
CMSC 330: Organization of

Programming Languages

Lambda Calculus

1CMSC 330 Summer 2021

Turing Machine

7CMSC 330 Fall 2020

8

Turing Completeness

Turing machines are the most powerful

description of computation possible

• They define the Turing-computable functions

A programming language is Turing complete if

• It can map every Turing machine to a program

• A program can be written to emulate a Turing machine

• It is a superset of a known Turing-complete language

Most powerful programming language possible

• Since Turing machine is most powerful automaton

CMSC 330 Fall 2020

9

Programming Language Expressiveness

So what language features are needed to express

all computable functions?

• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience

• Multi-argument functions foo (a, b, c)

➢ Use currying or tuples

• Loops while (a < b) …

➢ Use recursion

• Side effects a := 1

➢ Use functional programming pass “heap” as an argument to

each function, return it when with function’s result:

effectful : ‘a → ‘s → (‘s * ‘a)

CMSC 330 Fall 2020

10

Programming Language Expressiveness

It is not difficult to achieve Turing Completeness

• Lots of things are ‘accidentally’ TC

Some fun examples:

• x86_64 `mov` instruction

• Minecraft

• Magic: The Gathering

• Java Generics

There’s a whole cottage industry of proving things

to be TC.

What about something a little more

‘programmable’?
CMSC 330 Fall 2020

Mini C

sum n = 1+2+3+4+5…n in Mini C

int add1(int n){return n+1;}

int sub1(int n){return n-1;}

int add(int a,int b){

if(b == 0) return a;

else return add(add1(a),sub1(b));

}

int sum(int n){

if(n == 1) return 1;

else return add(n, sum(sub1(n)));

}

int main(){

printf("%d\n",sum(5));

}

11

You only have:

• If statement

• Plus 1

• Minus 1

• functions

CMSC 330 Fall 2020

12

Lambda Calculus (λ-calculus)

Proposed in 1930s by

• Alonzo Church

(born in Washingon DC!)

Formal system

• Designed to investigate functions & recursion

• For exploration of foundations of mathematics

Now used as

• Tool for investigating computability

• Basis of functional programming languages

➢ Lisp, Scheme, ML, OCaml, Haskell…

CMSC 330 Fall 2020

13

Why Study Lambda Calculus?

It is a “core” language

• Very small but still Turing complete

But with it can explore general ideas

• Language features, semantics, proof systems,

algorithms, …

Plus, higher-order, anonymous functions (aka

lambdas) are now very popular!

• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python,

Ruby (Procs), … (and functional languages like

OCaml, Haskell, F#, …)

• Excel, as of 2021!
CMSC 330 Fall 2020

14

Lambda Calculus Syntax

A lambda calculus expression is defined as

e ::= x variable

| λx.e abstraction (fun def)

| e e application (fun call)

➢ This grammar describes ASTs; not for parsing (ambiguous!)

➢ Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml

That’s it! Nothing but higher-order functions

CMSC 330 Fall 2020

15

Lambda Calculus Syntax

How is it ambiguous?

Let’s try: λx.x x

CMSC 330 Fall 2020

E → V | L | A

L → λV.E

A → E E

V → v | ε

L

λ A.

V

V

V V

x x x

16

Lambda Calculus Syntax

How is it ambiguous?

Let’s try: λx.x x

CMSC 330 Fall 2020

E → V | L | A

L → λV.E

A → E E

V → v | ε

A

V

x

L

λ V.V

x x

17

Lambda Calculus Syntax

While this means that our grammar is not so

useful for parsing, it is still useful for write LC

terms if we follow some conventions

Almost all literature you will find uses 2 syntactic

conventions

We add a third convention that is very common

‘syntactic sugar’ for ease of reading larger LC

terms

CMSC 330 Fall 2020

18

Three Conventions

Scope of λ extends as far right as possible

• Subject to scope delimited by parentheses

• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative

• x y z is (x y) z

• Same rule as OCaml

As a convenience, we use the following “syntactic

sugar” for local declarations

• let x = e1 in e2 is short for (λx.e2) e1
CMSC 330 Fall 2020

Quiz #1

19

A. True

B. False

CMSC 330 Fall 2020

λx.(y z) and λx.y z are equivalent

Quiz #1

λx.(y z) and λx.y z are equivalent

20

A.True

B. False

CMSC 330 Fall 2020

21

But what does it mean

Many ways to define the semantics of LC

We will look at 2

− Operational

− Definitional Interpreter

CMSC 330 Fall 2020

22

Lambda Calculus Semantics

Evaluation: All that’s involved are function calls
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• We allow reductions to occur anywhere in a term

➢ Order reductions are applied does not affect final value! (if
there is one)

When a term cannot be reduced further it is in
beta normal form

CMSC 330 Fall 2020

23

Operational Semantics of LC

Because of the use of variables, we need an

environment

Recap: the environment can be thought of as a

map from variable names to the term they

represent.

