
CMSC 330: Organization of Programming

Languages

DFAs, and NFAs, and Regexps

CMSC330 Summer 2025

The story so far, and what’s next

Goal: Develop an algorithm that determines whether a

string s is matched by regex R

• I.e., whether s is a member of R’s language

Approach to come: Convert R to a finite automaton FA

and see whether s is accepted by FA

• Details: Convert R to a nondeterministic FA (NFA), which we

then convert to a deterministic FA (DFA),

➢ which enjoys a fast acceptance algorithm

CMSC330 Summer 2025

Two Types of Finite Automata

Deterministic Finite Automata (DFA)

• Exactly one sequence of steps for each string

➢ Easy to implement acceptance check

• (Almost) all examples so far

Nondeterministic Finite Automata (NFA)

• May have many sequences of steps for each string

• Accepts if any path ends in final state at end of string

• More compact than DFA

➢ But more expensive to test whether a string matches

CMSC330 Summer 2025

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state

on the same symbol

DFAs allow only one transition per symbol

• DFA is a special case of NFA

CMSC330 Summer 2025

a

a

Comparing DFAs and NFAs (cont.)

NFAs may have transitions with empty string label

• May move to new state without consuming character

DFA transition must be labeled with symbol

• A DFA is a specific kind of NFA

CMSC330 Summer 2025

ε
-transition

DFA for (a|b)*abb

CMSC330 Summer 2025

NFA for (a|b)*abb

ba

• Has paths to either S0 or S1

• Neither is final, so rejected

babaabb

• Has paths to different states

• One path leads to S3, so accepts string

CMSC330 Summer 2025

NFA for (ab|aba)*

aba

ababa

• Has paths to states S0, S1

• Need to use ε-transition

CMSC330 Summer 2025

NFA and DFA for (ab|aba)*

DFA NFA

CMSC330 Summer 2025

Quiz 1: Which string is NOT accepted by this NFA?

CMSC330 Summer 2025

A. ab

B. abaa

C. abab

D. abaab

Quiz 1: Which string is NOT accepted by this NFA?

CMSC330 Summer 2025

A. ab

B. abaa

C. abab

D. abaab

Formal Definition

A deterministic finite automaton (DFA) is a

 5-tuple (Σ, Q, q0, F, δ) where

• Σ is an alphabet

• Q is a nonempty set of states

• q0  Q is the start state

• F ⊆ Q is the set of final states

• δ : Q x Σ → Q specifies the DFA's transitions

➢ What's this definition saying that δ is?

A DFA accepts s if it stops at a final state on s

CMSC330 Summer 2025

Formal Definition: Example

• Σ = {0, 1}

• Q = {S0, S1}

• q0 = S0

• F = {S1}

• δ =

0 1

S0 S0 S1

S1 S0 S1in
p

u
t
s
ta

te

symbol

CMSC330 Summer 2025

or as { (S0,0,S0),

 (S0,1,S1),

 (S1,0,S0),

 (S1,1,S1) }

14

Implementing DFAs (one-off)
cur_state = 0;

while (1) {

 symbol = getchar();

 switch (cur_state) {

 case 0: switch (symbol) {

 case '0': cur_state = 0; break;

 case '1': cur_state = 1; break;

 case '\n': printf("rejected\n"); return 0;

 default: printf("rejected\n"); return 0;

 }

 break;

 case 1: switch (symbol) {

 case '0': cur_state = 0; break;

 case '1': cur_state = 1; break;

 case '\n': printf("accepted\n"); return 1;

 default: printf("rejected\n"); return 0;

 }

 break;

 default: printf("unknown state; I'm confused\n");

 break;

 }

}

It's easy to build

a program

which mimics a

DFA

CMSC330 Summer 2025

15

Implementing DFAs (generic)

More generally, use generic table-driven DFA

• q is just an integer

• Represent  using arrays or hash tables

• Represent F as a set

given components (Σ, Q, q0, F, ) of a DFA:

let q = q0

while (there exists another symbol σ of the input string)

 q := (q, σ);

if q  F then

 accept

else reject

CMSC330 Summer 2025

An NFA is a 5-tuple (Σ, Q, q0, F, δ) where

• Σ, Q, q0, F as with DFAs

• δ ⊆ Q x (Σ  {ε}) x Q specifies the NFA's transitions

An NFA accepts s if there is at least one path via s

from the NFA’s start state to a final state

a

ε
S1 S2

a

Example

S3

• Σ = {a}

• Q = {S1, S2, S3}

• q0 = S1

• F = {S3}

• δ = { (S1,a,S1), (S1,a,S2), (S2,ε,S3) }

CMSC330 Summer 2025

Nondeterministic Finite Automata (NFA)

