CMSC 132:
OBJECT-ORIENTED PROGRAMMING Il

w2 Singleton and Decorator Design Patterns

<

o% X, O
18 5
2, o Department of Computer Science

6
TRYLAS University of Maryland, College Park

Singleton Pattern

- Definition

- One instance of a class or value accessible globally
- Where to use & benefits

- Ensure unique instance by defining class final

- Access to the instance only via methods provided
- Example

public class Employee {
public static final int ID = 1234; //'ID is a singleton

public final class MySingleton {

// declare the unigque instance of the class
private static MySingleton uniq = new MySingleton();

/[private constructor only accessed from this class
private MySingleton() { ... }

/Il return reference to unique instance of class

public static MySingleton getinstance() {
return uniq;

}
}

Decorator Pattern

- Definition
- Attach additional responsibilities or functions to an object dynamically or statically
- Where to use & benefits
- Provide flexible alternative to subclassing
- Add new function to an object without affecting other objects

- Make responsibilities easily added and removed dynamically & transparently to
the object

- Example

- Pizza Decorator adds toppings to Pizza %
- Original U %-%

- Pizza subclasses

- Combinatorial explosion in # of subclasses
- Using pattern

- Pizza decorator classes add toppings to Pizza objects dynamically

- Can create different combinations of toppings without modifying Pizza class

- Example: PizzaDecoratorCode

)

Decorator Pattern

- Examples from Java /O

- Interface

* InputStream
- Concrete subclasses

- FilelnputStream, ByteArraylnputStream
- Decorators

- BufferedInputStream, DatalnputStream
- Code

- InputStream s = new DatalnputStream(new BufferedinputStream (new
FilelnputStream()));