⚫ Often written as ρ : Env

⚫ type Env = Variable → Term

We extend the environment by adding new

associations between variables and terms

⚫ ext : Env → Variable → Term → Env

CMSC 330 Fall 2020

24

Operational Semantics of LC

Each ‘kind’ of term gets its own inference rule

When we reach a ‘bare’ lambda, we’re done:

CMSC 330 Fall 2020

val = ρ v

A; (λx.e1)⇒ (λx.e1)

25

Operational Semantics of LC

The meaning of variables is based on the current

environment:

CMSC 330 Fall 2020

A(v) = t

A; v ⇒ t

26

Operational Semantics of LC

We didn’t say anything about the order things

should happen in!

Let’s evaluate the argument fully first, this is

known as call-by-value

CMSC 330 Fall 2020

A; e2⇒ e3

A; e1 e2 ⇒ A; e1 e3

ρ’ = ext p x (λv.e2)

A; (λx.e1) (λv.e2) ⇒ A,x:(λv.e2); e1

A; e1⇒ e2

A; e1 (λv.e3)⇒ A; e2 (λv.e3)

27

Operational Semantics of LC

Let’s avoid evaluating the argument, this is known

as call-by-name

CMSC 330 Fall 2020

ρ’ = ext p x e2

A; (λx.e1) e2 ⇒ A,x:e2; e1

A; e1⇒ e2

A; e1 e3 ⇒ e2 e3

28

Operational Semantics of LC

The rules we just showed are very common for

programming languages based on LC

You don’t have to choose call-by-name or call-by-

value, LC as a system let’s you choose whatever

order you want

You can also reduce under the lambda.

CMSC 330 Fall 2020

A; e1 ⇒ e2

A; (λx.e1) ⇒ A; (λx.e2)

29

Operational Semantics of LC

Call-by-value vs. call-by-name has its tradeoffs.

Most languages use call-by-value (e.g. Ocaml),

but some use call-by-name (or a related variant

known as call-by-need).

Interestingly: more programs terminated under

call-by-name. Can you think of why?

Consider: (λx.e2) e1,

What if e1 would never terminate, but e2 would?

CMSC 330 Fall 2020

30

OCaml Lambda Calc AST

e ::= x

| λx.e

| e e

y

λx.x

λx.λy.x y

(λx.λy.x y) λx.x x

type id = string

type exp = Var of id

| Lam of id * exp

| App of exp * exp

Var “y”

Lam (“x”, Var “x”)

Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))

App

(Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))),

Lam (“x”, App (Var “x”, Var “x”)))

CMSC 330 Fall 2020

Quiz #2

What is this term’s AST?

λx.x x

31

A. App (Lam (“x”, Var “x”), Var “x”)

B. Lam (Var “x”, Var “x”, Var “x”)

C. Lam (“x”, App (Var “x”,Var “x”))

D. App (Lam (“x”, App (“x”, “x”)))

type id = string

type exp =

Var of id

| Lam of id * exp

| App of exp * exp

type env = id -> exp

CMSC 330 Fall 2020

Quiz #2

What is this term’s AST?

λx.x x

32

A. App (Lam (“x”, Var “x”), Var “x”)

B. Lam (Var “x”, Var “x”, Var “x”)

C. Lam (“x”, App (Var “x”,Var “x”))

D. App (Lam (“x”, App (“x”, “x”)))

type id = string

type exp =

Var of id

| Lam of id * exp

| App of exp * exp

type env = id -> exp

CMSC 330 Fall 2020

Quiz #3

This term is equivalent to which of

the following?

λx.x a b

33

A. (λx.x) (a b)

B. (((λx.x) a) b)

C. λx.(x (a b))

D. (λx.((x a) b))

CMSC 330 Fall 2020

Quiz #3

This term is equivalent to which of

the following?

λx.x a b

34

A. (λx.x) (a b)

B. (((λx.x) a) b)

C. λx.(x (a b))

D. (λx.((x a) b))

CMSC 330 Fall 2020

35

Lambda Calculus on paper

When doing things ‘by hand’ we often omit the

explicit environment and think in terms of

substitutions

You must be careful when doing this by hand as it

can get finnicky!

Some examples will help with intuition...

