CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC 330 Summer 2021

Turing Machine

Inhnite | ape

1::\0::111&
2N

‘ Read Hnnite Head

Control Unit

|r tafte r-jl

. S —

CMSC 330 Fall 2020

Turing Completeness

» Turing machines are the most powerful
description of computation possible
e They define the Turing-computable functions
» A programming language Is Turing complete If
e |t can map every Turing machine to a program
e A program can be written to emulate a Turing machine
e |tis a superset of a known Turing-complete language

» Most powerful programming language possible
e Since Turing machine is most powerful automaton

CMSC 330 Fall 2020 8

Programming Language Expressiveness

» S0 what language features are needed to express
all computable functions?
¢ \What's a minimal language that is Turing Complete?

» Observe: some features exist just for convenience

e Multi-argument functions foo (a, b, c)
» Use currying or tuples

e Loops while (a <b) ...
> Use recursion
e Side effects a.=1

» Use functional programming pass “heap” as an argument to
each function, return it when with function’s result:
effectful : ‘a - 's — (‘s * 'a)

CMSC 330 Fall 2020 9

Programming Language Expressiveness

» It Is not difficult to achieve Turing Completeness
e |ots of things are ‘accidentally’ TC

» Some fun examples:
e X86 64 mov instruction
e Minecraft
e Magic: The Gathering
e Java Generics

» There’'s a whole cottage industry of proving things
to be TC.

» What about something a little more
‘programmable’?

CMSC 330 Fall 2020 10

Mini C

You only have:
* |f statement

 Plus1l
e Minus1l
« functions

CMSC 330 Fall 2020

sum n = 1+2+3+4+5...nin Mini C
int add1(int n){return n+1;}
int subl(int n){return n-1;}
int add(int a,int b){
if(b == 0) return a;

else return add(add1(a),subl(b));

}

int sum(int n){
if(n == 1) return 1,
else return add(n, sum(subl(n)));

}

int main(){
printf("%d\n",sum(5));

11

Lambda Calculus (A-calculus)

» Proposed in 1930s by
e Alonzo Church
(born in Washingon DC!)

» Formal system
e Designed to investigate functions & recursion
e For exploration of foundations of mathematics
» Now used as

e Tool for investigating computability

e Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

CMSC 330 Fall 2020

12

Why Study Lambda Calculus?

» Itis a “core” language
e Very small but still Turing complete

» But with it can explore general ideas
e L anguage features, semantics, proof systems,
algorithms, ...
» Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
e C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi
(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), ... (and functional languages like
OCaml, Haskell, F#, ...)

e Excel, as of 2021!

CMSC 330 Fall 2020 13

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e =X variable
| Ax.e abstraction (fun def)
| ee application (fun call)

» This grammar describes ASTs; not for parsing (ambiguous!)
» Lambda expressions also known as lambda terms

e Ax.eis like (fun x -> e) In OCaml
That's it! Nothing but higher-order functions

CMSC 330 Fall 2020 14

Lambda Calculus Syntax

» How Is it ambiguous?
» Let’s try: Ax.x X

E-VI|L|A AV
L — AV.E
A—EE

V
V—>V|€

CMSC 330 Fall 2020

15

Lambda Calculus Syntax

» How Is it ambiguous?
» Let’s try: Ax.x X

E—>V]|LIA L V
L—AV.E AN
A—>EE AV OV x
Vov]e | |

X X

CMSC 330 Fall 2020

16

Lambda Calculus Syntax

» While this means that our grammar is not so
useful for parsing, it is still useful for write LC
terms if we follow some conventions

» Almost all literature you will find uses 2 syntactic
conventions

» We add a third convention that is very common
‘syntactic sugar’ for ease of reading larger LC
terms

CMSC 330 Fall 2020 17

Three Conventions

» Scope of A extends as far right as possible
e Subject to scope delimited by parentheses
e AX. Ay.X Yy is same as AX.(Ay.(x y))

» Function application is left-associative
e Xyzis(Xy)z
e Same rule as OCam|

» As a convenience, we use the following “syntactic
sugar” for local declarations
e letx=eline2is short for (Ax.e2) e1

