
CMSC 330:  Organization of Programming 

Languages

DFAs, and NFAs, and Regexps
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The story so far, and what’s next

Goal: Develop an algorithm that determines whether a 

string s is matched by regex R

• I.e., whether s is a member of R’s language

Approach to come: Convert R to a finite automaton FA 

and see whether s is accepted by FA

• Details: Convert R to a nondeterministic FA (NFA), which we 

then convert to a deterministic FA (DFA),

➢ which enjoys a fast acceptance algorithm
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Two Types of Finite Automata

Deterministic Finite Automata (DFA)

• Exactly one sequence of steps for each string

➢ Easy to implement acceptance check

• (Almost) all examples so far

Nondeterministic Finite Automata (NFA)

• May have many sequences of steps for each string

• Accepts if any path ends in final state at end of string

• More compact than DFA

➢ But more expensive to test whether a string matches
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Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state 

on the same symbol 

DFAs allow only one transition per symbol

• DFA is a special case of NFA
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Comparing DFAs and NFAs (cont.)

NFAs may have transitions with empty string label

• May move to new state without consuming character

DFA transition must be labeled with symbol

• A DFA is a specific kind of NFA
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DFA for (a|b)*abb
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NFA for (a|b)*abb

ba

• Has paths to either S0 or S1

• Neither is final, so rejected

babaabb

• Has paths to different states

• One path leads to S3, so accepts string
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NFA for (ab|aba)*

aba

ababa

• Has paths to states S0, S1

• Need to use ε-transition
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NFA and DFA for (ab|aba)*

DFA NFA
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Quiz 1: Which string is NOT accepted by this NFA?
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A. ab

B. abaa

C. abab

D. abaab



Quiz 1: Which string is NOT accepted by this NFA?
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B. abaa

C. abab

D. abaab



Formal Definition

A deterministic finite automaton (DFA) is a 

 5-tuple (Σ, Q, q0, F, δ) where

• Σ is an alphabet

• Q is a nonempty set of states

• q0  Q is the start state

• F ⊆ Q is the set of final states

• δ : Q x Σ → Q specifies the DFA's transitions

➢ What's this definition saying that δ is?

A DFA accepts s if it stops at a final state on s
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Formal Definition: Example

• Σ = {0, 1}

• Q = {S0, S1}

• q0  = S0

• F = {S1}

• δ =

0 1

S0 S0 S1

S1 S0 S1in
p

u
t 
s
ta

te

symbol
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or as { (S0,0,S0),

      (S0,1,S1),

      (S1,0,S0),

      (S1,1,S1) }
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Implementing DFAs (one-off)
cur_state = 0;

while (1) {

  symbol = getchar();

  switch (cur_state) {

    case 0: switch (symbol) {

              case '0':  cur_state = 0; break;

              case '1':  cur_state = 1; break;

              case '\n': printf("rejected\n"); return 0;

              default:   printf("rejected\n"); return 0;

            }

            break;

    case 1: switch (symbol) {

              case '0':  cur_state = 0; break;

              case '1':  cur_state = 1; break;

              case '\n': printf("accepted\n"); return 1;

              default:   printf("rejected\n"); return 0;

            }

            break;

    default: printf("unknown state; I'm confused\n");

             break;

  }

}

It's easy to build 

a program 

which mimics a 

DFA

CMSC330 Summer 2025



15

Implementing DFAs (generic)

More generally, use generic table-driven DFA

• q is just an integer

• Represent  using arrays or hash tables

• Represent F as a set

given components (Σ, Q, q0, F, ) of a DFA:

let q = q0

while (there exists another symbol σ of the input string)

    q := (q, σ);

if q  F then

  accept

else reject
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An NFA is a 5-tuple (Σ, Q, q0, F, δ) where

• Σ, Q, q0, F as with DFAs

• δ ⊆ Q x (Σ  {ε}) x Q specifies the NFA's transitions

An NFA accepts s if there is at least one path via s 

from the NFA’s start state to a final state

a

ε
S1 S2

a

Example

S3

• Σ = {a}

• Q = {S1, S2, S3}

• q0 = S1

• F = {S3}

• δ = { (S1,a,S1), (S1,a,S2), (S2,ε,S3) }
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NFA Acceptance Algorithm (Sketch)

