
CMSC 330: Organization of Programming

Languages

OCaml Data Types

1CMSC 330 - Summer 2021

2

OCaml Data

• So far, we’ve seen the following kinds of data

• Basic types (int, float, char, string)

• Lists

➢ One kind of data structure

➢ A list is either [] or h::t, deconstructed with pattern matching

• Tuples and Records

➢ Let you collect data together in fixed-size pieces

• Functions

• How can we build other data structures?

• Building everything from lists and tuples is awkward

CMSC 330 - Summer 2021

User Defined Types

• type can be used to create new names for types

• Like typedef in C – a name might be more useful for

communicating intent than just the type structure

CMSC 330 - Summer 2021 3

User Defined Types

type mylist = int*(int list);;

type mylist = int * int list

let empty:mylist = (0,[]);;

val empty : mylist = (0, [])

let add x ((n,xs):mylist):mylist = (n+1,x::xs);;

val add : int -> mylist -> mylist = <fun>

let length ((n,_):mylist) = n;;

val length : mylist -> int = <fun>

let x = add 1 (add 2 empty);;

val x : mylist = (2, [1; 2])

CMSC 330 - Summer 2021 4

Annotation required

to tell type inference
you want mylist,

not int*int list

(User-Defined) Variants

type coin = Heads | Tails

let flip x =

match x with

Heads -> Tails

| Tails -> Heads

let rec count_heads x =

match x with

[] -> 0

| (Heads::x’) -> 1 + count_heads x’

| (_::x’) -> count_heads x’

CMSC 330 - Summer 2021 5

In simplest form:
Like a C enum

Basic pattern

matching

resembles C
switch

Combined list

and variant

patterns
possible

Constructing and Destructing Variants

6

• Syntax

• type t = C1 | … | Cn

• the Ci are called constructors

➢ Must begin with a capital letter

• Evaluation

• A constructor Ci is already a value

• Destructing a value v of type t is done by pattern matching on v ;

the patterns are the constructors Ci

• Type Checking

• Ci : t (for each Ci in t’s definition)

CMSC 330 - Summer 2021

7

Data Types: Variants with Data

• We can define variants that “carry data” too

• Not just a constructor, but a constructor with values

• Rect and Circle are constructors, so a shape is either

• Rect(w,l) for any floats w and l, or

• Circle r for any float r

type shape =

Rect of float * float (* width*length *)

| Circle of float (* radius *)

CMSC 330 - Summer 2021

8

Data Types: Pattern Matching

• Use pattern matching to deconstruct values

• Can bind pattern values to data parts

let area s =

match s with

Rect (w, l) -> w *. l

| Circle r -> r *. r *. 3.14

;;

area (Rect (3.0, 4.0));; (* 12.0 *)

area (Circle 3.0);; (* 28.26 *)

CMSC 330 - Summer 2021

Data types are aka algebraic data types and tagged unions

9

Data Types: Pattern Matching

• What's the type of lst?

• shape list

• What's the type of lst's first element?

• shape

type shape =

Rect of float * float (* width*length *)

| Circle of float (* radius *)

let lst = [Rect (3.0, 4.0) ; Circle 3.0]

CMSC 330 - Summer 2021

10

Quiz 1

type foo = (int * (string list)) list

CMSC 330 - Summer 2021

A. [(3, "foo", "bar")]

B. [(7, ["foo", "bar"])]

C. [(5, ["foo"; "bar"])]

D. [(9, [("foo", "bar")])]

Which one of the following could match type foo?

11

Quiz 1

A. [(3, "foo", "bar")]

B. [(7, ["foo", "bar"])]

C. [(5, ["foo"; "bar"])]

D. [(9, [("foo", "bar")])]

Which one of the following could match type foo?

CMSC 330 - Summer 2021

type foo = (int * (string list)) list

12

Quiz 2: What does this evaluate to?

CMSC 330 - Summer 2021

A. 4.0

B. 2.0

C. 2

D. Type Error

type num = Int of int | Float of float;;

let aux a =

match a with

| Int i -> float_of_int i

| Float j -> j

;;

aux (Int 2);;

13

Quiz 2: What does this evaluate to?

