CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R's language

- Approach to come: Convert R to a finite automaton FA and see whether s is accepted by FA
 - Details: Convert *R* to a *nondeterministic FA* (NFA), which we then convert to a *deterministic FA* (DFA),
 - > which enjoys a fast acceptance algorithm

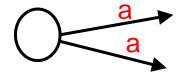
Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - > Easy to implement acceptance check
 - (Almost) all examples so far

- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol



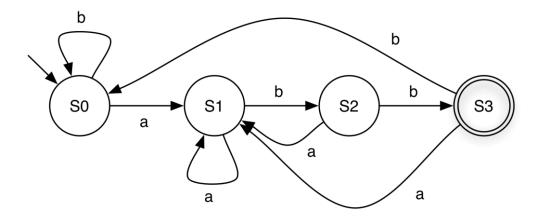
- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

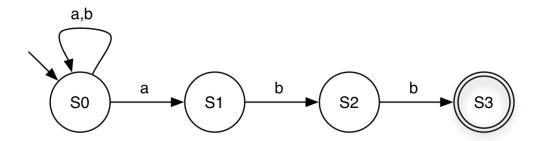
- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - A DFA is a specific kind of NFA

DFA for (a|b)*abb



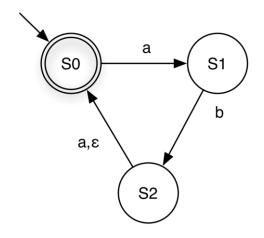
NFA for (a|b)*abb



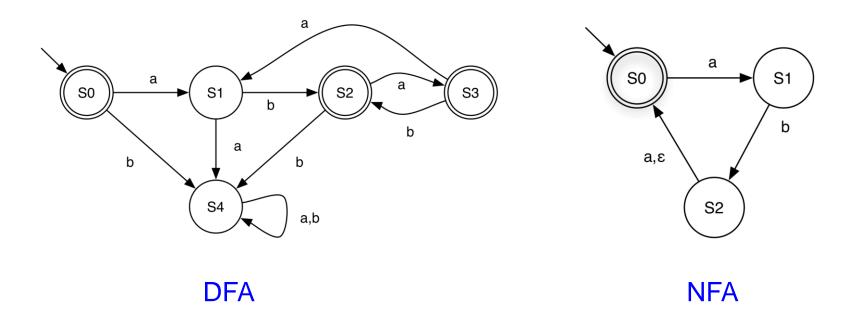
- ▶ ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- aba
- ▶ ababa
 - Has paths to states S0, S1
 - Need to use ε-transition

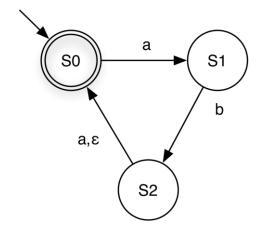


NFA and DFA for (ab|aba)*



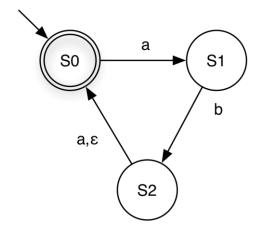
Quiz 1: Which string is **NOT** accepted by this NFA?

- A. ab
- в. abaa
- c. abab
- D. abaab



Quiz 1: Which string is NOT accepted by this NFA?

- A. ab
- в. abaa
- c. abab
- D. abaab



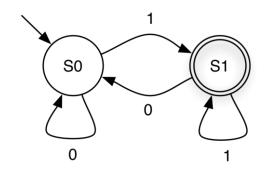
Formal Definition

- A deterministic finite automaton (DFA) is a
 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - F ⊆ Q is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - \triangleright What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$
- $\delta =$

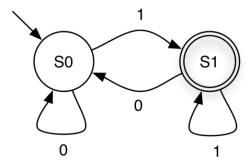
		symbol	
		0	1
input state	S0	S0	S1
input	S1	S0	S1



```
or as { (S0,0,S0),
 (S0,1,S1),
 (S1,0,S0),
 (S1,1,S1) }
```

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA



```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                         printf("rejected\n"); return 0;
              default:
            break;
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
              default:
                        printf("rejected\n"); return 0;
            break;
    default: printf("unknown state; I'm confused\n");
             break:
```

CMSC 330 Summer 2021 14

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q_0, F, \delta) of a DFA:

let q = q_0

while (there exists another symbol \sigma of the input string)

q := \delta(q, \sigma);

if q \in F then

accept

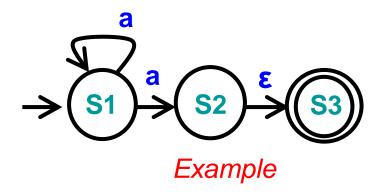
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

CMSC 330 Summer 2021 15

Nondeterministic Finite Automata (NFA)

- ▶ An *NFA* is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions



- $\Sigma = \{a\}$
- $Q = \{S1, S2, S3\}$
- $q_0 = S1$
- $F = \{S3\}$
- $\delta = \{ (S1,a,S1), (S1,a,S2), (S2,\epsilon,S3) \}$

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

NFA Acceptance Algorithm (Sketch)

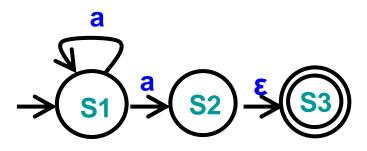
- When NFA processes a string s
 - NFA must keep track of several "current states"
 - > Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s
- Example
 - After processing "a"
 - > NFA may be in states

S1

S2

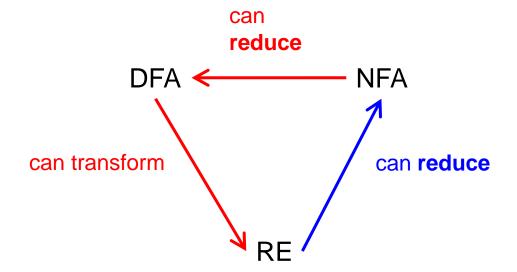
S3

- > Since S3 is final, s is accepted
- Algorithm is slow, space-inefficient; prefer DFAs!



Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them



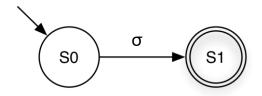
NB. Both transform and reduce are historical terms; they mean "convert"

Reducing Regular Expressions to NFAs

- Goal: Given regular expression *A*, construct NFA: $\langle A \rangle = (\Sigma, \mathbb{Q}, \mathbb{q}_0, \mathbb{F}, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - > Recall F = set of final states
- Will define <A> for base cases: σ, ε, Ø
 - Where σ is a symbol in Σ
- ▶ And for inductive cases: AB, AB, AB, A*

Reducing Regular Expressions to NFAs

Base case: σ



Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where Σ is the alphabet Q is set of states q_0 is starting state F is set of final states δ is transition relation

$$\langle \sigma \rangle = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$$
 $(\Sigma, Q, q_0, F, \delta)$

Reduction

Base case: ε

$$\langle \epsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where

 Σ is the alphabet

Q is set of states

q₀ is starting state

F is set of final states

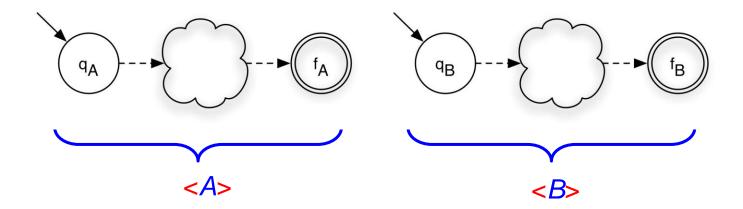
δ is transition relation

Base case: Ø

$$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$

Reduction: Concatenation

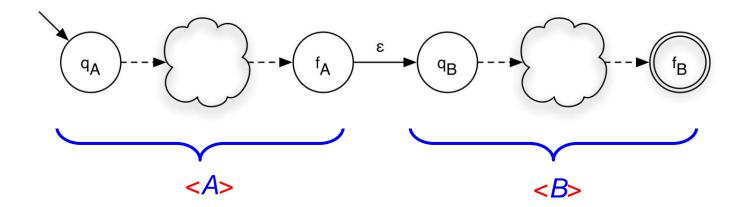
▶ Induction: AB



- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

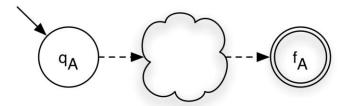
▶ Induction: AB

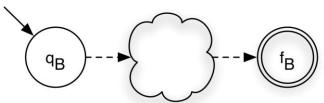


- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

▶ Induction: A|B

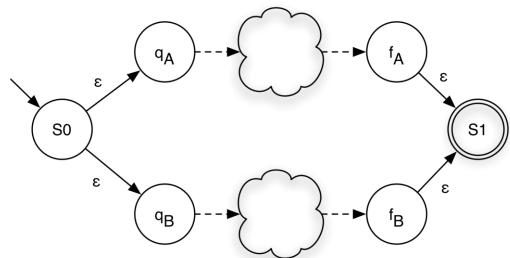




- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Union

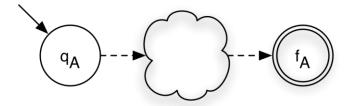
▶ Induction: AB



- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle A|B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

Reduction: Closure

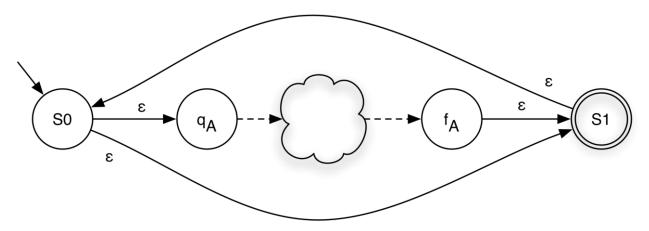
▶ Induction: A*



• $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

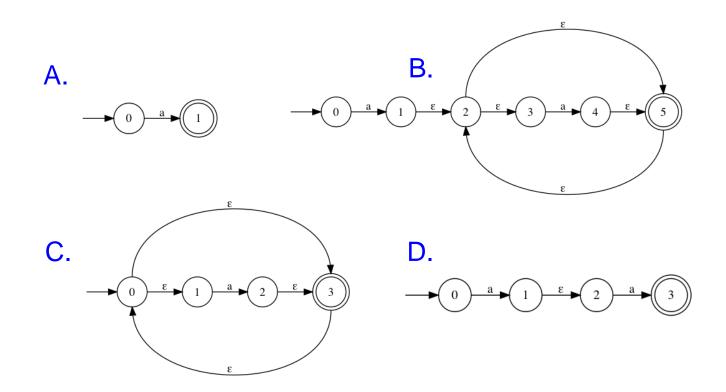
Reduction: Closure

▶ Induction: A*

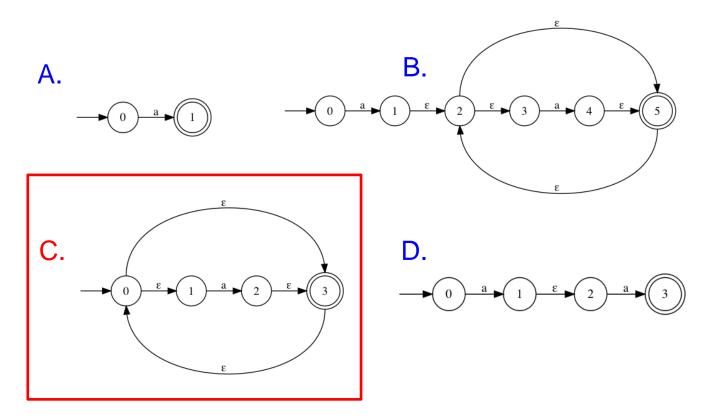


- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \{(f_A, \epsilon, S1), (S0, \epsilon, q_A), (S0, \epsilon, S1), (S1, \epsilon, S0)\})$

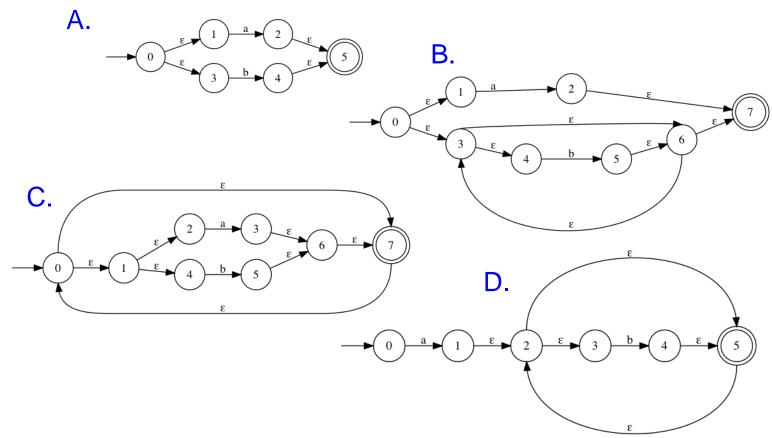
Quiz 2: Which NFA matches a*?



