
 1

University of Maryland College Park
Department of Computer Science

CMSC132 Fall 2021
Exam #2

FIRSTNAME, LASTNAME (PRINT IN UPPERCASE):

STUDENT ID (e.g., 123456789):

Instructions

• Please print your answers and use a pencil.
• This exam is a closed-book, closed-notes exam with a duration of 50 minutes and 100 total points.
• Do not remove the exam’s staple. Removing it will interfere with the scanning process (even if you staple the exam again).
• Write your directory id (e.g., terps1, not UID) at the bottom of pages with DirectoryId.
• Provide answers in the rectangular areas.
• Do not remove any exam pages. Even if you don’t use the extra pages for scratch work, return them with the rest of the exam.
• Your code must be efficient and as short as possible.
• If you continue a problem on the extra page(s) provided, make a note on the particular problem.
• You don’t need to use meaningful variable names; however, we expect good indentation.
• You must write your name and id at this point (we will not wait for you after time is up).
• You must stop writing once time is up.

Grader Use Only

#1 Part #1 (Algorithmic Complexity) 13

#2 Part #2 (Nested Types) 11

#3 Part #3 (Generics) 31

#4 Problem #4 (Miscellaneous) 5

#5 Part #5 (Class Implementation) 40

Total Total 100

 2

Part #1 (Algorithmic Complexity)

1. (3 pts) List the following Big O expressions in order of asymptotic complexity (lowest complexity first).

O(nlog(n)) O(n) O(log(n)) O(n2) O(1)

2. (3 pts) Assume both algorithm A and algorithm B are in O(1). How is it possible that when you run the algorithms on the same
machine, algorithm B always takes twice as long as A to complete? Explain using your knowledge of what Big-O notation tells
you about an algorithm. No more than 2 sentences.

3. (3 pts) Assume all you know is that algorithm A is in O(n3). You consider any algorithm that is not in O(n2) to be slow. Can you

say for sure that algorithm A is slow? Explain using your knowledge of what Big-O notation tells you about an algorithm. No
more than 2 sentences.

4. (2 pts) Indicate the algorithm complexity of the following expression using the best bound: 7n + 2nlog(n) + 57n

5. (2 pts) True or False: If an algorithm is in O(n), it is also always in O(n2)?

Part #2 (Nested Types)

6. (8 pts) The Exam2Interface interface is defined below.

public interface Exam2Interface {

 public int increase(int x);

}

 Given the code below, in the same package as the interface:

public class P2 {
 public static void main(String[] args) {

 Exam2Interface anonymousVersion = //answer to part a

 demo(anonymousVersion, 10); //output is 12

 demo(/*answer to part b*/, 10); //output is 15

 }

 public static void demo(Exam2Interface e, int num) {
 System.out.println(e.increase(num));
 }
}

 3

a. Using anonymous class syntax, show the code for the assignment to the anonymousVersion variable where the
implementation simply adds 2 to the argument and returns it.

 Exam2Interface anonymousVersion =

b. Using a lambda expression, show the 1st argument to the second demo call without using an explicit return statement. The

implementation simply adds 5 to the argument and returns it.

demo(, 10);

7. (3 pts) What is a functional interface? Explain in no more than 2 sentences.

Part #3 (Generics)
8. (15 pts) Given the code below (assume the needed import statement are added):

public class Utilities {
 /* code for minimum is the answer to this question – returns the smallest element in the ArrayList*/
 public static void main(String[] args) {
 ArrayList<String> s = new ArrayList<String>();
 s.add("cat"); s.add("rat"); s.add("bat");
 ArrayList<Integer> i = new ArrayList<Integer>();
 i.add(5); i.add(4); i.add(7);
 System.out.println(minimum(s)); // returns bat
 System.out.println(minimum(i)); // returns 4 } }

Write the code for the public static generic method minimum with type variable T bounded to be a Comparable<T>. Hint: Your code
will have no wildcards (i.e. <?>) in it.

Directory ID:

 4

9. (16 pts @ 2 each) Assume the class CSstudent extends Student which extends Person. Further, assume that each of the
3 classes has a default constructor that takes no argument. Which of the following are valid (i.e. will compile)? Circle your
answer. If there are more than one line of code, as long as there is one line that prevents compilation, circle INVALID.

a. ArrayList <Object> q1 = new ArrayList<Person>(); VALID / INVALID

b. ArrayList <Person> q2 = new ArrayList<Student>(); VALID / INVALID

c. ArrayList <? extends Person> q3 = new ArrayList<Student>(); VALID / INVALID

d. ArrayList <? extends Student> q4 = new ArrayList<Student>();

q4.add(new Student());
VALID / INVALID

e. ArrayList <Student> list = new ArrayList<Student>();

list.add(new Student());
ArrayList <? extends Student> q5 = list;
Person p = q5.get(0);

VALID / INVALID

f. ArrayList <? super CSstudent> q6 = new ArrayList<Person>();
q6.add(new CSstudent());

VALID / INVALID

g. Person arr [] = new CSstudent[2];
arr[0] =new Person();

VALID / INVALID

h. CSstudent arr1 [] = new Person[2];
arr1[0] =new CSstudent();

VALID / INVALID

Part #4 (Miscellaneous)

10. (3 pts) Using no more than 4 sentences, explain the Mark-and-Sweep Algorithm.

