
CMSC 330: Organization of Programming

Languages

Equality, Mixin Inheritance, Miscellany

1CMSC 330 - Summer 2021

Object Copy vs. Reference Copy

Consider the following Ruby code

Which of these occur?

Object copy Reference copy

x = "groundhog" ; y = x

x "groundhog"

(reference) (object)

y "groundhog"

x

(reference) "groundhog"
(object)

y

2CMSC 330 - Summer 2021

Object Copy vs. Reference Copy (cont.)

For

• Ruby does a reference copy (Java does, too)

But for

• Ruby would cause an object copy

• Unnecessary in Java since Strings are immutable

➢ Can you explain why immutability implies copies are unnecessary?

x = "groundhog"

y = String.new(x)

x = "groundhog" ; y = x

3CMSC 330 - Summer 2021

Physical vs. Structural Equality

Consider these examples again:

If we compare x and y, what is considered?

• The references, or the contents of the objects they point to?

How does the result change, depending?

• If references are compared (physical equality), the left example is

false but the right one is true

• If objects are compared (structural equality), both are true

x "groundhog"

(reference) (object)

y "groundhog"

x

(reference) "groundhog"
(object)

y

4CMSC 330 - Summer 2021

String Equality

In Java, x == y is physical equality, always

• Compares references, not string contents

In Ruby, x == y for strings uses structural equality

• Compares contents, not references

• == is a method that can be overridden in Ruby!

• To check physical equality, use the equal? method

➢ Inherited from the Object class

It’s always important to know whether you’re doing a

reference or object copy

• And physical or structural comparison

5CMSC 330 - Summer 2021

Comparing Equality

Language Physical equality Structural equality

Java a == b a.equals(b)

Ruby a.equal?(b) a == b

Ocaml a == b a = b

Python a is b a == b

Scheme (eq? a b) (equal? a b)

Visual Basic .NET a Is b a = b

6CMSC 330 - Summer 2021

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Ocaml
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/Visual_Basic_.NET

Quiz 1: Which is true?

a) Structural equality implies physical equality

b) Physical equality implies structural equality

c) Physical equality does not work for cyclic data structures

d) == always means physical equality

CMSC 330 - Summer 2021 7

Quiz 1: Which is true?

a) Structural equality implies physical equality

b) Physical equality implies structural equality

c) Physical equality does not work for cyclic data structures

d) == always means physical equality

CMSC 330 - Summer 2021 8

Comparisons

Sorting requires ability to compare two values

Ruby comparison method <=>
➢ -1 = less

➢ 0 = equals

➢ +1 = greater

Examples

• 3 <=> 4 returns -1

• 4 <=> 3 returns +1

• 3 <=> 3 returns 0

9CMSC 330 - Summer 2021

Sorting

Two ways to sort an Array

• Default sort (puts values in ascending order)

➢ [2,5,1,3,4].sort # returns [1,2,3,4,5]

• Custom sort (based on value returned by code block}

➢ [2,5,1,3,4].sort { |x,y| y <=> x } # returns [5,4,3,2,1]

➢ Where -1 = less, 0 = equals, +1 = greater

➢ Code block return value used for comparisons

10CMSC 330 - Summer 2021

Quiz 2: What is the output?

print

[1,4,7,3,2].sort { |x,y| (x % 2) <=> (y % 2) }

• Recall that % is the modulus operator

• And <=> is the built in comparison operator

A. [1, 2, 3, 4, 7]

B. [4, 2, 1, 7, 3]

C. [1, 7, 3, 4, 2]

D. [7, 4, 3, 2, 1]

CMSC 330 - Summer 2021 11

Quiz 2: What is the output?

print

[1,4,7,3,2].sort { |x,y| (x % 2) <=> (y % 2) }

• Recall that % is the modulus operator

• And <=> is the built in comparison operator

a)[1, 2, 3, 4, 7]

b)[4, 2, 1, 7, 3] – evens, then odds, in original order

c)[1, 7, 3, 4, 2]

d)[7, 4, 3, 2, 1]

CMSC 330 - Summer 2021 12

Ranges

1..3 is an object of class Range

• Integers between 1 and 3 inclusively

1…3 also has class Range

• Integers between 1 and 3 but not including 3 itself.