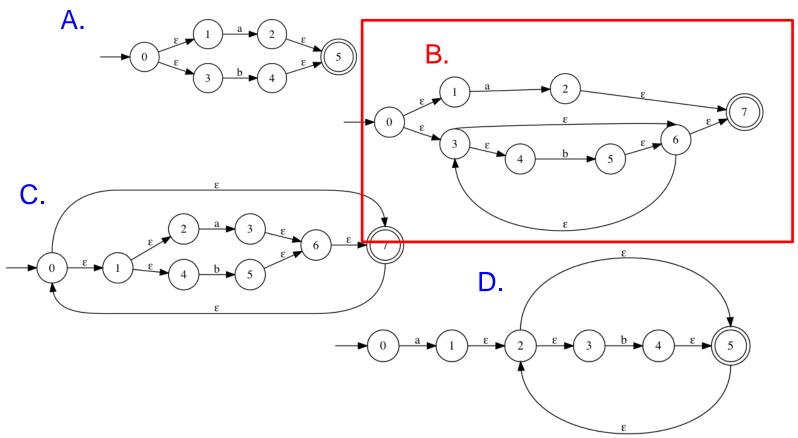
Quiz 2: Which NFA matches a*?



Quiz 3: Which NFA matches a b*?



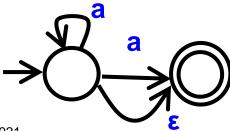
Quiz 3: Which NFA matches a|b*?



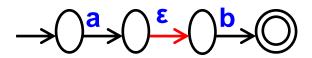
Recap

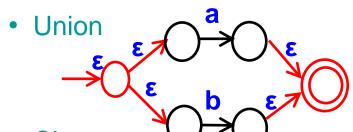
- Finite automata
 - Alphabet, states...
 - $(\Sigma, Q, q_0, F, \delta)$
- Types

Non-deterministic (NFA)

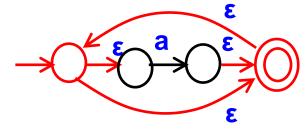


- Reducing RE to NFA
 - Concatenation





Closure



CMSC 330 Summer 2021

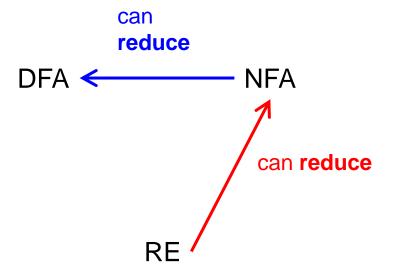
Reduction Complexity

▶ Given a regular expression *A* of size n...

```
Size = # of symbols + # of operations
```

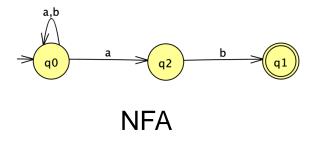
- How many states does <A> have?
 - Two added for each |, two added for each *
 - O(n)
 - That's pretty good!

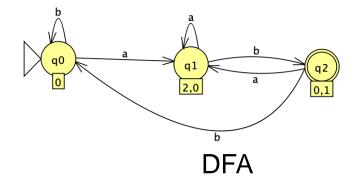
Reducing NFA to DFA



Why NFA → DFA

DFA is generally more efficient than NFA





Language: (a|b)*ab

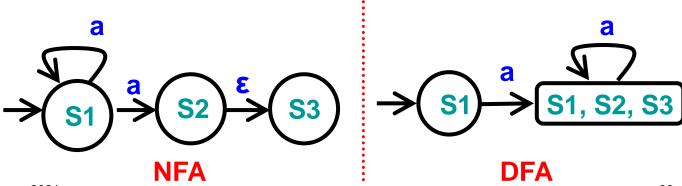
Why NFA \rightarrow DFA

- DFA has the same expressive power as NFAs.
 - Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, Q, q₀, F, δ). There exists a DFA D= (Σ, Q', q'₀, F', δ') that also accepts L. (L(N) = L(D))
- NFAs are more flexible and easier to build. But DFAs have no less power than NFAs.

NFA ↔ DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - > Each DFA state represents a set of NFA "current states"
- Example



Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states.
- Algorithm
 - Input
 - \rightarrow NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - > DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - \triangleright ϵ -closure(δ , p) (and ϵ -closure(δ , Q))
 - > move(δ , p, σ) (and move(δ , Q, σ))
 - (where p is an NFA state)

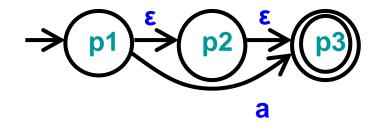
ε-transitions and ε-closure

- We say $p \xrightarrow{\epsilon} q$
 - If it is possible to go from state p to state q by taking only ϵ -transitions in δ
 - If \exists p, p₁, p₂, ... p_n, q \in Q such that \Rightarrow {p, ϵ ,p₁} \in δ , {p₁, ϵ ,p₂} \in δ , ..., {p_n, ϵ ,q} \in δ
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that p $\xrightarrow{\epsilon}$ q according to δ
 - > ε-closure(δ, p) = {q | p $\xrightarrow{\epsilon}$ q in δ }
 - > ε-closure(δ, Q) = { q | p ∈ Q, p $\xrightarrow{\epsilon}$ q in δ }
 - Notes
 - ε-closure(δ, p) always includes p
 - \triangleright We write ε-closure(p) or ε-closure(Q) when δ is clear from context

ε-closure: Example 1

Following NFA contains

- p1 $\stackrel{\epsilon}{\rightarrow}$ p2
- p2 $\stackrel{\varepsilon}{\rightarrow}$ p3
- p1 $\stackrel{\epsilon}{\rightarrow}$ p3
 - > Since p1 $\stackrel{\epsilon}{\rightarrow}$ p2 and p2 $\stackrel{\epsilon}{\rightarrow}$ p3



ε-closures

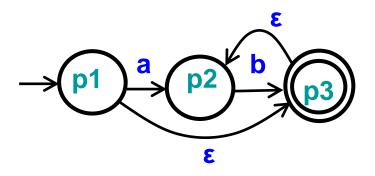
- ϵ -closure(p1) =
- ϵ -closure(p2) =
- ϵ -closure(p3) =
- ε-closure({ p1, p2 }) =

```
{ p1, p2, p3 }
{ p2, p3 }
{ p3 }
{ p1, p2, p3 } \cup { p2, p3 }
```

ε-closure: Example 2

Following NFA contains

- p1 $\stackrel{\varepsilon}{\rightarrow}$ p3
- p3 $\stackrel{\varepsilon}{\rightarrow}$ p2
- p1 $\stackrel{\varepsilon}{\rightarrow}$ p2
 - > Since p1 $\stackrel{\epsilon}{\rightarrow}$ p3 and p3 $\stackrel{\epsilon}{\rightarrow}$ p2



