
CMSC 132:

OBJECT-ORIENTED PROGRAMMING II

Singleton and Decorator Design Patterns

Department of Computer Science

University of Maryland, College Park

Singleton Pattern
• Definition

• One instance of a class or value accessible globally

• Where to use & benefits

• Ensure unique instance by defining class final

• Access to the instance only via methods provided

• Example

public class Employee {
public static final int ID = 1234; // ID is a singleton

}

public final class MySingleton {

// declare the unique instance of the class
private static MySingleton uniq = new MySingleton();

// private constructor only accessed from this class
private MySingleton() { … }

// return reference to unique instance of class
public static MySingleton getInstance() {

return uniq;
}

}

Decorator Pattern
• Definition

• Attach additional responsibilities or functions to an object dynamically or statically

• Where to use & benefits

• Provide flexible alternative to subclassing

• Add new function to an object without affecting other objects

• Make responsibilities easily added and removed dynamically & transparently to
the object

• Example

• Pizza Decorator adds toppings to Pizza

• Original

• Pizza subclasses

• Combinatorial explosion in # of subclasses

• Using pattern

• Pizza decorator classes add toppings to Pizza objects dynamically

• Can create different combinations of toppings without modifying Pizza class

• Example: PizzaDecoratorCode

Decorator Pattern
• Examples from Java I/O

• Interface

• InputStream

• Concrete subclasses

• FileInputStream, ByteArrayInputStream

• Decorators

• BufferedInputStream, DataInputStream

• Code

• InputStream s = new DataInputStream(new BufferedInputStream (new

FileInputStream()));