17

NFA Acceptance Algorithm (Sketch)

When NFA processes a string s

• NFA must keep track of several “current states”

➢ Due to multiple transitions with same label, and ε-transitions

• If any current state is final when done then accept s

Example

• After processing “a”

➢ NFA may be in states

S1

S2

S3

➢ Since S3 is final, s is accepted

Algorithm is slow, space-inefficient; prefer DFAs!

a

ε
S1 S2

a
S3

CMSC330 Summer 2025

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same

languages! Can convert between them

CMSC330 Summer 2025

DFA NFA

RE

can transform

can

reduce

can reduce

Goal: Given regular expression A, construct NFA: <A> =

(Σ, Q, q0, F, δ)

• Remember regular expressions are defined recursively from

primitive RE languages

• Invariant: |F| = 1 in our NFAs

➢ Recall F = set of final states

Will define <A> for base cases: σ , ε , ∅

• Where σ is a symbol in Σ

And for inductive cases: AB, A|B, A*

CMSC330 Summer 2025

Reducing Regular Expressions to NFAs

Base case: σ

<σ> = ({σ}, {S0, S1}, S0, {S1}, {(S0, σ, S1)})

σ

Recall: NFA is (Σ, Q, q0, F, δ)

 where

 Σ is the alphabet

 Q is set of states

 q0 is starting state

 F is set of final states

 δ is transition relation

CMSC330 Summer 2025

Reducing Regular Expressions to NFAs

(Σ, Q, q0, F, δ)

Reduction

Base case: ε

<ε> = (∅, {S0}, S0, {S0}, ∅)

Base case: ∅

<∅> = (∅, {S0, S1}, S0, {S1}, ∅)

CMSC330 Summer 2025

Recall: NFA is (Σ, Q, q0, F, δ)

 where

 Σ is the alphabet

 Q is set of states

 q0 is starting state

 F is set of final states

 δ is transition relation

Reduction: Concatenation

Induction: AB

• <A> = (ΣA, QA, qA, {fA}, δA)

• = (ΣB, QB, qB, {fB}, δB)

CMSC330 Summer 2025

<A>

Reduction: Concatenation

Induction: AB

• <A> = (ΣA, QA, qA, {fA}, δA)

• = (ΣB, QB, qB, {fB}, δB)

• <AB> = (ΣA  ΣB, QA  QB, qA, {fB}, δA  δB  {(fA,ε,qB)})
CMSC330 Summer 2025

<A>

Reduction: Union

Induction: A|B

• <A> = (ΣA, QA, qA, {fA}, δA)

• = (ΣB, QB, qB, {fB}, δB)

CMSC330 Summer 2025

Reduction: Union

Induction: A|B

• <A> = (ΣA, QA, qA, {fA}, δA)

• = (ΣB, QB, qB, {fB}, δB)

• <A|B> = (ΣA  ΣB, QA  QB  {S0,S1}, S0, {S1},

 δA  δB  {(S0,ε,qA), (S0,ε,qB), (fA,ε,S1), (fB,ε,S1)})

CMSC330 Summer 2025

Reduction: Closure

Induction: A*

• <A> = (ΣA, QA, qA, {fA}, δA)

CMSC330 Summer 2025

Reduction: Closure

Induction: A*

• <A> = (ΣA, QA, qA, {fA}, δA)

• <A*> = (ΣA, QA  {S0,S1}, S0, {S1},

 δA  {(fA,ε,S1), (S0,ε,qA), (S0,ε,S1), (S1,ε,S0)})

CMSC330 Summer 2025

A. B.

C. D.

CMSC330 Summer 2025

Quiz 2: Which NFA matches a* ?

A. B.

C. D.

CMSC330 Summer 2025

Quiz 2: Which NFA matches a* ?

B.

D.

A.

C.

CMSC330 Summer 2025

Quiz 3: Which NFA matches a|b* ?