ε-closures

- ϵ -closure(p1) =
- ϵ -closure(p2) =
- ϵ -closure(p3) =
- ε-closure({ p2,p3 }) =

```
{ p1, p2, p3 }
{ p2 }
{ p2, p3 }
{ p2 } ∪ { p2, p3 }
```

CMSC 330 Summer 2021

ε-closure Algorithm: Approach

▶ Input: NFA (Σ , Q, q₀, F_n, δ), State Set R

Output: State Set R'

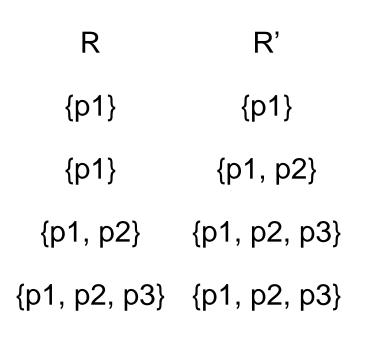
► Algorithm

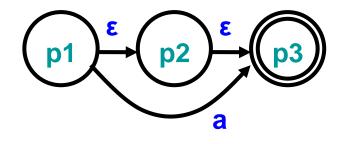
```
Let R' = R  // start states  
Repeat  // continue from previous  
Let R' = R'  // continue from previous  
Let R' = R \cup {q | p \in R, (p, \epsilon, q) \in \delta}  // new \epsilon-reachable states  
Until R = R'  // stop when no new states
```

This algorithm computes a fixed point

ε-closure Algorithm Example

► Calculate ε-closure(δ,{p1})





```
Let R' = R 
Repeat 
Let R= R' 
Let R' = R \cup {q | p \in R, (p, \epsilon, q) \in \delta} 
Until R = R'
```

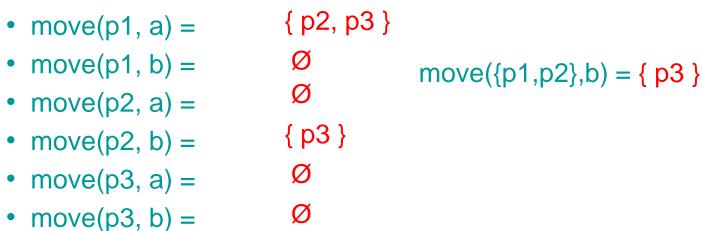
Calculating move(p,σ)

- move(δ ,p, σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - > Set of states q such that $\{p, \sigma, q\} \in \delta$
 - > move(δ, p, σ) = { q | {p, σ , q} $\in \delta$ }
 - \rightarrow move(δ ,Q, σ) = { q | p \in Q, {p, σ , q} \in δ }
 - i.e., can "lift" move() to a set of states Q
 - Notes:
 - \rightarrow move(δ,p,σ) is \emptyset if no transition (p,σ,q) $\in \delta$, for any q
 - \rightarrow We write move(p, σ) or move(R, σ) when δ clear from context

$move(p,\sigma)$: Example 1

Following NFA

•
$$\Sigma = \{ a, b \}$$



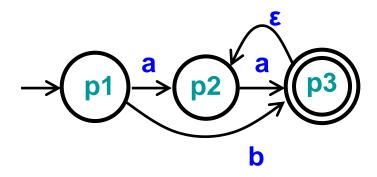
$$\begin{array}{c|c}
 & p1 \\
\hline
 & p2 \\
\hline
 & a
\end{array}$$

$move(p,\sigma)$: Example 2

Following NFA

• $\Sigma = \{ a, b \}$

Move



$$move(\{p1,p2\},a) = \{p2,p3\}$$

NFA → DFA Reduction Algorithm ("subset")

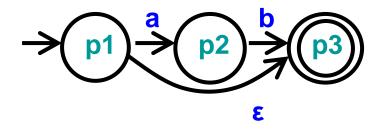
- ▶ Input NFA (Σ , Q, q₀, F_n, δ), Output DFA (Σ , R, r₀, F_d, δ ')
- Algorithm

