CMSC 330: Organization of Programming
Languages

DFAs, and NFAs, and Regexps

CMSC330 Summer 2025

The story so far, and what's next

» Goal: Develop an algorithm that determines whether a
string s is matched by regex R

* |.e., whether sis a member of R’'s language

» Approach to come: Convert R to a finite automaton FA
and see whether s is accepted by FA

* Details: Convert R to a nondeterministic FA (NFA), which we
then convert to a deterministic FA (DFA),

» which enjoys a fast acceptance algorithm

CMSC330 Summer 2025

Two Types of Finite Automata

» Deterministic Finite Automata (DFA)

* Exactly one sequence of steps for each string
» Easy to implement acceptance check

* (Almost) all examples so far

» Nondeterministic Finite Automata (NFA)
* May have many sequences of steps for each string
* Accepts if any path ends in final state at end of string
* More compact than DFA

» But more expensive to test whether a string matches

CMSC330 Summer 2025

Comparing DFAs and NFAs

» NFAs can have more than one transition leaving a state
on the same symbol

d
O,
» DFAs allow only one transition per symbol
* DFA is a special case of NFA

CMSC330 Summer 2025

Comparing DFAs and NFAs (cont.)

» NFAs may have transitions with empty string label
* May move to new state without consuming character

€ .
O > e-transition

» DFA transition must be labeled with symbol
A DFA is a specific kind of NFA

CMSC330 Summer 2025

DFA for (alb)*abb

o/ :
S

NFA for (alb)*abb

» ba
e Has paths to either SO or S1
* Neither is final, so rejected

» babaabb

* Has paths to different states
* One path leads to S3, so accepts string

CMSC330 Summer 2025

NFA for (ablaba)*

» aba

» ababa
e Has paths to states S0, S1
* Need to use e-transition

CMSC330 Summer 2025

NFA and DFA for (ablaba)*

Quiz 1: Which string is NOT accepted by this NFA?

o o W >»
Q)
O
Q)
O

CMSC330 Summer 2025

Quiz 1: Which string is NOT accepted by this NFA?

o o w >
Q
O
Q
Q

CMSC330 Summer 2025

Formal Definition

» A deterministic finite automaton (DFA) is a
o-tuple (2, Q, qg, F, 8) where

* 2 is an alphabet

* Qis a nonempty set of states

* g € Qis the start state

* F € Qis the set of final states

* 0:Qx 2 — Q specifies the DFA's transitions
» What's this definition saying that 6 is?

» A DFA accepts s if it stops at a final state on s

CMSC330 Summer 2025

Formal Definition: Example

o Z:{O,’]} 1

- a-een ©

e gy = SO 0

. F={s1)

° 6: ° 1
Bymbm 1 or as { (S0,0,S0),

\ (S0,1,S1),

2 SOl SO| S1 (S1,0,S0),

£ 81| SO| S1 ($1,1,81) }

CMSC330 Summer 2025

Implementing DFAs (one-off)

It's easy to build
a program
which mimics a
DFA

CMSC330 Summer 2025

cur_state = 0;

while (1) {

symbol = getchar() ;

switch (cur_state) {

case 0: switch (symbol) {
case '0': cur_state = 0; break;
case 'l': cur_state = 1; break;
case '\n': printf("rejected\n");
default: printf ("rejected\n") ;
}
break;
case 1: switch (symbol) {
case '0': cur_state = 0; break;
case 'l': cur_state = 1; break;
case '\n': printf ("accepted\n") ;
default: printf ("rejected\n") ;
}
break;

default: printf ("unknown state;

break;

return O;
return O;

return 1;
return O;

I'm confused\n") ;

14

Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components (2, Q, qo, F, 8) of a DFA:
let g = qq
while (there exists another symbol o of the input string)
q:=5(q, o);
ifq € F then
accept
else reject

* g isjust an integer
* Represent 6 using arrays or hash tables
* Represent F as a set