CMSC 330 Fall 2020 18

Quiz #1

Ax. (y z) and Ax .y z are equivalent

A. True
B. False

CMSC 330 Fall 2020 19

Quiz #1

Ax. (y z) and Ax.y z are equivalent

A.True
B. False

CMSC 330 Fall 2020 20

But what does it mean

» Many ways to define the semantics of LC
» We will look at 2

- Operational
- Definitional Interpreter

CMSC 330 Fall 2020

21

Lambda Calculus Semantics

» Evaluation: All that's involved are function calls
(Ax.e1) e2

e Evaluate el with x replaced by e2

» This application is called beta-reduction

e \We allow reductions to occur anywhere in a term

» Order reductions are applied does not affect final value! (if
there is one)

» When a term cannot be reduced further it i1s in
beta normal form

CMSC 330 Fall 2020

22

Operational Semantics of LC

» Because of the use of variables, we need an
environment

» Recap: the environment can be thought of as a
map from variable names to the term they
represent.

« Often written as p : Env
. type Env = Variable — Term

» We extend the environment by adding new
associations between variables and terms

o ext : Env — Variable — Term — Env

CMSC 330 Fall 2020

23

Operational Semantics of LC

» Each ‘'kind’ of term gets its own inference rule
» When we reach a ‘bare’ lambda, we’re done:

val = pV
A; (Ax.e1) = (Ax.e1)

CMSC 330 Fall 2020

24

Operational Semantics of LC

» The meaning of variables is based on the current
environment:

A(v)=t
A:v=> t

CMSC 330 Fall 2020 25

Operational Semantics of LC

» We didn’t say anything about the order things
should happen in!

» Let’s evaluate the argument fully first, this is
known as call-by-value

A e2>= e3 A el>e2

A;ele2=A;ele3 A; el (Av.ed) = A; e2 (Av.e3)

P = extp X (Av.e2)
A; (Ax.e1) (Av.e2) = Ax:(A\v.e2); el

CMSC 330 Fall 2020 26

Operational Semantics of LC

» Let’s avoid evaluating the argument, this is known
as call-by-name

A el e2
A:ele3=>e2 e3

p = extpxe2
A; (Ax.e1) e2 > Axe2; el

CMSC 330 Fall 2020 27

Operational Semantics of LC

» The rules we just showed are very common for
programming languages based on LC

» You don’t have to choose call-by-name or call-by-
value, LC as a system let’'s you choose whatever
order you want

» YOou can also reduce under the lambda.

A el = e2
A; (Ax.e1) = A; (Ax.e2)

CMSC 330 Fall 2020 28

Operational Semantics of LC

» Call-by-value vs. call-by-name has its tradeoffs.

» Most languages use call-by-value (e.g. Ocaml),
put some use call-by-name (or a related variant
Known as call-by-need).

» Interestingly: more programs terminated under
call-by-name. Can you think of why?

» Consider: (Ax.e2) e1,
» What If el would never terminate, but e2 would?

CMSC 330 Fall 2020 29

OCaml Lambda Calc AST

type i1d = string

P e.=X type exp = Var of id
| Ax.e Lam of id * exp
| ee | App of exp * exp
y Var “y”
)\XX Lam (“X” , var “x”)
)\X.)\y.X y Lam (“x”, (Lam(“y” ,App (Var “x”, Var “y”))))

App
(AX.Ay-X y) AX.X X (Lam (\\x// , Lam(\\y// IAPP (Var\\x// ,Var\\y//))) ,
Lam (“X" , APP (Var W77 , Var \\x//)))

CMSC 330 Fall 2020 30

Quiz #2

What is this term’s AST? fype id = string

type exp =
Var of id
| Lam of id * exp
hx X X | App of exp * exp

type env = id -> exp

App (Lam (“x”, Var “x”), Var “x”
Lam (Var “x”, Var “x”, Var “x”
Lam (“x”, App (Var “x”,Var “x”))
APP (Lam (“x”, APP (“X”, “X”)))

O0Ow x>

CMSC 330 Fall 2020 31

Quiz #2

What is this term’s AST? fype id = string

type exp =
Var of id
| Lam of id * exp
hx X X | App of exp * exp

type env = id -> exp

App (Lam (“x”, Var “x”), Var “x”
Lam (Var “x”, Var “x”, Var “x”
Lam (“x”, App (Var “x”,Var “x”))
App (Lam (“'x”, App (“x”, “x”)))

O0OwW x>

CMSC 330 Fall 2020 32

Quiz #3

This term Is equivalent to which of
the following?

AX.X a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax.(x (a b))
D. (Ax. ((x a) b))

CMSC 330 Fall 2020

33

Quiz #3

This term Is equivalent to which of
the following?