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
                                                            // DFA start state
While \exists an unmarked state r \in R
                                                            // process DFA state r
     Mark r
                                                            // each state visited once
     For each \sigma \in \Sigma
                                                            // for each symbol σ
          Let E = move(\delta, r, \sigma)
                                                            // states reached via σ
           Let e = \varepsilon-closure(\delta,E)
                                                            // states reached via ε
          If e ∉ R
                                                            // if state e is new
                Let R = R \cup \{e\}
                                                            // add e to R (unmarked)
           Let \delta' = \delta' \cup \{r, \sigma, e\}
                                                            // add transition r→e on σ
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
                                                            // final if include state in F<sub>n</sub>
```

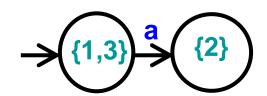
NFA → DFA Example

- Start = ε -closure(δ ,p1) = { {p1,p3} }
- $R = \{ \{p1,p3\} \}$
- $r \in R = \{p1,p3\}$
- $move(\delta, \{p1, p3\}, a) = \{p2\}$
 - \triangleright e = ε -closure(δ ,{p2}) = {p2}
 - \Rightarrow R = R \cup {{p2}} = { {p1,p3}, {p2} }
 - $> \delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}\}$
- move(δ ,{p1,p3},b) = \emptyset

NFA



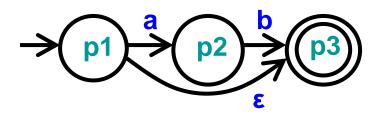
DFA



NFA → DFA Example (cont.)

- $R = \{ \{p1,p3\}, \{p2\} \}$
- $r \in R = \{p2\}$
- $move(\delta, \{p2\}, a) = \emptyset$
- $move(\delta, \{p2\}, b) = \{p3\}$
 - \triangleright e = ε -closure(δ ,{p3}) = {p3}
 - \Rightarrow R = R \cup {{p3}} = { {p1,p3}, {p2}, {p3} }
 - $> \delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}\}$

NFA

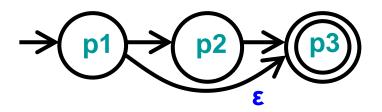


DFA

NFA → DFA Example (cont.)

- $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
- $r \in R = \{p3\}$
- Move($\{p3\},a$) = \emptyset
- Move($\{p3\},b$) = \emptyset
- Mark {p3}, exit loop
- $F_d = \{\{p1,p3\}, \{p3\}\}\$ > Since $p3 \in F_n$
- Done!

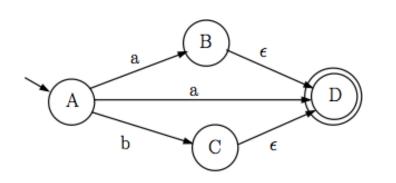
NFA

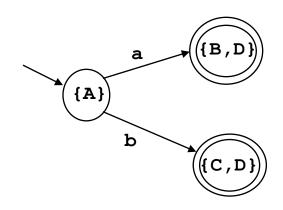


DFA

NFA → DFA Example 2

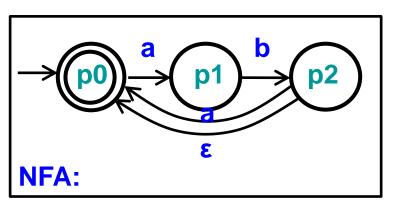
▶ NFA ▶ DFA

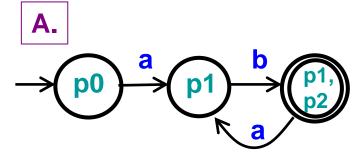


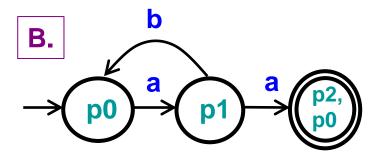


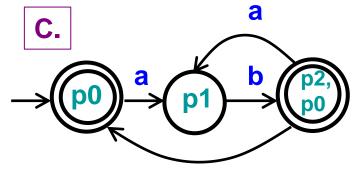
$$R = \{ \{A\}, \{B,D\}, \{C,D\} \}$$

Quiz 4: Which DFA is equiv to this NFA?





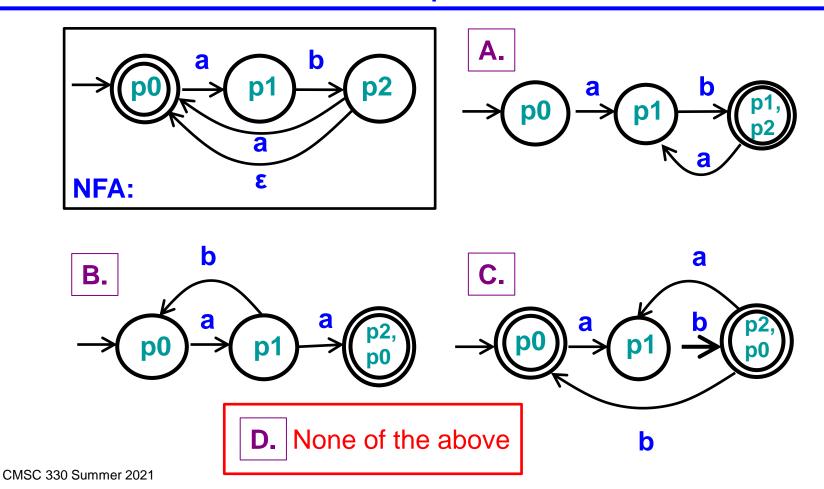




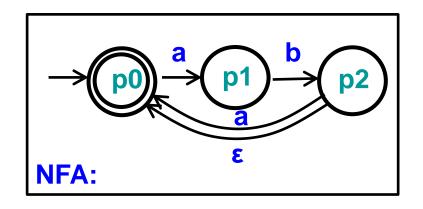
D. None of the above

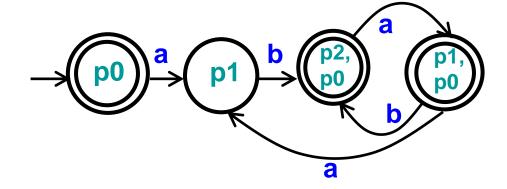
b

Quiz 4: Which DFA is equiv to this NFA?

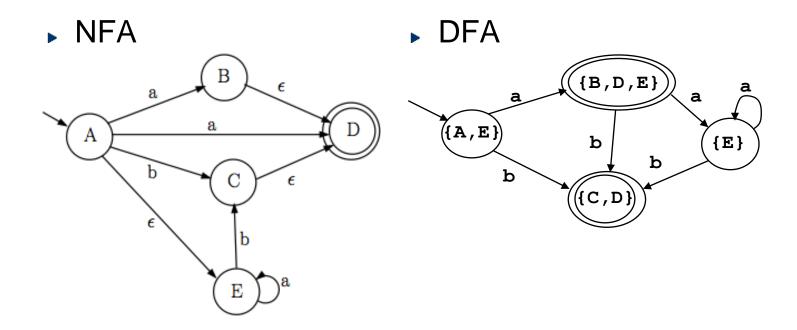


Actual Answer

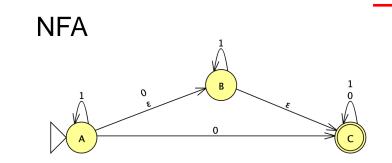




NFA → DFA Example 3



$$R = \{ \{A,E\}, \{B,D,E\}, \{C,D\}, \{E\} \} \}$$



DFA

New Start State

```
Let r_0 = \epsilon-closure(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma

Let E = move(\delta, r, \sigma)

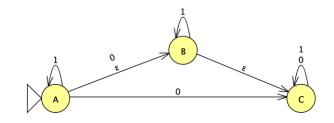
Let e = \epsilon-closure(\delta, E)

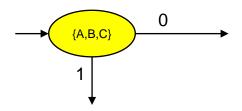
If e \notin R

Let R = R \cup \{e\}

Let \delta' = \delta' \cup \{r, \sigma, e\}

Let F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}
```



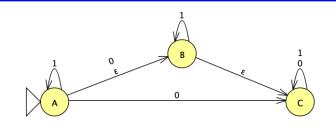


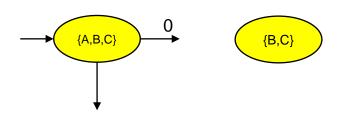
Let $r_0 = \epsilon$ -closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$ Mark rFor each $\sigma \in \Sigma$ //0

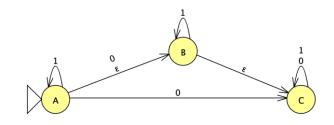
Let $E = move(\delta, r, \sigma)$ Let $e = \epsilon$ -closure(δ, E)

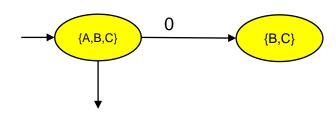
If $e \notin R$ Let $e = \epsilon \cdot e$ Let $e = \epsilon$





	0	1
{A,B,C}	{B,C}	





	0	1
{A,B,C}	{B,C}	
{B,C}		

```
Let r_0 = \epsilon\text{-closure}(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma

Let E = move(\delta, r, \sigma)

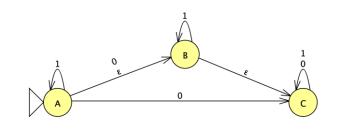
Let e = \epsilon\text{-closure}(\delta, E)