CMSC330 Summer 2025

15

Nondeterministic Finite Automata (NFA)

» An NFA is a 5-tuple (2, Q, q,, F, 0) where
2, Q, 90, F as with DFAs
« 0 € Qx(Zu{e}) x Q specifies the NFA's transitions

* 2={a}

« Q={S1,S2, S3}

* Qo= 1

e F={S3}

e 0={(S1,a,51), (S1,a,S2), (S2,¢,S3) }

Example

» An NFA accepts s if there is at least one path via s
from the NFA's start state to a final state

CMSC330 Summer 2025

NFA Acceptance Algorithm (Sketch)

» When NFA processes a string s

* NFA must keep track of several “current states”
» Due to multiple transitions with same label, and e-transitions

* |If any current state is final when done then accept s

» Example
 After processing “a”

> NFA may be in states 3
. (2O
S2

S3
» Since S3 is final, s is accepted

» Algorithm is slow, space-inefficient; prefer DFAS!

CMSC330 Summer 2025 17

a

Relating REs to DFAs and NFAs

» Regular expressions, NFAs, and DFAs accept the same
languages! Can convert between them

can
reduce

DFA < NFA

can transform can reduce

RE

CMSC330 Summer 2025

Reducing Regular Expressions to NFAs

» Goal: Given regular expression A, construct NFA: <A> =
(Z’ Q’ qO’ F! 6)

 Remember regular expressions are defined recursively from
primitive RE languages

* Invariant: |F| =1 in our NFAs
> Recall F = set of final states

» Will define <A> for base cases: 0,¢, 0
* Where o is a symbol in 2

» And for inductive cases: AB, A|B, A*

CMSC330 Summer 2025

Reducing Regular Expressions to NFAs

Recall: NFAis (2, Q, qq, F, 0)
where
2 is the alphabet
Q is set of states
o is starting state

» Base case: o

\ F is set of final states
(0) . " .
O is transition relation

<o> = ({0}, {S0, S1}, SO, {S1}, {(S0, 5, S1)})
5 Q 4 F 5)

CMSC330 Summer 2025

Reduction

» Base case: ¢

<¢> = (@, {S0}, SO, {S0}, 0)
» Base case: @
®

<¢> = (@, {S0, S1}, S0, {S1}, 9)

CMSC330 Summer 2025

Recall: NFAis (2, Q, qq, F, 0)
where
2 is the alphabet
Q is set of states
qo is starting state
F is set of final states
O is transition relation

Reduction: Concatenation

» Induction: AB

<A>

e <A>= (ZA’ QA’ Qa {fA}’ 6A)
° = (ZB’ QB’ OB; {fB}’ 68)

CMSC330 Summer 2025

Reduction: Concatenation

» Induction: AB
oA 300 3@
\ ~ J/ |\ ~ J/

<A>

e <A>= (ZA’ QA’ Qa {fA}’ 6A)
° = (ZB’ QB’ OB; {fB}’ 68)
* <AB>= (25U 25, Qa U Qg, gp, {fa}, 04 W05 U {(fa€,08)})

CMSC330 Summer 2025

Reduction: Union

» Induction: A|B »@
JoRaC

* <A>= (Za, Qa, Gp, {fa}: On)
° = (2g, Qg, Gg, {fa}, Og)

CMSC330 Summer 2025

Reduction: Union

» Induction: A|B I O

© <A>= (Za, Qa, s {fa) On)
* = (g, Qg, g, {f5}, Og)
« <A|B>= (25U 25, Qy U Qg U {S0,51}, SO, {S1},
6A N 6B N {(SO7£’qA)’ (SO7£’qB)’ (fA’87S1)’ (fB’a’S1)})

CMSC330 Summer 2025

Reduction: Closure

» Induction: A*

T

e <A> = (ZA, QA, Ja; {fA}’ 6A)

CMSC330 Summer 2025

Reduction: Closure

» Induction: A*

© <A>= (Za, Qa, Gas {fa): Oa)
o <A*>= (Z,, Q) U {S0,S1}, SO, {S1},
OA U {(fa,€,S1), (S0,¢,q,), (S0,£,S1), (S1,£,S0)})

CMSC330 Summer 2025

Quiz 2: Which NFA matches a* ?