When NFA processes a string s

• NFA must keep track of several “current states”

➢ Due to multiple transitions with same label, and ε-transitions

• If any current state is final when done then accept s

Example

• After processing “a”

➢ NFA may be in states 

S1

S2

S3

➢ Since S3 is final, s is accepted

Algorithm is slow, space-inefficient; prefer DFAs!

a

ε
S1 S2

a
S3
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Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same 

languages! Can convert between them
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can transform
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Goal:  Given regular expression A, construct NFA: <A> = 

(Σ, Q, q0, F, δ)

• Remember regular expressions are defined recursively from 

primitive RE languages

• Invariant:  |F| = 1 in our NFAs

➢ Recall F = set of final states

Will define <A> for base cases: σ , ε , ∅ 

• Where σ is a symbol in Σ

And for inductive cases: AB, A|B, A*
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Base case: σ

<σ> = ({σ}, {S0, S1}, S0, {S1}, {(S0, σ, S1)} )

σ

Recall: NFA is (Σ, Q, q0, F, δ)

  where 

    Σ is the alphabet

    Q is set of states

    q0 is starting state

    F is set of final states

    δ is transition relation
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Reducing Regular Expressions to NFAs

(Σ,             Q,          q0,     F,                  δ               )



Reduction

Base case: ε

<ε> = (∅, {S0}, S0, {S0}, ∅)

Base case:  ∅

<∅> = (∅, {S0, S1}, S0, {S1}, ∅)
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Recall: NFA is (Σ, Q, q0, F, δ)

  where 

    Σ is the alphabet

    Q is set of states

    q0 is starting state

    F is set of final states

    δ is transition relation



Reduction: Concatenation

Induction:  AB

• <A> =  (ΣA, QA, qA, {fA}, δA)

• <B> =  (ΣB, QB, qB, {fB}, δB)
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Reduction: Concatenation

Induction:  AB

• <A> =  (ΣA, QA, qA, {fA}, δA)

• <B> =  (ΣB, QB, qB, {fB}, δB)

• <AB> =  (ΣA  ΣB, QA  QB, qA, {fB}, δA  δB  {(fA,ε,qB)} )
CMSC330 Summer 2025
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Reduction: Union

Induction:  A|B

• <A> =  (ΣA, QA, qA, {fA}, δA)

• <B> =  (ΣB, QB, qB, {fB}, δB)

CMSC330 Summer 2025



Reduction: Union

Induction:  A|B

• <A> =  (ΣA, QA, qA, {fA}, δA)

• <B> =  (ΣB, QB, qB, {fB}, δB)

• <A|B> =  (ΣA  ΣB, QA  QB  {S0,S1}, S0, {S1},

         δA  δB  {(S0,ε,qA), (S0,ε,qB), (fA,ε,S1), (fB,ε,S1)})
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Reduction: Closure

Induction:  A*

• <A> =  (ΣA, QA, qA, {fA}, δA)
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Reduction: Closure

Induction:  A*

• <A> =  (ΣA, QA, qA, {fA}, δA)

• <A*> =  (ΣA, QA  {S0,S1}, S0, {S1},

         δA  {(fA,ε,S1), (S0,ε,qA), (S0,ε,S1), (S1,ε,S0)})
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A. B.

C. D.
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Quiz 2: Which NFA matches a* ?



A. B.

C. D.

CMSC330 Summer 2025

Quiz 2: Which NFA matches a* ?



B.

D.

A.

C.
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Quiz 3: Which NFA matches a|b* ?



D.

A.

C.

B.

CMSC330 Summer 2025

Quiz 3: Which NFA matches a|b* ?

C.



RE → NFA

Draw NFAs for the regular expression (0|1)*110*

CMSC330 Summer 2025
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Recap

Finite automata

• Alphabet, states…

• (Σ, Q, q0, F, δ)

Types

• Deterministic (DFA)

• Non-deterministic (NFA)

Reducing RE to NFA

• Concatenation

• Union

• Closure

a b

a

a

ε

bεa

a

b

ε

ε

ε

ε

ε

ε ε

ε
a

ε
CMSC330 Summer 2025



Reduction Complexity

Given a regular expression A of size n...

Size = # of symbols + # of operations

How many states does <A> have?