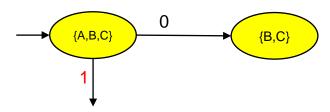
If e \notin R

Let R = R \cup \{e\}

Let \delta' = \delta' \cup \{r, \sigma, e\}

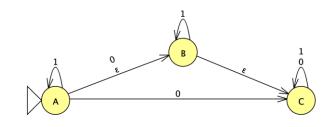
Let F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}
```

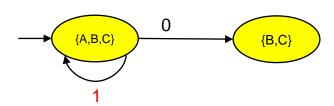




	0	1
{A,B,C}	{B,C}	
{B,C}		

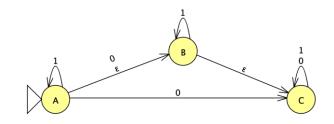
```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                  Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

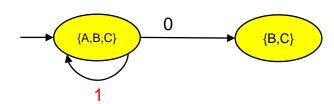




	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

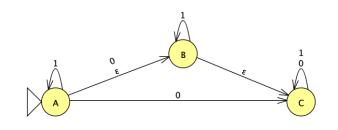
```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
      Mark r
      For each \sigma \in \Sigma
                                          //1
              Let E = move(\delta, r, \sigma)
             Let e = \varepsilon-closure(\delta,E)
             If e ∉ R
                 Let R = R \cup \{e\}
             Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

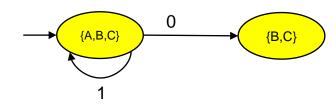




	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

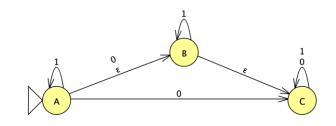
```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                           //1
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                 Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

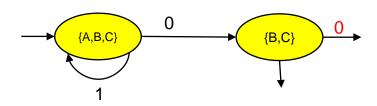




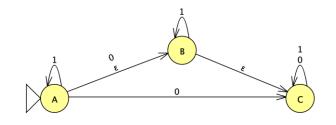
	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

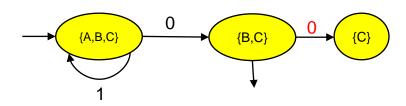
```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                           //1
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                 Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```



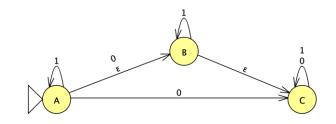


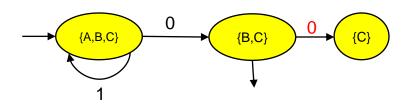
```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                            //0
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                 Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```





```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                            //0
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                  Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	
{C}		

```
Let r_0 = \epsilon\text{-closure}(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma //0

Let E = \text{move}(\delta, r, \sigma)

Let e = \epsilon\text{-closure}(\delta, E)

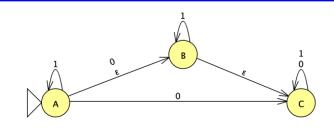
If e \notin R

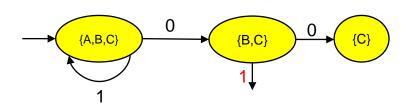
Let R = R \cup \{e\}

Let \delta' = \delta' \cup \{r, \sigma, e\}

Let F_d = \{r \mid \exists \ s \in r \ \text{with} \ s \in F_n\}
```

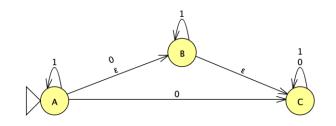
CMSC 330 Summer 2021

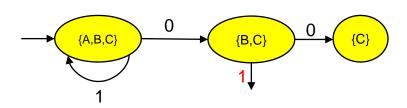




	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	?
{C}		

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                           //1
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                 Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

```
Let r_0 = \epsilon-closure(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

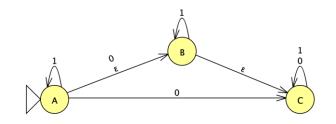
For each \sigma \in \Sigma //1

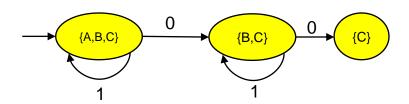
Let E = move(\delta, r, \sigma)

Let e = \epsilon-closure(\delta, E)

If e \notin R

Let e \in R
```





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

```
Let r_0 = \epsilon\text{-closure}(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma //1

Let E = \text{move}(\delta, r, \sigma)

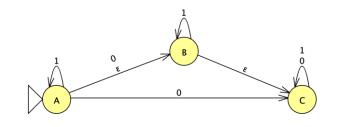
Let e = \epsilon\text{-closure}(\delta, E)

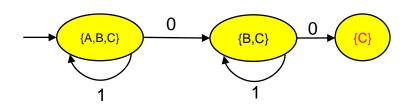
If e \notin R

Let R = R \cup \{e\}

Let \delta' = \delta' \cup \{r, \sigma, e\}

Let F_d = \{r \mid \exists \ s \in r \ \text{with} \ s \in F_n\}
```

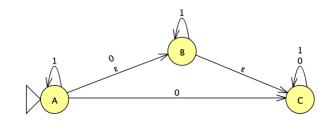


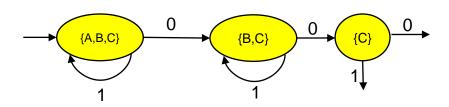


	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                 Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

CMSC 330 Summer 2021





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

Let $r_0 = \varepsilon$ -closure(δ, q_0), add it to R

While \exists an unmarked state $r \in R$ Mark r

For each $\sigma \in \Sigma$

Let $E = move(\delta, r, \sigma)$

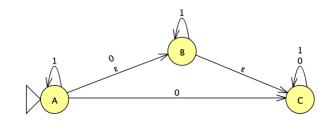
Let $e = \varepsilon$ -closure(δ ,E)

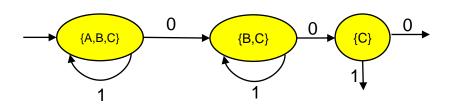
If e ∉ R

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

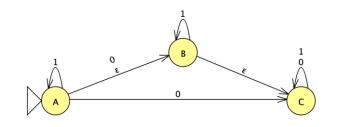
Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

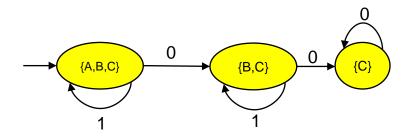




	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	

Let $r_0 = \varepsilon$ -closure(δ, q_0), add it to R While \exists an unmarked state $r \in R$ Mark r For each $\sigma \in \Sigma$ //0 Let $E = move(\delta, r, \sigma)$ Let $e = \varepsilon$ -closure(δ ,E) If e ∉ R Let $R = R \cup \{e\}$ Let $\delta' = \delta' \cup \{r, \sigma, e\}$ Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	