AX.X a b

A. (Ax.x) (a b)
B. (((Ax.x) a) Db)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

CMSC 330 Fall 2020

34

Lambda Calculus on paper

» When doing things ‘by hand’ we often omit the
explicit environment and think in terms of
substitutions

» You must be careful when doing this by hand as it
can get finnicky!
» Some examples will help with intuition...

CMSC 330 Fall 2020 35

Beta Reduction Examples

» (AX.X)Z — Z
» (AXYy)Zz —> Y

» (AXXY)Z— zy

e A function that applies its argument to y

CMSC 330 Fall 2020

36

Beta Reduction Examples (cont.)

» (AXXY) (Az.2) > (Az.2)y >y

> ()\X)\yX y) Z —)\yz y
e A curried function of two arguments
e Applies its first argument to its second

> (AAY.Xy) (Az.2Z) X 7 (AY.(AZ.z2)y)X — (AZ.2Z)X —X X

CMSC 330 Fall 2020 37

Beta Reduction Examples (cont.)

(AX.X (Ay.y)) (Uur) —

(AX.(AW. X W)) (Y 2) —

CMSC 330 Fall 2020

38

Beta Reduction Examples (cont.)

(AX.X (Ay.y)) (UT) — (ur) (Ay.y)

(AX.(Aw. X W)) (Y Z2) — (Aw. (Y Z2) W)

CMSC 330 Fall 2020

39

Quiz #4

(Ax.y) z can be beta-reduced to

Ay

B.y z

C.z

D. cannot be reduced

CMSC 330 Fall 2020

40

Quiz #4

(Ax.y) z can be beta-reduced to

A.y

B.y z

C.z

D. cannot be reduced

CMSC 330 Fall 2020

41

Quiz #5

Which of the following reduces to Az. z?

d

(Ay. Az. X) z
b) (

)
) (Az.AX.2)y

) (AY.y) (AX. Az. 2) W
) (Ay. AX. 2) z (Az. 2)

@

d

CMSC 330 Fall 2020

42

Quiz #5

Which of the following reduces to Az. z?

a) (Ay.Az.x)z
b) (Az.AX.2)y

c) (Ay.y) (AX.Az.z)w
d) (Ay. Ax.z)z (Az. z)

CMSC 330 Fall 2020 43

Static Scoping & Alpha Conversion

» Lambda calculus uses static scoping

» Consider the following
o (AXX.X(AXX))z—"?
» The rightmost “X” refers to the second binding

e This is a function that
» Takes its argument and applies it to the identity function

» This function is “the same™ as (Ax.x (Ay.y))

e Renaming bound variables consistently preserves meaning
» This is called alpha-renaming or alpha conversion

o EX.AXX =AYy =Az.z Ay.AXYy = Az.AX.Z

CMSC 330 Fall 2020 44

Quiz #6

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. AYy. XYy)y

CMSC 330 Fall 2020

Quiz #6

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. AYy. XYy)y

a)Ay.yy
b)Az.y z
c) (AX.Az.x2)y
d) (AX. Ay. X y) z

CMSC 330 Fall 2020

46

Variable capture

» How about the following?
o (AXXAYyXYy)y —?

e \When we replace y inside, we don’t want it to be
captured by the inner binding of y, as this violates
static scoping

o l.e., (AXAY.XY)Yy#Ayyy

» Solution

e (AX.Ay.xYy)is “the same™ as (AX.Az.x z)
» Due to alpha conversion

e S0 alpha-convert (AX.Ay.xXy) y to (AX.Az.x z) y first
> Now (AX.Az.xz)y — Az.y z

CMSC 330 Fall 2020 47

OCaml interpreter for Call-by-value

» Now we can write our interpreter!

» First some types and utility functions:

type id = string
type exp =
Var of id
| Lam of id * exp
| App of exp * exp
type env = id -> exp

let emptyEnv = fun x -> failwith "Variable not in scope"
let extend (rho : env) (name : id) (term :exp) =
fun x -> if Xx = name

then term
else rho x

CMSC 330 Fall 2020

48

OCaml interpreter for Call-by-value

» Now for the eval

» Return the evaluated term and the new
environment:

let rec eval (e : exp) (rho : env) =
match e with
| Var i -> (rho i, rho)
| Lam(x, el) -> (Lam(x, el), rho)
| App(el, e2) -> let arg = fst (eval e2 rho) in
let f = freshen el in
(match (fst (eval f rho)) with
| Lam(v, body) -> let rho2 = extend rho v arg in
eval body rho2
| _ -> failwith "Can't apply a non-function")

CMSC 330 Fall 2020 49

OCaml interpreter for Call-by-value

» We didn’'t show implementation of freshen,
which ensures that we avoid variable capture

» Fun exercise: implement freshen

» | used the “Barendregt Convention”: gives
everything ‘fresh’ names.