CMSC330 Summer 2025

Quiz 2: Which NFA matches a* ?

CMSC330 Summer 2025

Quiz 3: Which NFA matches a|b* ?

A. .
S ol
oo 8

CMSC330 Summer 2025

Quiz 3: Which NFA matches a|b* ?

CMSC330 Summer 2025

RE — NFA

Draw NFAs for the regular expression (0|1)*110*

CMSC330 Summer 2025

Recap

» Finite automata
* Alphabet, states...
* (2,Q,qg F, 0)

» Types
* Deterministic (DFA)

* Non-deterministic (NFA)

O30

CMSC330 Summer 2025

» Reducing RE to NFA
 Concatenation

—>O>O>O'°>©

 Union

e Closure

K/@

Reduction Complexity

» Given a regular expression A of size n...
Size = # of symbols + # of operations

» How many states does <A> have?
* Two added for each |, two added for each *

* O(n)
e That's pretty good!

CMSC330 Summer 2025

Reducing NFA to DFA

can
reduce

DFA < NFA

can reduce

RE

CMSC330 Summer 2025

Why NFA — DFA

» DFA is generally more efficient than NFA

NFA

Language: (alb)*ab

CMSC330 Summer 2025

Why NFA — DFA

» DFA has the same expressive power as NFAs.

* Letlanguage L € 2*, and suppose L is accepted by NFAN = (Z,
Q, qo, F,). There exists a DFA D= (2, Q’, q’y, F’, &) that also
accepts L. (L(N) = L(D))

» NFAs are more flexible and easier to build. But DFAs have
no less power than NFAs.

NFA < DFA

CMSC330 Summer 2025

Reducing NFA to DFA

» NFA may be reduced to DFA
* By explicitly tracking the set of NFA states

» Intuition
 Build DFA where

» Each DFA state represents a set of NFA “current states”

» Example

9@ 9C’S}_‘;[st?, s3]
NFA DFA

CMSC330 Summer 2025 38

Algorithm for Reducing NFA to DFA

» Reduction applied using the subset algorithm
* DFA state is a subset of set of all NFA states

» Algorithm
* Input
> NFA (Z, Q, qo, F,,, 0)
e QOutput
> DFA (2, R, ry, Fy, 8)
* Using two subroutines
> e-closure(5, p) (and e-closure(d, Q))

» move(d, p, o) (and move(d, Q, o))
- (where p is an NFA state)

CMSC330 Summer 2025

39

e-transitions and s-closure

> Wesaypi>q

* Ifitis possible to go from state p to state q by taking only &-
transitions in 6

 If3p, p1, P, --- Py 9 € Q such that
> {P,€,p1} € 0, {P1,€,P2} € O, ... , {Pn,E,Q} € O
» €-closure(d, p)
* Set of states reachable from p using e-transitions alone

» Set of states q such that p N g according to &
€ .
» e-closure(®,p)={q|p—>qind}
> e-closure(®, Q)={q|peQ,p&qind}
* Notes
» g-closure(d, p) always includes p

CMSC330 Summer 2025 40

e-closure: Example 1

» Following NFA contains

° p1 5, P2 € €
* p25p3 @‘gy
* p1 g, pP3

> Since p1 LR p2 and p2 5, p3

» €-closures
« ¢e-closure(p1) = {p1,p2, p3}
* e-closure(p2) = {p2, p3}
* g-closure(p3) = {p3}
e e-closure({p1,p2})= {p1,p2,p3}u{p2 p3}