```
Let r_0 = \epsilon\text{-closure}(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma //0

Let E = \text{move}(\delta, r, \sigma)

Let e = \epsilon\text{-closure}(\delta, E)

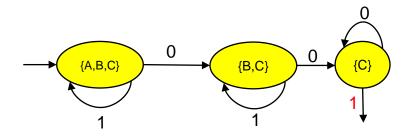
If e \notin R

Let R = R \cup \{e\}

Let \delta' = \delta' \cup \{r, \sigma, e\}

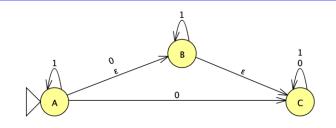
Let F_d = \{r \mid \exists \ s \in r \ \text{with} \ s \in F_n\}
```

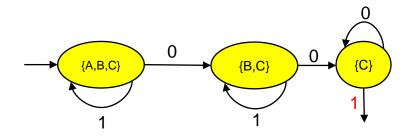




	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                           //1
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
               Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

```
Let r_0 = \epsilon-closure(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

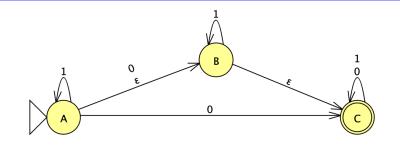
For each \sigma \in \Sigma //1

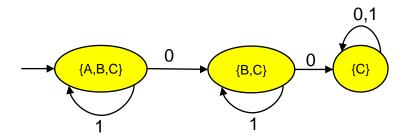
Let E = move(\delta, r, \sigma)

Let e = \epsilon-closure(\delta, E)

If e \notin R

Let e \in R
```





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

```
Let r_0 = \epsilon-closure(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma //1

Let E = move(\delta, r, \sigma)

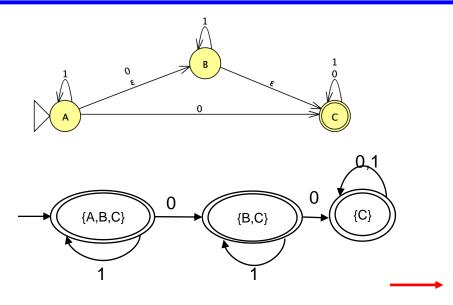
Let e = \epsilon-closure(\delta, E)

