue...ensure...end

• Like try...catch...finally in Java

begin

f = File.open("test.txt", "r")

while !f.eof

line = f.readline

puts line

end

rescue Exception => e

puts "Exception:" + e.to_s +

" (class " + e.class.to_s + ")”
ensure

f.close if f != nil

end

Class of exception

to catch

Local name

for exception

Always happens

23CMSC 330 - Summer 2021

Command Line Arguments

Stored in predefined global constant ARGV

Example

• If

➢ Invoke test.rb as “ruby test.rb a b c”

• Then

➢ ARGV[0] = “a”

➢ ARGV[1] = “b”

➢ ARGV[2] = “c”

24CMSC 330 - Summer 2021