11. (2 pts) Complete the code below by simply adding the static initialization block that assigns 3.14 to pi.

public class StaticExample {

 static double pi;

 public static void main(String[] args) {
 System.out.println(pi); //prints 3.14

 }

}

//add your code here

 5

Part #5 (Class Implementation)
Given the code below in the same package and with correct import statements , simply write the code for the missing iterator method.
public class Player {
 private int playerID;
 private int teamID;

 public Player(int playerID, int teamID) {
 this.playerID = playerID;
 this.teamID = teamID;
 }

 public int getTeamID() {
 return teamID;
 }

 @Override
 public String toString() {
 return "[playerID=" + playerID + "]";
 }

}

public class PlayerRoster implements Iterable<Player> {

 private ArrayList<Player> roster = new ArrayList<Player>();
 private int teamNumber;

 public PlayerRoster (int teamNumber) {
 this.teamNumber = teamNumber;
 }

 public PlayerRoster add(Player player) {
 roster.add(player);
 return this;

 }

 public void setTeamNumber(int teamNumber) {
 this.teamNumber = teamNumber;
 }

 public void print() {
 System.out.println(roster);
 }

 /* Relying on anonymous inner class */
 public Iterator<Player> iterator() {
 //code you will write
 }
}

Driver

public class Driver {
 public static void main(String[] args) {
 PlayerRoster roster = new PlayerRoster(17);

 roster.add(new Player(5, 12)).add(new Player(10, 17)).add(new Player(15, 12));
 roster.add(new Player(20, 12)).add(new Player(25, 17)).add(new Player(30, 12));
 roster.add(new Player(35,17)).add(new Player(40, 12)).add(new Player(45, 12));

 Iterator<Player> it = roster.iterator();
 while (it.hasNext()) {
 System.out.println(it.next()); //only prints players in team 17
 }

 System.out.println("---------");

 it = roster.iterator(); //new iterator object

 System.out.println(it.next()); //will return next without calling hasNext
 System.out.println(it.hasNext()); //true, player 25 is the next one
 System.out.println(it.next());
 System.out.println(it.next());

 try {
 System.out.println(it.next()); } //bad idea, nothing left
 catch (NoSuchElementException e){
 System.out.println(e.getMessage()); }
 System.out.println(it.hasNext()); //false

 System.out.println("---------");

 roster.setTeamNumber(12); //change to team 12

 it = roster.iterator();

 while (it.hasNext()) {
 System.out.println(it.next()); //only prints players in team 12
 }
 System.out.println("---------");
 System.out.println("Original data is never modified");
 roster.print(); //prints all players

 }
}

Directory ID:

 6

Driver Output

[playerID=10]
[playerID=25]
[playerID=35]

[playerID=10]
true
[playerID=25]
[playerID=35]
no element left
false

[playerID=5]
[playerID=15]
[playerID=20]
[playerID=30]
[playerID=40]
[playerID=45]

Original data is never modified
[[playerID=5], [playerID=10], [playerID=15], [playerID=20], [playerID=25], [playerID=30], [playerID=35], [playerID=40], [playerID=45]]

You must use the anonymous class syntax to create the returned Iterator<Player> object. Although you are creating an object to
be returned, you are also at the same time defining the class. Therefore you can have fields, private helper methods, and use
initialization blocks. The iteration is defined to iterate over players with teamID fields that are equal to the PlayerRoster’s
teamNumber field. You can assume that the teamNumber used for the iteration must be set before creating an Iterator, and changes to
the teamNumber after the Iterator’s creation will not change the behavior of the iteration. For example, if the teamNumber is set to 12
and the iteration process has already started, changing the team number to 17 will not change the Iterator’s behavior of iterating over
players in team 12. In your implementation, you are not allowed to modify the original data (i.e. PlayerRoster’s roster field).
Notice in the sample driver, the last line shows all players are still in the roster. Finally, if you decide you want to use an ArrayList as
one of your fields, you are free to use the ArrayList methods shown below:

boolean add(E e)

Appends the specified element to the end of this list.

E get(int index)

Returns the element at the specified position in this list.

E remove(int index) Removes the element at the specified position in this list.

int size()

Returns the number of elements in this list.

You MUST implement the following 2 methods

public boolean hasNext() The method should return true if the iteration has more elements

(i.e. if there is a Player in the PlayerRoster’s roster with a
teamID equivalent to PlayerRoster’s teamNumber). Otherwise,
it returns false.

public Player next() Returns the next element in the iteration. Throws the unchecked
NoSuchElementException if the iteration has no more elements.
The message used in the exception is no element left.

Finally, although it is convention to call hasNext before calling next (as seen in the first iteration of the driver), your
implementation should support being able to call just next and getting the next element in the iteration without having to call
hasNext. Of course, if a call is made to next and there is nothing left, the NoSuchElementException is thrown. See the
second iteration in the driver for details.

 7

Directory ID:

 8

EXTRA PAGE IN CASE YOU NEED IT

LAST PAGE