• Two added for each |, two added for each *

• O(n)

• That’s pretty good!
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Reducing NFA to DFA

DFA NFA

RE

can

reduce

can reduce
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DFA is generally more efficient than NFA

Language: (a|b)*ab

NFA

DFA

Why NFA → DFA
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Why NFA → DFA

DFA has the same expressive power as NFAs.

• Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, 

Q, q0, F, δ). There exists a DFA D= (Σ, Q’, q’0, F’, δ’) that also 

accepts L. (L(N) = L(D))

NFAs are more flexible and easier to build. But DFAs have 

no less power than NFAs.

           NFA   DFA
CMSC330 Summer 2025
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Reducing NFA to DFA

NFA may be reduced to DFA

• By explicitly tracking the set of NFA states

Intuition

• Build DFA where 

➢ Each DFA state represents a set of NFA “current states”

Example

S1

a

S1, S2, S3

a

ε
S1 S2

a

NFA DFA

S3

a
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Algorithm for Reducing NFA to DFA

Reduction applied using the subset algorithm

• DFA state is a subset of set of all NFA states

Algorithm

• Input

➢ NFA (Σ, Q, q0, Fn, δ)

• Output

➢ DFA (Σ, R, r0, Fd, )

• Using two subroutines

➢ ε-closure(, p) (and ε-closure(, Q))

➢ move(, p, σ) (and move(, Q, σ))

• (where p is an NFA state) 
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ε-transitions and ε-closure

We say p → q 

• If it is possible to go from state p to state q by taking only -
transitions in δ

• If  p, p1, p2, … pn, q  Q such that
➢ {p,ε,p1}  δ, {p1,ε,p2}  δ, … , {pn,ε,q}  δ

ε-closure(δ, p)
• Set of states reachable from p using ε-transitions alone

➢ Set of states q such that p → q according to δ

➢ ε-closure(δ, p) = {q | p → q in δ }

➢ ε-closure(δ, Q) = { q | p  Q, p → q in δ }

• Notes 
➢ ε-closure(δ, p) always includes p

ε

ε

ε

ε
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ε-closure: Example 1 

Following NFA contains

• p1 → p2

• p2 → p3

• p1 → p3

➢ Since p1 → p2 and p2 → p3

ε-closures

• ε-closure(p1) =

• ε-closure(p2) =

• ε-closure(p3) =

• ε-closure( { p1, p2 } ) =

ε
p1 p2 p3

ε
ε

ε

ε

{ p1, p2, p3 }

{ p2, p3 }

{ p3 }

a

{ p1, p2, p3 }  { p2, p3 }

ε ε
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ε-closure: Example 2 

Following NFA contains

• p1 → p3

• p3 → p2

• p1 → p2

ε-closures

• ε-closure(p1) =

• ε-closure(p2) =

• ε-closure(p3) =

• ε-closure( { p2,p3 } ) =

b
p1 p2 p3

aε

ε

{ p1, p2, p3 }

{ p2 }

{ p2, p3 }

ε

ε

{ p2 }  { p2, p3 }

ε
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Input: NFA (Σ, Q, q0, Fn, δ), State Set R

Output: State Set R’

Algorithm

Let R’ = R     // start states

Repeat

Let R = R’    // continue from previous

Let R’ = R  {q | p  R, (p, , q)  }   // new ε-reachable states

Until R = R’     // stop when no new states

43

This algorithm computes a fixed point 

ε-closure Algorithm: Approach
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Calculate ε-closure({p1})

ε
p1 p2 p3

ε

a

44

R R’

{p1} {p1}

{p1} {p1, p2}

{p1, p2} {p1, p2, p3}

{p1, p2, p3} {p1, p2, p3}

Let R’ = R

Repeat

   Let R= R’

   Let R’ = R  {q | p  R, (p, , q)  } 

Until R = R’ 

ε-closure Algorithm Example 
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Calculating move(p,σ)

move(δ,p,σ)

• Set of states reachable from p using exactly one transition on 

symbol σ

➢ Set of states q such that {p, σ, q}  δ

➢ move(δ,p,σ) = { q | {p, σ, q}  δ }

➢ move(δ,Q,σ) = { q | p  Q, {p, σ, q}  δ }

• i.e., can “lift” move() to a set of states Q

• Notes: 

➢ move(δ,p,σ) is Ø if no transition (p,σ,q)  δ, for any q
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move(p,σ) : Example 1 