CMSC330 Summer 2025 41

e-closure: Example 2

» Following NFA contains

* p1 LR p3
* p3 £, p2
* p1 AR p2
» €-closures
* e-closure(p1) = {p1,p2,p3}
e e-closure(p2) = {p2}
e e-closure(p3) = {p2, p3}
e e-closure({p2,p31})= {p2}u{p2,p3}

CMSC330 Summer 2025 42

e-closure Algorithm: Approach

» Input: NFA (2, Q, g, F,, 0), State Set R
» Output: State Set R’
» Algorithm
LetR'=R // start states
Repeat
LetR =R’ // continue from previous
LetR'=Ru{g|peR,(p, e q) € d} I/ new g-reachable states
Until R =R’ // stop when no new states

This algorithm computes a fixed point

CMSC330 Summer 2025 43

e-closure Algorithm Example

» Calculate s-closure(5.{p1})

{p1} {p1} a

LetR"=R
{p1} {p1, p2} Reepeat
Let R=R’
LetR"=R U eR, (p,&,q)ed
{p1,p2} {p1, p2, p3} e {alpeR (p, e q) e d)

{p1, p2, p3} {p1, p2, p3}

CMSC330 Summer 2025 44

Calculating move(p,0)

» move(d,p,0)
» Set of states reachable from p using exactly one transition on
symbol o
> Set of states q such that {p, 0,q} € 0

> move(d,p,0) ={q[{p,0,q} €0}
> move(6,Q,0)={q|peQ{p, 0,q}cd}
- i.e., can ‘lift” move() to a set of states Q

* Notes:
» move(d,p,0) is @ if no transition (p,0,q) € O, forany q

CMSC330 Summer 2025 45

move(p,o) : Example 1

» Following NFA

- >={a,b} @@ b
a

» Move
« move(p1,a)= {p2,p3}
* move(p1,b) = %) move({p1,p2},b) = { p3 }
* move(p2, a) =
* move(p2, b) = {p3}
* move(p3, a) =
* move(p3, b) =

CMSC330 Summer 2025 46

move(p,o0) : Example 2

» Following NFA
e 2={a,b}

» Move
* move(p1, a
* move(p1, b
* move(p2, a
* move(p2, b
* move(p3, a
* move(p3, b

):
):
):
):
):
):

CMSC330 Summer 2025

{p2}
{p3}
{p3}
J

£
OG5 0
b

move({p1,p2},a) = {p2,p3}

47

NFA — DFA Reduction Algorithm (“subset”)

. Input NFA (2, Q, qq, F.., 8), Output DFA (%, R, 1y, Fy, &)

» Algorithm
Let ry = e-closure(d,q), add itto R

While 3 an unmarked stater € R
Mark r
Foreacho € X
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
LetR =R v {e}
Letd’ =6 u{r, o, e}
LetFy={r|3s e rwiths € F_}

CMSC330 Summer 2025

/| DFA start state

I/l process DFA stater

/[each state visited once
/I for each symbol o

/] states reached via o

/] states reached via ¢

/I if state e is new

// add e to R (unmarked)

/[add transition r—e on o

// final if include state in F,

48

NFA — DFA Example

Start = e-closure(d,p1) = { {p1,p3} }
R={{p1,p3}}
re R={p1,p3}
move(d,{p1,p3},a) = {p2}

> e = g-closure(0,{p2}) = {p2}

> R=Ru{{p2}} = {{p1,p3}, {p2} }

» 8 =8 v {{p1,p3}, a, {p2}}
move(d,{p1,p3},b) =T

CMSC330 Summer 2025

49

NFA — DFA Example (cont.)

* R={{p1,p3}, {p2} } NFA

* re R={p2} a b

* move(d,{p2},a) =D @@
* move(d,{p2},b) = {p3} 3

> e = g-closure(d,{p3}) = {p3}
» R=Ru{{p3}} = {{p1,p3}, {p2}, {p3} }
» 8 =8 u{{p2}, b, {p3}}

DFA
2050

CMSC330 Suimerz025 50

NFA — DFA Example (cont.)