D.

A.

C.

B.

CMSC330 Summer 2025

Quiz 3: Which NFA matches a|b* ?

C.

RE → NFA

Draw NFAs for the regular expression (0|1)*110*

CMSC330 Summer 2025

33

Recap

Finite automata

• Alphabet, states…

• (Σ, Q, q0, F, δ)

Types

• Deterministic (DFA)

• Non-deterministic (NFA)

Reducing RE to NFA

• Concatenation

• Union

• Closure

a b

a

a

ε

bεa

a

b

ε

ε

ε

ε

ε

ε ε

ε
a

ε
CMSC330 Summer 2025

Reduction Complexity

Given a regular expression A of size n...

Size = # of symbols + # of operations

How many states does <A> have?

• Two added for each |, two added for each *

• O(n)

• That’s pretty good!

CMSC330 Summer 2025

Reducing NFA to DFA

DFA NFA

RE

can

reduce

can reduce

CMSC330 Summer 2025

DFA is generally more efficient than NFA

Language: (a|b)*ab

NFA

DFA

Why NFA → DFA

CMSC330 Summer 2025

Why NFA → DFA

DFA has the same expressive power as NFAs.

• Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ,

Q, q0, F, δ). There exists a DFA D= (Σ, Q’, q’0, F’, δ’) that also

accepts L. (L(N) = L(D))

NFAs are more flexible and easier to build. But DFAs have

no less power than NFAs.

 NFA DFA
CMSC330 Summer 2025

38

Reducing NFA to DFA

NFA may be reduced to DFA

• By explicitly tracking the set of NFA states

Intuition

• Build DFA where

➢ Each DFA state represents a set of NFA “current states”

Example

S1

a

S1, S2, S3

a

ε
S1 S2

a

NFA DFA

S3

a

CMSC330 Summer 2025

39

Algorithm for Reducing NFA to DFA

Reduction applied using the subset algorithm

• DFA state is a subset of set of all NFA states

Algorithm

• Input

➢ NFA (Σ, Q, q0, Fn, δ)

• Output

➢ DFA (Σ, R, r0, Fd, )

• Using two subroutines

➢ ε-closure(, p) (and ε-closure(, Q))

➢ move(, p, σ) (and move(, Q, σ))

• (where p is an NFA state)

CMSC330 Summer 2025

40

ε-transitions and ε-closure

We say p → q

• If it is possible to go from state p to state q by taking only -
transitions in δ

• If  p, p1, p2, … pn, q  Q such that
➢ {p,ε,p1}  δ, {p1,ε,p2}  δ, … , {pn,ε,q}  δ

ε-closure(δ, p)
• Set of states reachable from p using ε-transitions alone

➢ Set of states q such that p → q according to δ

➢ ε-closure(δ, p) = {q | p → q in δ }

➢ ε-closure(δ, Q) = { q | p  Q, p → q in δ }

• Notes
➢ ε-closure(δ, p) always includes p

ε

ε

ε

ε

CMSC330 Summer 2025

41

ε-closure: Example 1

Following NFA contains

• p1 → p2

• p2 → p3

• p1 → p3

➢ Since p1 → p2 and p2 → p3

ε-closures

• ε-closure(p1) =

• ε-closure(p2) =

• ε-closure(p3) =

• ε-closure({ p1, p2 }) =

ε
p1 p2 p3

ε
ε

ε

ε

{ p1, p2, p3 }

{ p2, p3 }

{ p3 }

a

{ p1, p2, p3 }  { p2, p3 }

ε ε

CMSC330 Summer 2025

42

ε-closure: Example 2

Following NFA contains

• p1 → p3

• p3 → p2

• p1 → p2

ε-closures

• ε-closure(p1) =

• ε-closure(p2) =

• ε-closure(p3) =

• ε-closure({ p2,p3 }) =

b
p1 p2 p3

aε

ε

{ p1, p2, p3 }

{ p2 }

{ p2, p3 }

ε

ε

{ p2 }  { p2, p3 }

ε

CMSC330 Summer 2025

43

Input: NFA (Σ, Q, q0, Fn, δ), State Set R

Output: State Set R’

