
 1

University of Maryland College Park
Department of Computer Science

CMSC132 Fall 2022
Exam #2

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g., 123456789):

Instructions

• Please print your answers and use a pencil.
• This exam is a closed-book, closed-notes exam with a duration of 50 minutes and 100 total points.
• Do not remove the exam’s staple. Removing it will interfere with the scanning process (even if you staple the exam again).
• Write your directory id (e.g., terps1, not UID) at the bottom of pages with DirectoryId.
• Provide answers in the rectangular areas.
• Do not remove any exam pages. Even if you don’t use the extra pages for scratch work, return them with the rest of the exam.
• Your code must be efficient and as short as possible.
• If you continue a problem on the extra page(s) provided, make a note on the particular problem.
• You don’t need to use meaningful variable names; however, we expect good indentation.
• You must write your name and id at this point (we will not wait for you after time is up).
• You must stop writing once time is up.

Grader Use Only

#1 Part #1 (Short Answer) 10

#2 Part #2 (Code 1) 20

#3 Part #3 (Code 2) 70

Total Total 100

KEY

 2

Part #1 (Short answer – 2 points each)

1. List the following Big O expressions in order of asymptotic complexity (lowest complexity first).

O(nlog(n)) O(n3) O(log(n)) O(n2) O(n)

2. Assume you consider an algorithm for a given task to be fast if it is in O(nlog(n)). You are given an algorithm in O(n).
Referencing the definition of Big O, explain why the given algorithm will be fast. No more than 2 sentences.

3. Indicate the algorithm complexity of the following expression using the best bound: 70n + 2nlog(n) + n3

4. Invocation of the default implementation of clone method makes this type of copy? Shallow Copy

5. Term used to denote the feature found in Java that deallocates objects in the heap that can no longer be reached via an available

reference? Garbage collection

The code given below will be used in both Part 2 and Part 3. All given code and code you write will be in
the same package.

public abstract class Animal {

 private String name;

 public Animal(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 @Override
 public abstract String toString();
}

public class Bird extends Animal{

 public Bird(String name) {
 super(name);
 }

 @Override
 public String toString() {
 return getName() +" ";
 }
}

public class Mammal extends Animal{

 public Mammal(String name) {
 super(name);
 }

 @Override
 public String toString() {
 return getName() +" ";
 }

}

Part #2 (Code 1)

1. Using your knowledge of bounded wildcards, write the code for the static method longestName that simply returns the name of
the animal in the list passed in with the most number of characters. It should have one ArrayList parameter with a bound that must
be one of the 3 classes above . Use the length method of the string to get the length of the name. Assuming there is more than one
animal with the longest name in the list, simply return the name of the first one encountered when traversing the list from the start.

O(log(n)) O(n) O(nlog(n)) O(n2) O(n3)

The given algorithm can be bounded by a constant *n. You can fit that under a constant * nlogn
which you consider fast (i.e. O(n) is subset of O(nlogn).

n3

 3

public class AnimalName {

public static void main(String[] args) {
 ArrayList<Bird> bList= new ArrayList<Bird>();
 ArrayList<Mammal> mList= new ArrayList<Mammal>();
 ArrayList<Animal> aList= new ArrayList<Animal>();

 bList.add(new Bird("Parrot")); bList.add(new Bird("Vulture"));bList.add(new Bird("Hawk"));
 mList.add(new Mammal("Tiger"));mList.add(new Mammal("Lion"));mList.add(new Mammal("Fox"));
 aList.addAll(bList); aList.addAll(mList);

 System.out.println(longestName(bList)); //prints Vulture
 System.out.println(longestName(mList)); //prints Tiger
 System.out.println(longestName(aList)); //prints Vulture

 }

}

public static String longestName (ArrayList<? extends Animal> myList) {
 String longN="";
 for (Animal a : myList) {
 if(a.getName().length() >longN.length())
 longN = a.getName();
 }
 return longN;
 }

Directory ID:

 4

Part #3 (Code 2)
Given the code below, finish the 3 missing methods: sortRoster, clone, and iterator

import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.NoSuchElementException;

public class ZooRoster implements Iterable<Bird>, Cloneable {

 private ArrayList <Animal> roster;

 public ZooRoster(ArrayList<Animal> roster) { //assume roster not null
 this.roster = new ArrayList<Animal>(roster);
 }

 public void add(Animal a){
 roster.add(a);
 }

 @Override
 public String toString() {
 return roster.toString()+"\n";
 }

 public void sortRoster(){
 Collections.sort(roster, ?); //substitute your lambda expression for ?
 }

 @Override
 public ZooRoster clone() {
 //write the code, the clone should be independent of the original
 }

 @Override
 public Iterator<Bird> iterator() {
 //write the code using local class syntax that returns an iterator supporting next and hasNext
 }
}

Driver Output
[Parrot , Hawk , Tiger , Lion , Owl , Bear , Vulture , Fox , Penguin , Bigfoot]
[Parrot , Hawk , Tiger , Lion , Owl , Bear , Vulture , Fox , Penguin]
[Hawk , Owl , Parrot , Penguin , Vulture , Bear , Fox , Lion , Tiger]
Parrot Hawk Owl Vulture Penguin
Did not call hasNext
true
Parrot
true
Hawk
true
Owl
true
Vulture
Did not call hasNext
true
Penguin
false
No more elements