. If every name is unique, no chance of variable
capture

« Simple, but not great for performance

CMSC 330 Fall 2020

50

Quiz #7

Beta-reducing the following term produces what
result?

(AX.X AY.Yy X) Yy

A. y(Az.zy)
B. z (Ay.y z)
C. y(Ay.yy)
D.vyy

CMSC 330 Fall 2020

51

Quiz #7

Beta-reducing the following term produces what
result?

(AX.X AY.Yy X) Yy

A. y(Az.zy)
B. z (Ay.y z)
C. y(Ay.yy)
D.vyy

CMSC 330 Fall 2020

52

Quiz #8

Beta reducing the following term produces what
result?

AX.(AY. Y Y)W Z

a) AX. WW Z

b) AX. W Z

C)WZ

d) Does not reduce

CMSC 330 Fall 2020

53

Quiz #8

Beta reducing the following term produces what
result?

AX.(AY. Y Y)W Z

a) AX.ww z

b) AX. W Z

C)WZ

d) Does not reduce

CMSC 330 Fall 2020

54

Let bindings

» Local variable declarations are like defining a
function and applying it immediately (once):
e letx=eline2 = (Ax.e2)e1

» Example
e let x = (Ay.y) in X X = (AX.X X) (Ay.y)

where
(AX.X X) (Ay.y) — (AX.X X) (Ay.y) — (AV.y) (Ay.y) — (Ay.y)

CMSC 330 Fall 2020

55

Booleans

» Church’s encoding of mathematical logic
e true = AX.Ay.X
e false = AX.Ay.y

e fathenbelsec
» Defined to be the expression:ab c

» Examples
e ftruethenbelsec=(AXAyx)bc— (AY.b)t —Db
o |f false thenbelsec=(Ax.Ay.y)bc— (Ayv.y)c —c

CMSC 330 Fall 2020

56

Booleans (cont.)

» Other Boolean operations

e Not = Ax.x false true
> not X = x false true = if x then false else true
» not true — (Ax.x false true) true — (true false true) — false

e and = Ax.Ay.x y false
» and xy =if x then y else false

® Or = AX.Ay.X true y
» or Xy =if x then true else y

» Given these operations
e Can build up a logical inference system

CMSC 330 Fall 2020

57

Quiz #9

What is the lambda calculus encoding of xor x y?

» XOr true true = xor false false = false
» XOr true false = xor false true = true
» XXY

true = AX.Ay.x

» X (y true false) y
» X (y false true) y

> Y XY

CMSC 330 Fall 2020

false = AX.Ay.y
fathenbelsec=abc
not = Ax.x false true

58

Quiz #9

What is the lambda calculus encoding of xor x y?

» XOr true true = xor false false = false
» XOr true false = xor false true = true
» XXY

true = AX.Ay.x

» X (y true false) y
» X (y false true)y

> Y XY

CMSC 330 Fall 2020

false = AX.Ay.y
fathenbelsec=abc
not = Ax.x false true

59

Pairs

» Encoding of a paira, b
e (a,b) =Ax.if xthenaelse b
o fst = Af.f true
e snd = Af.f false

» Examples
e fst (a,b) = (Af.ftrue) (Ax.if x then a else b) —
(Ax.if x then a else b) true —
If true then a else b — a
e snd (a,b) = (Af.f false) (Ax.if x then a else b) —
(Ax.if x then a else b) false —
If false thenaelseb — b

CMSC 330 Fall 2020

60

Natural Numbers (Church* Numerals)

» Encoding of non-negative integers
e 0 =A.Ayy
o 1 =M.Ayfy
o 2 =MAyf(fy)
o 3=A.Ayf(f(fy))
l.e., n = AMf.Ay.<apply f n times to y>
e Formally: n+1 = Af.Ay.f(nfy)

*(Alonzo Church, of course)

CMSC 330 Fall 2020

61

Quiz #10 n = M.Ay.<apply f n times to y>

What OCaml type could you give to a Church-
encoded numeral?