Algorithm

Let R’ = R // start states

Repeat

Let R = R’ // continue from previous

Let R’ = R  {q | p  R, (p, , q)  } // new ε-reachable states

Until R = R’ // stop when no new states

43

This algorithm computes a fixed point

ε-closure Algorithm: Approach

CMSC330 Summer 2025

44

Calculate ε-closure({p1})

ε
p1 p2 p3

ε

a

44

R R’

{p1} {p1}

{p1} {p1, p2}

{p1, p2} {p1, p2, p3}

{p1, p2, p3} {p1, p2, p3}

Let R’ = R

Repeat

 Let R= R’

 Let R’ = R  {q | p  R, (p, , q)  }

Until R = R’

ε-closure Algorithm Example

CMSC330 Summer 2025

45

Calculating move(p,σ)

move(δ,p,σ)

• Set of states reachable from p using exactly one transition on

symbol σ

➢ Set of states q such that {p, σ, q}  δ

➢ move(δ,p,σ) = { q | {p, σ, q}  δ }

➢ move(δ,Q,σ) = { q | p  Q, {p, σ, q}  δ }

• i.e., can “lift” move() to a set of states Q

• Notes:

➢ move(δ,p,σ) is Ø if no transition (p,σ,q)  δ, for any q

CMSC330 Summer 2025

46

move(p,σ) : Example 1

Following NFA

• Σ = { a, b }

Move

• move(p1, a) =

• move(p1, b) =

• move(p2, a) =

• move(p2, b) =

• move(p3, a) =

• move(p3, b) =

b
p1 p2 p3

a

{ p2, p3 }

{ p3 }

a

Ø

Ø

Ø

Ø

move({p1,p2},b) = { p3 }

CMSC330 Summer 2025

47

move(p,σ) : Example 2

Following NFA

• Σ = { a, b }

Move

• move(p1, a) =

• move(p1, b) =

• move(p2, a) =

• move(p2, b) =

• move(p3, a) =

• move(p3, b) =

a
p1 p2 p3

a

{ p2 }

b

{ p3 }

{ p3 }

Ø

Ø

ε

Ø

move({p1,p2},a) = {p2,p3}

CMSC330 Summer 2025

48

NFA → DFA Reduction Algorithm (“subset”)

Input NFA (Σ, Q, q0, Fn, δ), Output DFA (Σ, R, r0, Fd, ’)

Algorithm

Let r0 = -closure(δ,q0), add it to R // DFA start state

While  an unmarked state r  R // process DFA state r

Mark r // each state visited once

For each σ   // for each symbol σ

Let E = move(δ,r,σ) // states reached via σ

Let e = -closure(δ,E) // states reached via 

If e  R // if state e is new

Let R = R  {e} // add e to R (unmarked)

Let ’ = ’  {r, σ, e} // add transition r→e on σ

Let Fd = {r |  s  r with s  Fn} // final if include state in Fn

CMSC330 Summer 2025

49

NFA → DFA Example

• Start = -closure(δ,p1) = { {p1,p3} }

• R = { {p1,p3} }

• r  R = {p1,p3}

• move(δ,{p1,p3},a) = {p2}

➢ e = -closure(δ,{p2}) = {p2}

➢ R = R  {{p2}} = { {p1,p3}, {p2} }

➢ ’ = ’  {{p1,p3}, a, {p2}}

• move(δ,{p1,p3},b) = Ø

b
p1 p2 p3

a

ε

a
{2}{1,3}

NFA

DFA

CMSC330 Summer 2025

50

NFA → DFA Example (cont.)

• R = { {p1,p3}, {p2} }

• r  R = {p2}

• move(δ,{p2},a) = Ø

• move(δ,{p2},b) = {p3}

➢ e = -closure(δ,{p3}) = {p3}

➢ R = R  {{p3}} = { {p1,p3}, {p2}, {p3} }

➢ ’ = ’  {{p2}, b, {p3}}

b
p1 p2 p3

a

ε

a b
{3}{2}{1,3}

NFA

DFA

CMSC330 Summer 2025

51

NFA → DFA Example (cont.)

• R = { {p1,p3}, {p2}, {p3} }

• r  R = {p3}

• Move({p3},a) = Ø

• Move({p3},b) = Ø

• Mark {p3}, exit loop

• Fd = {{p1,p3}, {p3}}

➢ Since p3  Fn

• Done!