CMSC 330 Fall 2020

36

Beta Reduction Examples

(λx.x) z →

(λx.y) z →

(λx.x y) z →

• A function that applies its argument to y

z

y

z y

CMSC 330 Fall 2020

37

Beta Reduction Examples (cont.)

(λx.x y) (λz.z) →

(λx.λy.x y) z →

• A curried function of two arguments

• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x →x x

CMSC 330 Fall 2020

Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) →

38CMSC 330 Fall 2020

Beta Reduction Examples (cont.)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)

39CMSC 330 Fall 2020

Quiz #4

(λx.y) z can be beta-reduced to

40

A. y

B. y z

C.z

D. cannot be reduced

CMSC 330 Fall 2020

Quiz #4

(λx.y) z can be beta-reduced to

41

A. y

B. y z

C.z

D. cannot be reduced

CMSC 330 Fall 2020

Quiz #5

Which of the following reduces to λz. z?

a) (λy. λz. x) z

b) (λz. λx. z) y

c) (λy. y) (λx. λz. z) w

d) (λy. λx. z) z (λz. z)

42CMSC 330 Fall 2020

Quiz #5

Which of the following reduces to λz. z?

a) (λy. λz. x) z

b) (λz. λx. z) y

c) (λy. y) (λx. λz. z) w

d) (λy. λx. z) z (λz. z)

43CMSC 330 Fall 2020

44

Static Scoping & Alpha Conversion

Lambda calculus uses static scoping

Consider the following

• (λx.x (λx.x)) z → ?

➢ The rightmost “x” refers to the second binding

• This is a function that

➢ Takes its argument and applies it to the identity function

This function is “the same” as (λx.x (λy.y))
• Renaming bound variables consistently preserves meaning

➢ This is called alpha-renaming or alpha conversion

• Ex. λx.x = λy.y = λz.z λy.λx.y = λz.λx.z

CMSC 330 Fall 2020

Quiz #6

Which of the following expressions is alpha

equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y

b) λz. y z

c) (λx. λz. x z) y

d) (λx. λy. x y) z

45CMSC 330 Fall 2020

Quiz #6

Which of the following expressions is alpha

equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y

b) λz. y z

c) (λx. λz. x z) y

d) (λx. λy. x y) z

46CMSC 330 Fall 2020

47

Variable capture

How about the following?
• (λx.λy.x y) y → ?

• When we replace y inside, we don’t want it to be
captured by the inner binding of y, as this violates
static scoping

• I.e., (λx.λy.x y) y ≠ λy.y y

Solution
• (λx.λy.x y) is “the same” as (λx.λz.x z)

➢ Due to alpha conversion

• So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first
➢ Now (λx.λz.x z) y → λz.y z

CMSC 330 Fall 2020

48

OCaml interpreter for Call-by-value

Now we can write our interpreter!

First some types and utility functions:

CMSC 330 Fall 2020

type id = string
type exp =

Var of id
| Lam of id * exp
| App of exp * exp

type env = id -> exp

let emptyEnv = fun x -> failwith "Variable not in scope"

let extend (rho : env) (name : id) (term :exp) =
fun x -> if x = name

then term
else rho x

49

OCaml interpreter for Call-by-value

Now for the eval

Return the evaluated term and the new
environment:

CMSC 330 Fall 2020

let rec eval (e : exp) (rho : env) =
match e with

| Var i -> (rho i, rho)
| Lam(x, e1) -> (Lam(x, e1), rho)
| App(e1, e2) -> let arg = fst (eval e2 rho) in

let f = freshen e1 in
(match (fst (eval f rho)) with

| Lam(v, body) -> let rho2 = extend rho v arg in
eval body rho2

| _ -> failwith "Can't apply a non-function")

50

OCaml interpreter for Call-by-value

We didn’t show implementation of freshen,
which ensures that we avoid variable capture

Fun exercise: implement freshen

I used the “Barendregt Convention”: gives
everything ‘fresh’ names.

⚫ If every name is unique, no chance of variable
capture

⚫ Simple, but not great for performance

CMSC 330 Fall 2020

Quiz #7

Beta-reducing the following term produces what

result?

(λx.x λy.y x) y

51

A. y (λz.z y)

B. z (λy.y z)

C. y (λy.y y)

D. y y

CMSC 330 Fall 2020

Quiz #7

Beta-reducing the following term produces what

result?

(λx.x λy.y x) y

52

A. y (λz.z y)

B. z (λy.y z)

C. y (λy.y y)

D. y y

CMSC 330 Fall 2020

Quiz #8

Beta reducing the following term produces what

result?

λx.(λy. y y) w z

a) λx. w w z

b) λx. w z

c) w z

d) Does not reduce

53CMSC 330 Fall 2020

Quiz #8

Beta reducing the following term produces what

result?