(a->b)->'a->"b
(‘fa->'a)->'a->"'a

» (‘a->'a)->"b->Int
(int -> int) -> int -> int

1

CMSC 330 Fall 2020 62

Quiz #10 n = M.Ay.<apply f n times to y>

What OCaml type could you give to a Church-
encoded numeral?

» (a->b)->'a->"b
» (‘a->‘a)->‘a->"‘a
» (‘a->'a)->"b->Int
» (int ->int) -> int -> int

CMSC 330 Fall 2020 63

Operations On Church Numerals

» Successor

e succ = Az.AfAy.f(zfy) e 0 =A.Ayy
e 1=MAyfy
» Example
e succ O =

(Az. M Ay.f(zTy)) (MAYY) —
M.AY.T ((M.Ay.y) fy) —

M.AYf ((Ay.y) y) — Since (AX.y)z —y
M.Ay.fy
=1

CMSC 330 Fall 2020 64

Operations On Church Numerals (cont.)

» IsZero?
e iSszero = Az.z (Ay.false) true
This is equivalent to Az.((z (Ay.false)) true)

» Example
e iszero 0 = o 0 =A.Ay.y
(Az.z (Ay.false) true) (AMf.Ayy) —
(Af.Ay.y) (Ay.false) true —
(Ay.y) true —
true

Since (AX.y)z—y

CMSC 330 Fall 2020 65

Arithmetic Using Church Numerals

» If M and N are numbers (as A expressions)
e Can also encode various arithmetic operations

» Addition
e M+ N =AMAy.Mf(NTfy)
Equivalently: + = AMLAN.AFAY.M f (N fy)

> In prefix notation (+ M N)

» Multiplication
e M*N = A.M (N T)
Equivalently: * = AM.AN.ALAY.M (N f) y

> In prefix notation (* M N)

CMSC 330 Fall 2020 66

Arithmetic (cont.)

. Prove 141 = 2 o 1=AN.Ayfy
o 1+1 =AxAy.(1 X) (1 xXYy) = * 2= AAyT(Ty)
o AXAY.((M.AY.fy)Xx) (1 xy) —
o AAY.(Ay.xy) (1 xy) —
o AX.Ay.x (1L XYy) —
o AX.Ay.X (MAY.fy)xy) —

o AX.AY.X ((AY.XY)y) —
e AXAY.X (Xy)=2

» With these definitions
e Can build a theory of arithmetic

CMSC 330 Fall 2020 o

Arithmetic Using Church Numerals

» What about subtraction?
e Easy once you have ‘predecessor’, but...
e Predecessor is very difficult!

» Story time:

e One of Church’s students, Kleene (of Kleene-star
fame) was struggling to think of how to encode
‘predecessor’, until it came to him during a trip to the
dentists office.

e Take from this what you will

» Wikipedia has a great derivation of
‘predecessor’, not enough time today.

CMSC 330 Fall 2020 68

Looping+Recursion

» SO far we have avoided self-reference, so how
does recursion work?

» We can construct a lambda term that ‘replicates’
itself:
e Define D = AX.X X, then
e DD =(AXXX) (AXXX)— (AXXX)(AXxxx)=DD
e D D is an infinite loop

» We want to generalize this, so that we can
make use of looping

CMSC 330 Fall 2020 69

The Fixpoint Combinator

Y = M.(AX.f (X X)) (AX.T (X X))
» Then
Y F =
(Af.(AX.T (X X)) (Ax.f (X X))) F —
(AX.F (X X)) (A.F (X X)) —
F ((AX.F (x X)) (AX.F (X x)))
=F(YF)
» Y F is a fixed point (aka fixpoint) of F
» ThusYF=F(YF)=F(F(YF)) =...
e \We can use Y to achieve recursion for F

CMSC 330 Fall 2020

70

Example

fact = Af.An.if n = 0 then 1 else n * (f (n-1))

e The second argument to fact is the integer

e The first argument is the function to call in the body
> We'll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
— 1f 1 =0then 1 else 1 * ((Y fact) 0)
— 1 * ((Y fact) 0)
=1 * (fact (Y fact) 0)
— 1*(f0O=0then 1 else 0* ((Y fact) (-1))
—1*1->1