NFA

DFA

p1 p2 p3

ε

a b
{3}{2}{1,3}

CMSC330 Summer 2025

52

R = { {A}, }{C,D}{B,D},

NFA → DFA Example 2

NFA

{A}

{B,D}a

b

{C,D}

DFA

CMSC330 Summer 2025

Quiz 4: Which DFA is equiv to this NFA?

CMSC330 Summer 2025

b
p0 p1 p2

a

a

ε

b
p0 p1

p2,

p0

a

a

b

b
p0 p1 p1,

p2

a

a

b

p0 p1
p2,

p0

a a

NFA:

A.

B. C.

D. None of the above

b
p0 p1 p2

a

a

ε

b
p0 p1

p2,

p0

a

a

b

b
p0 p1 p1,

p2

a

a

b

p0 p1
p2,

p0

a a

NFA:

A.

B. C.

D. None of the above
CMSC330 Summer 2025

Quiz 4: Which DFA is equiv to this NFA?

Rejects ε

Rejects ε

Accepts abb

Actual Answer

b
p0 p1 p2

a

a

ε

b
p0 p1

p2,

p0
a

a

b

NFA:

p1,

p0

a

CMSC330 Summer 2025

56

{E}{C,D},{B,D,E},R = { {A,E}, }

NFA → DFA Example 3

NFA DFA

{A,E}

{B,D,E}
a

{C,D}

b

b {E}

a

b

a

CMSC330 Summer 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: The story so far, and what’s next
	Slide 3: Two Types of Finite Automata
	Slide 4: Comparing DFAs and NFAs
	Slide 5: Comparing DFAs and NFAs (cont.)
	Slide 6: DFA for (a|b)*abb
	Slide 7: NFA for (a|b)*abb
	Slide 8: NFA for (ab|aba)*
	Slide 9: NFA and DFA for (ab|aba)*
	Slide 10: Quiz 1: Which string is NOT accepted by this NFA?
	Slide 11: Quiz 1: Which string is NOT accepted by this NFA?
	Slide 12: Formal Definition
	Slide 13: Formal Definition: Example
	Slide 14: Implementing DFAs (one-off)
	Slide 15: Implementing DFAs (generic)
	Slide 16: Nondeterministic Finite Automata (NFA)
	Slide 17: NFA Acceptance Algorithm (Sketch)
	Slide 18: Relating REs to DFAs and NFAs
	Slide 19: Reducing Regular Expressions to NFAs
	Slide 20: Reducing Regular Expressions to NFAs
	Slide 21: Reduction
	Slide 22: Reduction: Concatenation
	Slide 23: Reduction: Concatenation
	Slide 24: Reduction: Union
	Slide 25: Reduction: Union
	Slide 26: Reduction: Closure
	Slide 27: Reduction: Closure
	Slide 28: Quiz 2: Which NFA matches a* ?
	Slide 29: Quiz 2: Which NFA matches a* ?
	Slide 30: Quiz 3: Which NFA matches a|b* ?
	Slide 31: Quiz 3: Which NFA matches a|b* ?
	Slide 32: RE → NFA
	Slide 33: Recap
	Slide 34: Reduction Complexity
	Slide 35: Reducing NFA to DFA
	Slide 36: Why NFA → DFA
	Slide 37: Why NFA → DFA
	Slide 38: Reducing NFA to DFA
	Slide 39: Algorithm for Reducing NFA to DFA
	Slide 40: ε-transitions and ε-closure
	Slide 41: ε-closure: Example 1
	Slide 42: ε-closure: Example 2
	Slide 43: ε-closure Algorithm: Approach
	Slide 44: ε-closure Algorithm Example
	Slide 45: Calculating move(p,σ)
	Slide 46: move(p,σ) : Example 1
	Slide 47: move(p,σ) : Example 2
	Slide 48: NFA  DFA Reduction Algorithm (“subset”)
	Slide 49: NFA  DFA Example
	Slide 50: NFA  DFA Example (cont.)
	Slide 51: NFA  DFA Example (cont.)
	Slide 52: NFA  DFA Example 2
	Slide 53: Quiz 4: Which DFA is equiv to this NFA?
	Slide 54: Quiz 4: Which DFA is equiv to this NFA?
	Slide 55: Actual Answer
	Slide 56: NFA  DFA Example 3