λx.(λy. y y) w z

a) λx. w w z

b) λx. w z

c) w z

d) Does not reduce

54CMSC 330 Fall 2020

Let bindings

Local variable declarations are like defining a

function and applying it immediately (once):

• let x = e1 in e2 = (λx.e2) e1

Example

• let x = (λy.y) in x x = (λx.x x) (λy.y)

where

(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y)

55CMSC 330 Fall 2020

56

Booleans

Church’s encoding of mathematical logic

• true = λx.λy.x

• false = λx.λy.y

• if a then b else c

➢ Defined to be the expression: a b c

Examples

• if true then b else c = (λx.λy.x) b c → (λy.b) c → b

• if false then b else c = (λx.λy.y) b c → (λy.y) c → c

CMSC 330 Fall 2020

57

Booleans (cont.)

Other Boolean operations

• not = λx.x false true

➢ not x = x false true = if x then false else true

➢ not true → (λx.x false true) true → (true false true) → false

• and = λx.λy.x y false

➢ and x y = if x then y else false

• or = λx.λy.x true y

➢ or x y = if x then true else y

Given these operations

• Can build up a logical inference system

CMSC 330 Fall 2020

Quiz #9

What is the lambda calculus encoding of xor x y?

xor true true = xor false false = false

xor true false = xor false true = true

x x y

x (y true false) y

x (y false true) y

y x y

58

true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

not = λx.x false true

CMSC 330 Fall 2020

Quiz #9

What is the lambda calculus encoding of xor x y?

xor true true = xor false false = false

xor true false = xor false true = true

x x y

x (y true false) y

x (y false true) y

y x y

59

true = λx.λy.x

false = λx.λy.y

if a then b else c = a b c

not = λx.x false true

CMSC 330 Fall 2020

60

Pairs

Encoding of a pair a, b
• (a,b) = λx.if x then a else b

• fst = λf.f true

• snd = λf.f false

Examples
• fst (a,b) = (λf.f true) (λx.if x then a else b) →

(λx.if x then a else b) true →

if true then a else b → a

• snd (a,b) = (λf.f false) (λx.if x then a else b) →

(λx.if x then a else b) false →

if false then a else b → b

CMSC 330 Fall 2020

61

Natural Numbers (Church* Numerals)

Encoding of non-negative integers

• 0 = λf.λy.y

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

• 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>

• Formally: n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)

CMSC 330 Fall 2020

Quiz #10

What OCaml type could you give to a Church-

encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b

(‘a -> ‘a) -> ‘a -> ‘a

(‘a -> ‘a) -> ‘b -> int

(int -> int) -> int -> int

62

n = λf.λy.<apply f n times to y>

CMSC 330 Fall 2020

Quiz #10

What OCaml type could you give to a Church-

encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b

(‘a -> ‘a) -> ‘a -> ‘a

(‘a -> ‘a) -> ‘b -> int

(int -> int) -> int -> int

63

n = λf.λy.<apply f n times to y>

CMSC 330 Fall 2020

64

Operations On Church Numerals

Successor

• succ = λz.λf.λy.f (z f y)

Example

• succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →

λf.λy.f ((λf.λy.y) f y) →

λf.λy.f ((λy.y) y) →

λf.λy.f y

= 1

Since (λx.y) z → y

• 0 = λf.λy.y

• 1 = λf.λy.f y

CMSC 330 Fall 2020

65

Operations On Church Numerals (cont.)

IsZero?

• iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

Example

• iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →

(λf.λy.y) (λy.false) true →

(λy.y) true →

true

• 0 = λf.λy.y

Since (λx.y) z → y

CMSC 330 Fall 2020

66

Arithmetic Using Church Numerals

If M and N are numbers (as λ expressions)

• Can also encode various arithmetic operations

Addition

• M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)

➢ In prefix notation (+ M N)

Multiplication

• M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y

➢ In prefix notation (* M N)

CMSC 330 Fall 2020

67

Arithmetic (cont.)

Prove 1+1 = 2

• 1+1 = λx.λy.(1 x) (1 x y) =

• λx.λy.((λf.λy.f y) x) (1 x y) →

• λx.λy.(λy.x y) (1 x y) →

• λx.λy.x (1 x y) →

• λx.λy.x ((λf.λy.f y) x y) →

• λx.λy.x ((λy.x y) y) →

• λx.λy.x (x y) = 2

With these definitions

• Can build a theory of arithmetic

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

CMSC 330 Fall 2020

68

Arithmetic Using Church Numerals

What about subtraction?

• Easy once you have ‘predecessor’, but...