CMSC 330 Fall 2020 71

Factorial 4=

(Y G) 4

G (Y G) 4

(Ar.An.(if n = @ then 1 elsen X (r (n-1)))) (Y G) 4
(An.(if n = @ then 1 else n X ((Y G) (n-1)))) 4

if 4 = @0 then 1 else 4 X ((Y G) (4-1))

4 X (G (Y G) (4-1))

4 X ((An.(1, if n = 0; else n X ((Y G) (n-1)))) (4-1))

4 X (1, if 3 = 0; else 3 X ((Y G) (3-1)))

4 X (3 X (G (Y G) (3-1)))

4 X (3 X ((An.(1, if n =0; elsen X ((Y G) (n-1)))) (3-1)))

4 X (3 X (1, if 2 = 0; else 2 X ((Y G) (2-1))))

4 X (3 X (2 X (G (Y G) (2-1))))

4 X (3 X (2 X ((An.(1, if n =0; elsen X ((YG) (n-1)))) (2-1))))
4 X (3 X (2 X (1, if 1 =0; else 1 X ((Y G) (1-1)))))

4 X (3 X (2 x (1 x (G(YG) (1-1)))))

4 X (3 X (2 X (1 X ((An.(1, if n=20; elsen X ((YG) (n-1)))) (1-1)))))
4 X (3 X (2 X (1 x (1, if @ = 0; else @ X ((Y G) (0-1))))))

4 X (3 X (2 X (1 X (1))))

24

CMSC 330 Fall 2020 72

Call-by-name vs. Call-by-value redux

» Most programming languages choose call-by-
value:
e (Az.z) ((Ay.y) X) — (Az.2) X — X

» Call-by-name is less popular (but does exist)
* (Az.z) ((Ay.y) X) — (AY.y) X — X

» These evaluation strategies are about the
relation between functions and their arguments

» What evaluating under the lambda?

CMSC 330 Eall 2020 . 73
e NN anvi nroaramminad landiianeac dno that?

Partial Evaluation

» It Is also possible to evaluate within a function
(without calling it):
* (Ay.(Az.Z) y X) — (Ay.y X)

» Called partial evaluation

e Can combine with CBN or CBV

¢ In practical languages, this evaluation strategy Is
employed in a limited way, as compiler optimization

int foo(int x) { int foo(int x) {

return 0+x; —> return x;

} }

CMSC 330 Fall 2020 74

Discussion

» Lambda calculus is Turing-complete
e Most powerful language possible

e Can represent pretty much anything in “real” language
» Using clever encodings

» But programs would be
e Pretty slow (10000 + 1 — thousands of function calls)
e Pretty large (10000 + 1 — hundreds of lines of code)
e Pretty hard to understand (recognize 10000 vs. 9999)

» In practice
e \We use richer, more expressive languages
e That include built-in primitives

CMSC 330 Fall 2020 75

The Need For Types

» Consider the untyped lambda calculus
e false = AX.Ay.y
e 0 =AXAyy
» Since everything Is encoded as a function...

e \We can easily misuse terms...
> false 0 — Ay.y
» If O then ...

...because everything evaluates to some function

» The same thing happens in assembly language
e Everything is a machine word (a bunch of bits)
e All operations take machine words to machine words

CMSC 330 Fall 2020 76

Simply-Typed Lambda Calculus (STLC)

»rel=n|x|Axte|ee
e Added integers n as primitives

> Need at least two distinct types (integer & function)...
> ...to have type errors

e Functions now include the type t of their argument

rti=int|t—t
e int is the type of integers

e {1 — t2 is the type of a function
» That takes arguments of type t1 and returns result of type t2

CMSC 330 Fall 2020 77

Types are limiting

» STLC will reject some terms as ill-typed, even if
they will not produce a run-time error

e Cannot type check Y in STLC
> Or in OCaml, for that matter, at least not as written earlier.

» Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing

e A normal form is one that cannot be reduced further
> A value is a kind of normal form

e Strong normalization means STLC terms always
terminate

» Proof is not by straightforward induction: Applications
“‘increase” term size

CMSC 330 Fall 2020 78

Summary

» Lambda calculus is a core model of computation

e \We can encode familiar language constructs using
only functions

» These encodings are enlightening — make you a better
(functional) programmer

» Useful for understanding how languages work

e |deas of types, evaluation order, termination, proof
systems, etc. can be developed in lambda calculus,
» then scaled to full languages

CMSC 330 Fall 2020 79