If e \notin R

Let R = R \cup \{e\}

Let \delta' = \delta' \cup \{r, \sigma, e\}

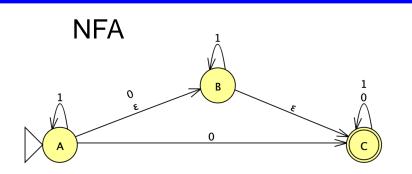
Let F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}
```



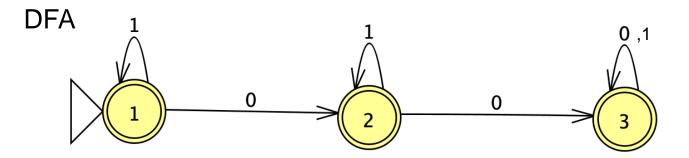
	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
       For each \sigma \in \Sigma
                                           //1
              Let E = move(\delta, r, \sigma)
              Let e = \varepsilon-closure(\delta,E)
              If e ∉ R
                 Let R = R \cup \{e\}
              Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

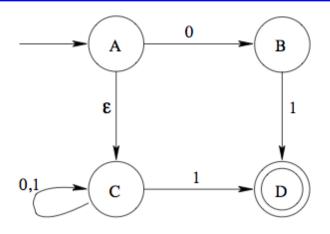
Detailed NFA → DFA Example: Completed

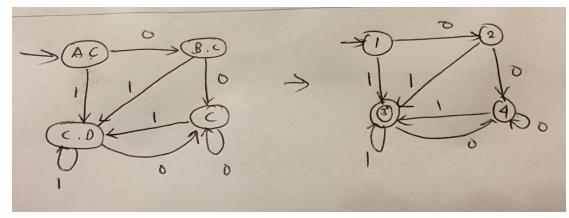


	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}



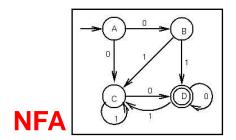
NFA → DFA Example

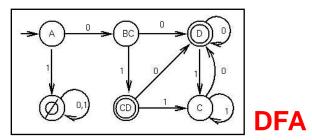




Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - > Since a set with n items may have 2ⁿ subsets
 - Corollary
 - > Reducing a NFA with n states may be O(2ⁿ)

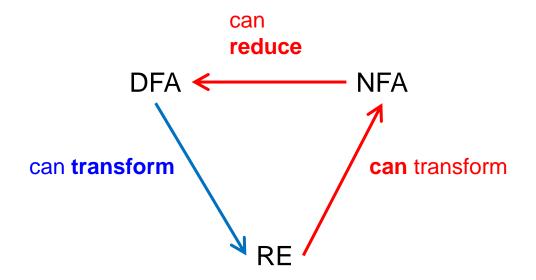




Recap: Matching a Regexp R

- Given R, construct NFA. Takes time O(R)
- ▶ Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast

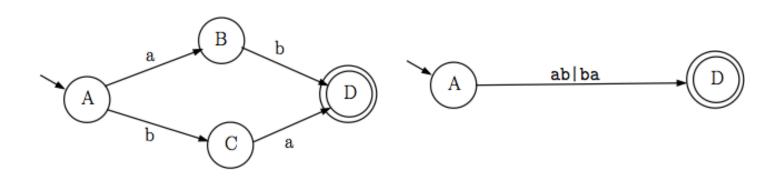
Closing the Loop: Reducing DFA to RE



Reducing DFAs to REs

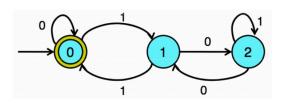
General idea

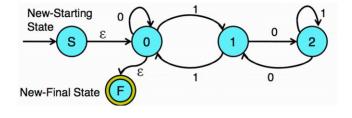
- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

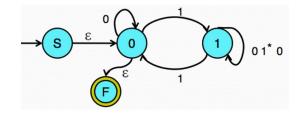


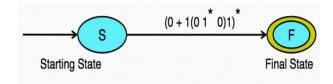
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary



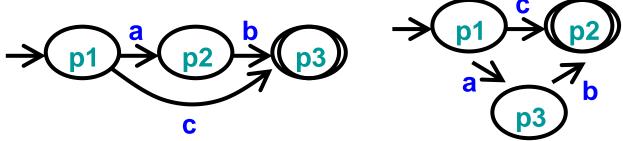






Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language



Minimizing DFA: Hopcroft Reduction

Intuition

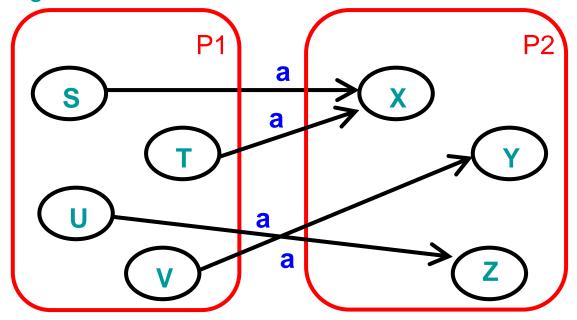
- Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input

Algorithm

- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

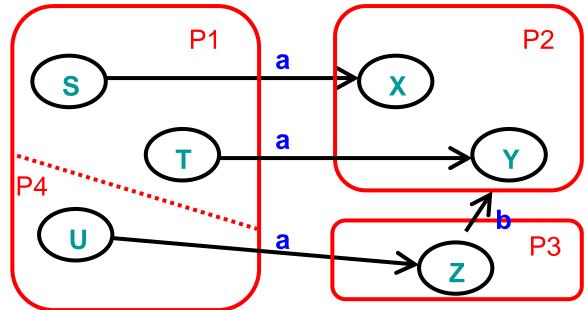
Splitting Partitions

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states



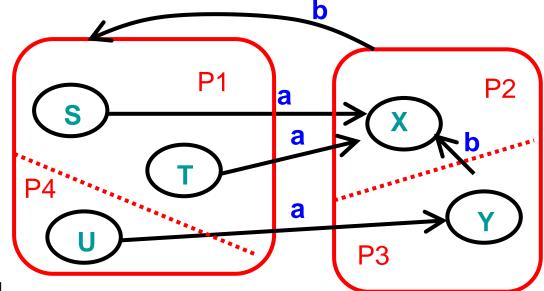
Splitting Partitions (cont.)

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3



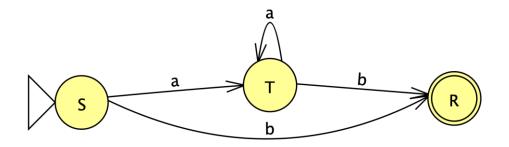
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}



CMSC 330 Summer 2021

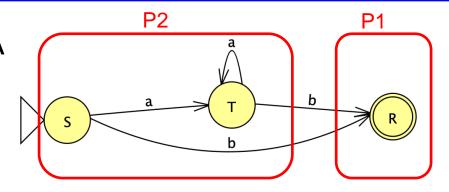
DFA

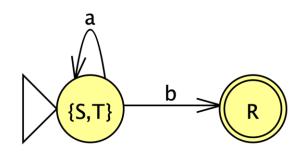


Initial partitions

Split partition

DFA





- Initial partitions
 - Accept

$$\{R\} = P1$$

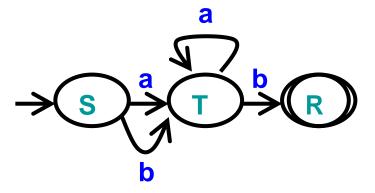
Reject

- $\{S,T\} = P2$
- Split partition?

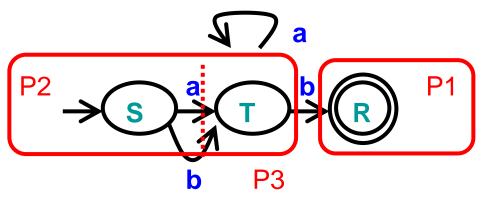
- → Not required, minimization done
- $move(S,a) = T \in P2$

 $- \text{move}(S,b) = R \in P1$

- $move(T,a) = T \in P2$ $move(T,b) = R \in P1$



DFA



- Initial partitions
 - Accept { R }= P1
 - Reject $\{S,T\} = P2$
- ▶ Split partition? → Yes, different partitions for B
 - $move(S,a) = T \in P2$ $move(S,b) = T \in P2$
 - $move(T,a) = T \in P2$ $move(T,b) = R \in P1$

DFA

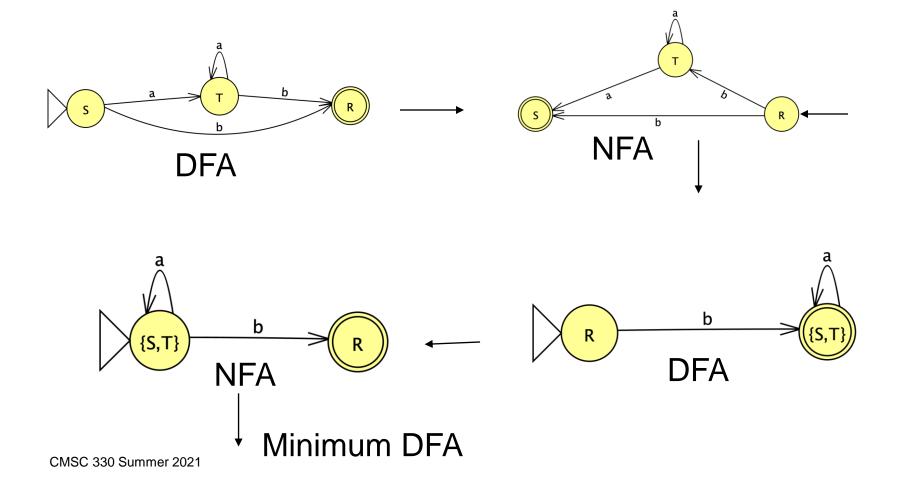
already

minimal

Brzozowski's Algorithm: DFA Minimization

- Given a DFA, reverse all the edges, make the initial state an accept state, and the accept states initial, to get an NFA
- 2. NFA-> DFA
- 3. For the new DFA, reverse the edges (and initial-accept swap) get an NFA
- 4. NFA -> DFA

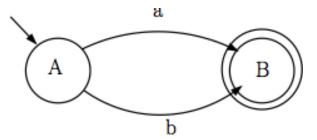
Brzozowski's algorithm



Complement of DFA

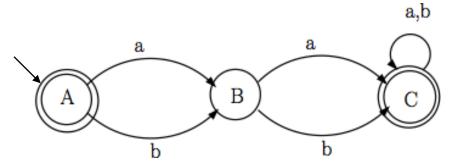
- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

$$> \Sigma = \{a,b\}$$



Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?



Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - > Concatenation, union, closure
 - NFA → DFA
 - > ε-closure & subset algorithm
- DFA
 - Minimization, complementation