• Predecessor is very difficult!

Story time:

• One of Church’s students, Kleene (of Kleene-star

fame) was struggling to think of how to encode

‘predecessor’, until it came to him during a trip to the

dentists office.

• Take from this what you will

Wikipedia has a great derivation of

‘predecessor’, not enough time today.

CMSC 330 Fall 2020

69

Looping+Recursion

So far we have avoided self-reference, so how

does recursion work?

We can construct a lambda term that ‘replicates’

itself:

• Define D = λx.x x, then

⚫ D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

• D D is an infinite loop

We want to generalize this, so that we can

make use of looping

CMSC 330 Fall 2020

70

The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))

Then

Y F =

(λf.(λx.f (x x)) (λx.f (x x))) F →

(λx.F (x x)) (λx.F (x x)) →

F ((λx.F (x x)) (λx.F (x x)))

= F (Y F)

Y F is a fixed point (aka fixpoint) of F

Thus Y F = F (Y F) = F (F (Y F)) = ...

• We can use Y to achieve recursion for F

CMSC 330 Fall 2020

71

Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))

• The second argument to fact is the integer

• The first argument is the function to call in the body

➢ We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1

→ if 1 = 0 then 1 else 1 * ((Y fact) 0)

→ 1 * ((Y fact) 0)

= 1 * (fact (Y fact) 0)

→ 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

→ 1 * 1 → 1

CMSC 330 Fall 2020

Factorial 4=?

CMSC 330 Fall 2020 72

(Y G) 4
G (Y G) 4
(λr.λn.(if n = 0 then 1 else n × (r (n−1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n−1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24

Call-by-name vs. Call-by-value redux

Most programming languages choose call-by-

value:

• (λz.z) ((λy.y) x) → (λz.z) x → x

Call-by-name is less popular (but does exist)

• (λz.z) ((λy.y) x) → (λy.y) x → x

These evaluation strategies are about the

relation between functions and their arguments

What evaluating under the lambda?

• Do any programming languages do that?
73CMSC 330 Fall 2020

Partial Evaluation

It is also possible to evaluate within a function

(without calling it):

• (λy.(λz.z) y x)

Called partial evaluation

• Can combine with CBN or CBV

• In practical languages, this evaluation strategy is

employed in a limited way, as compiler optimization

74

→ (λy.y x)

int foo(int x) {

return 0+x;

}

int foo(int x) {

return x;

}

→

CMSC 330 Fall 2020

75

Discussion

Lambda calculus is Turing-complete

• Most powerful language possible

• Can represent pretty much anything in “real” language

➢ Using clever encodings

But programs would be

• Pretty slow (10000 + 1 → thousands of function calls)

• Pretty large (10000 + 1 → hundreds of lines of code)

• Pretty hard to understand (recognize 10000 vs. 9999)

In practice

• We use richer, more expressive languages

• That include built-in primitives

CMSC 330 Fall 2020

76

The Need For Types

Consider the untyped lambda calculus
• false = λx.λy.y

• 0 = λx.λy.y

Since everything is encoded as a function...
• We can easily misuse terms…

➢ false 0 → λy.y

➢ if 0 then ...

…because everything evaluates to some function

The same thing happens in assembly language
• Everything is a machine word (a bunch of bits)

• All operations take machine words to machine words

CMSC 330 Fall 2020

77

Simply-Typed Lambda Calculus (STLC)

e ::= n | x | λx:t.e | e e

• Added integers n as primitives

➢ Need at least two distinct types (integer & function)…

➢ …to have type errors

• Functions now include the type t of their argument

t ::= int | t → t

• int is the type of integers

• t1 → t2 is the type of a function

➢ That takes arguments of type t1 and returns result of type t2

CMSC 330 Fall 2020

Types are limiting

STLC will reject some terms as ill-typed, even if

they will not produce a run-time error

• Cannot type check Y in STLC

➢ Or in OCaml, for that matter, at least not as written earlier.

Surprising theorem: All (well typed) simply-typed

lambda calculus terms are strongly normalizing

• A normal form is one that cannot be reduced further

➢ A value is a kind of normal form

• Strong normalization means STLC terms always

terminate

➢ Proof is not by straightforward induction: Applications

“increase” term size

78CMSC 330 Fall 2020

79

Summary

Lambda calculus is a core model of computation

• We can encode familiar language constructs using

only functions

➢ These encodings are enlightening – make you a better

(functional) programmer

Useful for understanding how languages work

• Ideas of types, evaluation order, termination, proof

systems, etc. can be developed in lambda calculus,

➢ then scaled to full languages

CMSC 330 Fall 2020