Following NFA

• Σ = { a, b }

Move

• move(p1, a) = 

• move(p1, b) = 

• move(p2, a) = 

• move(p2, b) =

• move(p3, a) =

• move(p3, b) =

b
p1 p2 p3

a

{ p2, p3 }

{ p3 }

a

Ø

Ø

Ø

Ø

move({p1,p2},b) = { p3 }
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move(p,σ) : Example 2 

Following NFA

• Σ = { a, b }

Move

• move(p1, a) = 

• move(p1, b) = 

• move(p2, a) = 

• move(p2, b) =

• move(p3, a) =

• move(p3, b) =

a
p1 p2 p3

a

{ p2 }

b

{ p3 }

{ p3 }

Ø

Ø

ε

Ø

move({p1,p2},a) = {p2,p3}
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NFA → DFA Reduction Algorithm (“subset”)

Input NFA (Σ, Q, q0, Fn, δ), Output DFA (Σ, R, r0, Fd, ’)

Algorithm

Let r0 = -closure(δ,q0), add it to R  // DFA start state

While  an unmarked state r  R  // process DFA state r

Mark r    // each state visited once

For each σ     // for each symbol σ

Let E = move(δ,r,σ)  // states reached via σ

Let e = -closure(δ,E)  // states reached via 

If e  R   // if state e is new

Let R = R  {e}  // add e to R (unmarked)

Let ’ = ’  {r, σ, e}  // add transition r→e on σ

Let Fd = {r |  s  r with s  Fn}   // final if include state in Fn
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NFA → DFA Example

• Start = -closure(δ,p1) = { {p1,p3} }

• R = { {p1,p3} }

• r  R = {p1,p3}

• move(δ,{p1,p3},a) = {p2}

➢ e = -closure(δ,{p2}) = {p2}

➢ R = R  {{p2}} = { {p1,p3}, {p2} }

➢ ’ = ’  {{p1,p3}, a, {p2}}

• move(δ,{p1,p3},b) = Ø

b
p1 p2 p3

a

ε

a
{2}{1,3}

NFA

DFA
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NFA → DFA Example (cont.)

• R = { {p1,p3}, {p2} } 

• r  R = {p2}

• move(δ,{p2},a) = Ø

• move(δ,{p2},b) = {p3}

➢ e = -closure(δ,{p3}) = {p3}

➢ R = R  {{p3}} = { {p1,p3}, {p2}, {p3} }

➢ ’ = ’  {{p2}, b, {p3}}

b
p1 p2 p3

a

ε

a b
{3}{2}{1,3}

NFA

DFA
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NFA → DFA Example (cont.)

• R = { {p1,p3}, {p2}, {p3} } 

• r  R = {p3}

• Move({p3},a) = Ø

• Move({p3},b) = Ø

• Mark {p3}, exit loop

• Fd = {{p1,p3}, {p3}}

➢ Since p3  Fn

• Done!

NFA

DFA

p1 p2 p3

ε

a b
{3}{2}{1,3}
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R = { {A},               }{C,D}{B,D},

NFA → DFA Example 2

NFA

{A}

{B,D}a

b

{C,D}

DFA

CMSC330 Summer 2025



Quiz 4: Which DFA is equiv to this NFA?

CMSC330 Summer 2025

b
p0 p1 p2

a

a

ε

b
p0 p1

p2,

p0

a

a

b

b
p0 p1 p1,

p2

a

a

b

p0 p1
p2,

p0

a a

NFA:

A.

B. C.

D. None of the above



b
p0 p1 p2

a

a

ε

b
p0 p1

p2,

p0

a

a

b

b
p0 p1 p1,

p2

a

a

b

p0 p1
p2,

p0

a a

NFA:

A.

B. C.

D. None of the above
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Quiz 4: Which DFA is equiv to this NFA?

Rejects ε

Rejects ε

Accepts abb



Actual Answer

b
p0 p1 p2

a

a

ε

b
p0 p1

p2,

p0
a

a

b

NFA:

p1,

p0

a
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{E}{C,D},{B,D,E},R = { {A,E},                    }

NFA → DFA Example 3

NFA DFA

{A,E}

{B,D,E}
a

{C,D}

b

b {E}

a

b

a
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