A. 4.0

B. 2.0

C. 2

D. Type Error

CMSC 330 - Summer 2021

type num = Int of int | Float of float;;

let aux a =

match a with

| Int i -> float_of_int i

| Float j -> j

;;

aux (Int 2);;

14

public interface Shape {

public double area();

}

class Rect implements Shape {

private double width, length;

Rect (double w, double l) {

this.width = w;

this.length = l;

}

double area() {

return width * length;

}

}

class Circle implements Shape {

private double rad;

Circle (double r) {

this.rad = r;

}

double area() {

return rad * rad * 3.14159;

}

}

Compare this to OCaml

CMSC 330 - Summer 2021

Variation: Shapes in Java

15

Option Type

• Comparing to Java: None is like null, while

Some i is like an Integer(i) object

type optional_int =

None

| Some of int

let divide x y =

if y != 0 then Some (x/y)

else None

let string_of_opt o =

match o with

Some i -> string_of_int i

| None -> “nothing”

let p = divide 1 0;;

print_string

(string_of_opt p);;

(* prints “nothing” *)

let q = divide 1 1;;

print_string

(string_of_opt q);;

(* prints “1” *)

CMSC 330 - Summer 2021

16

Polymorphic Option Type

• A Polymorphic version of option type can work with

any kind of data

• As int option, char option, etc...

type 'a option =

Some of 'a

| None

let p = opthd [];; (* p = None *)

let q = opthd [1;2];; (* q = Some 1 *)

let r = opthd [“a”];; (* r = Some “a” *)

let opthd l =

match l with

[] -> None

| x::_ -> Some xIn fact, this option type is built into OCaml

Polymorphic parameter:
like Option<T> in Java

CMSC 330 - Summer 2021

17

Quiz 3: What does this evaluate to?

A. 45.3

B. 42.0

C. Some 45.3

D. Error

let foo f = match f with

None -> 42.0

| Some n -> n +. 42.0

;;

foo 3.3;;

CMSC 330 - Summer 2021

18

Quiz 3: What does this evaluate to?

A. 45.3

B. 42.0

C. Some 45.3

D. Error

let foo f = match f with

None -> 42.0

| Some n -> n +. 42.0

;;

foo 3.3;; foo (Some 3.3)

CMSC 330 - Summer 2021

19

Recursive Data Types

• We can build up lists with recursive variant types

➢ Won’t have nice [1; 2; 3] syntax for this kind of list

type 'a mylist =

Nil

| Cons of 'a * 'a mylist

let rec len x = match x with

Nil -> 0

| Cons (_, t) -> 1 + (len t)

len (Cons (10, Cons (20, Cons (30, Nil))))

(* evaluates to 3 *)

CMSC 330 - Summer 2021

Variants (full definition)

• Syntax

• type t = C1 [of t1] | … | Cn [of tn]

• the Ci are called constructors

➢ Must begin with a capital letter; may include associated data - notated with

brackets [] to indicate it’s optional

• Evaluation

• A constructor Ci is a value if it has no assoc. data

➢ Ci vi is a value if it does

• Destructing a value of type t is by pattern matching

➢ patterns are constructors Ci with data components, if any

• Type Checking

• Ci [vi] : t [if vi has type ti]
CMSC 330 - Summer 2021 20

21

OCaml Exceptions

exception My_exception of int

let f n =

if n > 0 then

raise (My_exception n)

else

raise (Failure "foo")

let bar n =

try

f n

with My_exception n ->

Printf.printf "Caught %d\n" n

| Failure s ->

Printf.printf "Caught %s\n" s

CMSC 330 - Summer 2021

22

OCaml Exceptions: Details

• Exceptions are declared with exception

• They may appear in the signature as well

• Exceptions may take arguments

• Just like type constructors

• May also have no arguments

• Catch exceptions with try...with...

• Pattern-matching can be used in with

• If an exception is uncaught

➢ Current function exits immediately

➢ Control transfers up the call chain

➢ Until the exception is caught, or until it reaches the top level

CMSC 330 - Summer 2021

23

OCaml Exceptions: Useful Examples

• failwith s:Raises exception Failure s (s is a string).

• Not_found:Exception raised by library functions if the object does not exist

• invalid_arg s:Raises exception Invalid_argument s

let div x y =

if y = 0 then failwith "div by 0" else x/y;;

let lst =[(1,"alice");(2,"bob");(3,"cat")];;

let lookup key lst =

try

List.assoc key lst

with

Not_found -> "key does not exist"

CMSC 330 - Summer 2021