Not just for integers

• ‘a’..’z’ represents the range of letters ‘a’ to ‘z’

• 1.3…2.7 is the continuous range [1.3,2.7)

➢ (1.3…2.7).include? 2.0 # => true

Discrete ranges offer the each method to iterate

• And can convert to an array via to_a; e.g., (1..2).to_a

13CMSC 330 - Summer 2021

Special Global Variables

Ruby has a special set of global variables that are

implicitly set by methods

The most insidious one: $_

• Last line of input read by gets or readline

Example program

Using $_ leads to shorter programs

• And confusion

• We suggest you avoid using it

gets # implicitly reads input line into $_

print # implicitly prints out $_

14CMSC 330 - Summer 2021

Mixins

Inheritance is one form of code reuse

Another form of code reuse is “mix-in” inclusion

• include A “inlines” A’s methods at that point

➢ Referred-to variables/methods captured from context

➢ In effect: it adds those methods to the current class

To define a mixin, use a module for A, not class

15CMSC 330 - Summer 2021

Ruby Modules

A module is a collection of methods and constants

• Module methods can be called directly

➢ So module defines a namespace for those methods

• Instance methods are “mixed in” to another class

16CMSC 330 - Summer 2021

module Doubler

def Doubler.base # module method

2

end

def double # instance method

self + self

end

end

Doubler.base

=> 2

Doubler.class

=> Module

Doubler.new

#err, no method

Doubler.double

#err, no method

Doubler.instance_methods

=> [:double]

Mixin Modules

17CMSC 330 - Summer 2021

module Doubler

def double

self + self

end

end

class Integer # extends Integer

include Doubler

end

10.double => 20

class String # extends String

include Doubler

end

"hello".double => "hellohello"

Inserts instance methods
from Doubler into the

class Integer

Mixin Method Lookup

When you call method m of class C, look for m

1. in class C …

2. in mixin in class C …

• if multiple mixins included, start in latest mixin, then try earlier

(shadowed) ones …

3. in C's superclass …

4. in C's superclass mixin …

5. in C's superclass's superclass …

6. …

CMSC 330 - Summer 2021 18

Mixin Example 1

CMSC 330 - Summer 2021 19

module M1

def hello

"M1 hello"

end

end

module M2

def hello

"M2 hello"

end

end

class A

include M1

include M2

def hello

"A hello"

end

end

a = A.new

a.hello

=> “A hello”

a.class.ancestors

=> [A, M2, M1, Object, Kernel, BasicObject]

Quiz 3: What is the output?

CMSC 330 - Summer 2021 20

module M1

def hello

"M1 hello"

end

end

module M2

def hello

"M2 hello"

end

end

class A

include M1

include M2

end

• class A does not have a method hello.

• Both M1 and M2 have a method

hello. M2's hello shadows M1’s.

a = A.new

puts a.hello

a. “A hello”

b. “M1 hello”

c. “M2 hello”

d. (nothing)

Quiz 3: What is the output?

CMSC 330 - Summer 2021 21

a = A.new

puts a.hello

• class A does not have a method hello.

• Both M1 and M2 have a method

hello. M2's hello shadows M1’s.

a. “A hello”

b. “M1 hello”

c. “M2 hello”

d. (nothing)

module M1

def hello

"M1 hello"

end

end

module M2

def hello

"M2 hello"

end

end

class A

include M1

include M2

end

Mixin Example 3

CMSC 330 - Summer 2021 22

module M1

def hello

"m1 says hello, " + super

end

def what

“Mary"

end

end

class A

def hello

"A says hello, " + what

end

def what

"Alice"

end

end

class B < A

include M1

def hello

"B says hello, " + super

end

def what

"Bob"

end

end

b = B.new

b.class.ancestors

=> [B, M1, A, Object, Kernel, BasicObject]

b.hello

=>

B says hello, m1 says hello, A says hello, Bob

B's hello is called. super called B's

superclass M1's hello. super in M1's hello

called hello in superclass A. At the end,

the "what" method of the current object "b"

is called.

Mixins: Comparable

23

class OneDPoint

attr_accessor :x

include Comparable

def <=>(other) #used by Comparable

if @x < other.x then return -1

elsif @x > other.x then return 1

else return 0

end

end

end

p = OneDPoint.new

p.x = 1

q = OneDPoint.new

q.x = 2

x < y # true

puts [y,x].sort

prints x, then y

CMSC 330 - Summer 2021

Mixins: Enumerable

CMSC 330 - Summer 2021 24

class MyRange

include Enumerable #map,select, inject, collect, find

def initialize(low,high)

@low = low #(2,8)

@high = high

end

def each #used by Enumerable

i=@low

while i <= @high

yield i

i=i+1

end

end

end

Ruby Summary

Interpreted

Implicit declarations

Dynamically typed

Built-in regular expressions

Easy string manipulation

Object-oriented

• Everything (!) is an object

Code blocks

• Easy higher-order programming!

• Get ready for a lot more of this...

Makes it

quick to

write small

programs

Hallmark

of scripting

languages

25CMSC 330 - Summer 2021

Other Scripting Languages

Perl and Python are also popular scripting languages

• Also are interpreted, use implicit declarations and dynamic

typing, have easy string manipulation

• Both include optional “compilation” for speed of

loading/execution

Will look fairly familiar to you after Ruby

• Lots of the same core ideas

• All three have their proponents and detractors

• Use whichever language you personally prefer

26CMSC 330 - Summer 2021