 5

Driver

import java.util.ArrayList;
import java.util.Iterator;
import java.util.NoSuchElementException;

public class SampleDriver {

 public static void main(String[] args) {

 String result ="";

 ArrayList <Animal> roster= new ArrayList <Animal>();
 roster.add(new Bird("Parrot"));roster.add(new Bird("Hawk"));roster.add(new Mammal("Tiger"));
 roster.add(new Mammal("Lion"));roster.add(new Bird("Owl"));roster.add(new Mammal("Bear"));
 roster.add(new Bird("Vulture"));roster.add(new Mammal("Fox"));roster.add(new Bird("Penguin"));

 ZooRoster zList = new ZooRoster(roster);
 ZooRoster zListOther = zList.clone();

 zList.add(new Mammal("Bigfoot")); //probably would be a mammal :)

 result += zList; //Bigfoot in here
 result += zListOther; //but not in clone

 zListOther.sortRoster();
 result += zListOther; //sorted

 for(Bird b: zList){ //back to the original list
 result +=b; //only the birds
 }
 result += "\n";

 Iterator<Bird> bIt = zList.iterator(); //new Iterator

 try {
 result+= bIt.next()+ "\n"; //no next if not called hasNext
 }
 catch (UnsupportedOperationException e){
 result+= e.getMessage()+"\n";
 }

 for (int i =0; i <4; i++){ //the first 4 birds one at a time
 result+= bIt.hasNext()+ "\n";
 result+= bIt.next()+ "\n";
 }

 try {
 result+= bIt.next()+ "\n"; //calling next twice
 }
 catch (UnsupportedOperationException e){
 result+= e.getMessage()+"\n";
 }

 result+= bIt.hasNext()+ "\n"; //last bird from original list
 result+= bIt.next()+ "\n";

 result+= bIt.hasNext()+ "\n"; //nothing left
 try {
 result+= bIt.next()+ "\n";
 }
 catch (NoSuchElementException e){
 result+= e.getMessage()+"\n";
 }

 System.out.println(result);
 }
}

Directory ID:

 6

1. Write the code for the clone method, so that the cloned object will be independent of the original. You can assume that the
Animal, Bird, and Mammal class will remain immutable.

public ZooRoster clone() {

 ZooRoster obj = null;

 try {
 obj = (ZooRoster) super.clone();
 this.roster = new ArrayList<Animal>(roster);
 //make sure it has it's own roster

 }
 catch (CloneNotSupportedException e) {
 e.printStackTrace(); //any code here is fine
 }

 return obj;

}

 7

2. Simply write the code that would get substituted for the second argument (i.e. ?) as a lambda expression.

 public void sortRoster(){
 Collections.sort(roster, ?); //substitute your lambda expression for ?
 }

 The second argument is simply the implementation of the compare method as found in the functional interface
Comparator. From the Java API: int compare(T o1,T o2)- Compares its two arguments for order. Returns a
negative integer, zero, or a positive integer as the first argument is less than, equal to, or greater than the second. Code it
so that any bird is “less than” a mammal and if the 2 animals are the same type, comparison is based on the name (just use
compareTo of the String).

Collections.sort(roster, (a,b)->{
 if(a instanceof Bird && b instanceof Mammal)
 return -1;
 else if (a instanceof Mammal && b instanceof Bird)
 return 1;
 else { //both a and b same type

 return a.getName().compareTo(b.getName());

 }

 }

);

Directory ID:

 8

3. Write the code for the iterator method so that the ZooRoster class is an Iterable<Bird>. This means you have to
code up the next and the hasNext, and when you iterate over the ZooRoster object only the birds are returned by next.

• You must use local class syntax (not anonymous) and can call your local class whatever you want.
• Your local class should have a public boolean hasNext() and a public Bird next(), and return an

instance of the local class from the iterator method.
• You can have as many initialized fields as you want in your local class, but no other methods besides next and the

hasNext. This also means no explicit constructor or initialization blocks.
• Your implementation must enforce that the hasNext has been called prior to each call of next. If not, throw a new

UnsupportedOperationException("Did not call hasNext");
• Once the iteration is complete (i.e. hasNext returns false)any call to next will throw a new

NoSuchElementException("No more elements");
• As for code from the Java library, you can use the following 2 ArrayList methods:

 E get(int index)- Returns the element at the specified position in this list.
 int size() - Returns the number of elements in this list.

public Iterator<Bird> iterator() {
 class BirdIterator implements Iterator<Bird> {//local class
 private int pointer = 0;
 boolean calledHasNext =false;
 boolean finishedIteration = false;

 @Override
 public boolean hasNext() {
 calledHasNext =true;
 for (int i =pointer; i<roster.size(); i++){
 if(roster.get(i) instanceof Bird) {
 pointer= i;
 return true;
 }
 }
 finishedIteration = true;
 return false;
 }

 @Override
 public Bird next() {
 if(calledHasNext && !finishedIteration) {
 pointer++;
 calledHasNext = false;
 return (Bird)(roster.get(pointer-1));
 }
 else if(!calledHasNext)
 throw new UnsupportedOperationException("Did not call hasNext");

 throw new NoSuchElementException("No more elements");
 }
 }
 return new BirdIterator();
 }
}

 9

 10

EXTRA PAGE IN CASE YOU NEED IT

LAST PAGE