* R={{p1,p3}, {p2}, {p3}}
*reR= {p3}
 Move({p3},a) =0
 Move({p3},b) =0

* Mark {p3}, exit loop

* Fq={{p1,p3}, {P3};
> Since p3 € F,

* Done!

CMSC330 Summer 2025

51

NFA — DFA Example 2

» NFA » DFA

R = { {A}, {B/D}/ {C/D} }

CMSC330 Summer 2025

Quiz 4: Which DFA is equiv to this NFA?

A

5010 -

D. INone of the above

Quiz 4: Which DFA is equiv to this NFA?

A.

Rejects €

CMSC330 Summer 2025

D.

None of the above

Rejects €

0 @ﬁ

Accepts abb

Actual Answer

NFA — DFA Example 3

» NFA

R ={(|{AE}, {B,DE}, |{C,D}, [{E}|}

CMSC330 Summer 2025 56

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: The story so far, and what’s next
	Slide 3: Two Types of Finite Automata
	Slide 4: Comparing DFAs and NFAs
	Slide 5: Comparing DFAs and NFAs (cont.)
	Slide 6: DFA for (a|b)*abb
	Slide 7: NFA for (a|b)*abb
	Slide 8: NFA for (ab|aba)*
	Slide 9: NFA and DFA for (ab|aba)*
	Slide 10: Quiz 1: Which string is NOT accepted by this NFA?
	Slide 11: Quiz 1: Which string is NOT accepted by this NFA?
	Slide 12: Formal Definition
	Slide 13: Formal Definition: Example
	Slide 14: Implementing DFAs (one-off)
	Slide 15: Implementing DFAs (generic)
	Slide 16: Nondeterministic Finite Automata (NFA)
	Slide 17: NFA Acceptance Algorithm (Sketch)
	Slide 18: Relating REs to DFAs and NFAs
	Slide 19: Reducing Regular Expressions to NFAs
	Slide 20: Reducing Regular Expressions to NFAs
	Slide 21: Reduction
	Slide 22: Reduction: Concatenation
	Slide 23: Reduction: Concatenation
	Slide 24: Reduction: Union
	Slide 25: Reduction: Union
	Slide 26: Reduction: Closure
	Slide 27: Reduction: Closure
	Slide 28: Quiz 2: Which NFA matches a* ?
	Slide 29: Quiz 2: Which NFA matches a* ?
	Slide 30: Quiz 3: Which NFA matches a|b* ?
	Slide 31: Quiz 3: Which NFA matches a|b* ?
	Slide 32: RE → NFA
	Slide 33: Recap
	Slide 34: Reduction Complexity
	Slide 35: Reducing NFA to DFA
	Slide 36: Why NFA → DFA
	Slide 37: Why NFA → DFA
	Slide 38: Reducing NFA to DFA
	Slide 39: Algorithm for Reducing NFA to DFA
	Slide 40: ε-transitions and ε-closure
	Slide 41: ε-closure: Example 1
	Slide 42: ε-closure: Example 2
	Slide 43: ε-closure Algorithm: Approach
	Slide 44: ε-closure Algorithm Example
	Slide 45: Calculating move(p,σ)
	Slide 46: move(p,σ) : Example 1
	Slide 47: move(p,σ) : Example 2
	Slide 48: NFA  DFA Reduction Algorithm (“subset”)
	Slide 49: NFA  DFA Example
	Slide 50: NFA  DFA Example (cont.)
	Slide 51: NFA  DFA Example (cont.)
	Slide 52: NFA  DFA Example 2
	Slide 53: Quiz 4: Which DFA is equiv to this NFA?
	Slide 54: Quiz 4: Which DFA is equiv to this NFA?
	Slide 55: Actual Answer
	Slide 56: NFA  DFA Example 3

