CMSC 330: Organization of Programming
Languages

Context Free Grammars

CMSC330 Summer 2025

Interpreters

Optional

static | [—) —>| Evaluato
Source |—) Parser Analyzer r I:> Output
(e.g., Type the part we
Checker) write in the
Abstract definitional
Syntax Tree (AST), Interpreter
a kind of
intermediate
Front End representation (IR) Back End

Compilers are similar, but replace the evaluator with
modules that generate code, rather than run it .
npu

CMSC330 Summer 2025

Implementing the Front End

» Goal: Convert program text into an Abstract Syntax Tree

» ASTs are easier to work with
* Analyze, optimize, execute the program

» Do this using regular expressions?
* Won't work!

* Regular expressions cannot reliably parse paired braces {{ ... }},
parentheses (((...))), etc.

» Instead: Regexps for tokens (scanning), and Context
Free Grammars for parsing tokens

CMSC330 Summer 2025

Front End — Scanner and Parser

Front End
Token

« Scanner / lexer converts program source into tokens (keywords,
variable names, operators, numbers, etc.) using regular expressions

« Parser converts tokens into an AST (abstract syntax tree). Parsers
recognize strings defined as context free grammars

CMSC330 Summer 2025 4

Context-Free Grammar (CFG)

» A way of describing sets of strings (= languages)

* The notation L(G) denotes the language of strings defined by
grammar G

» Example grammarGisS > 0S| 1S | ¢
which says that string s’ ¢ L(G) iff
e ss=¢g,ords € L(G)suchthats’=0s, ors’ =1s

» Grammar is same as regular expression (0[1)*
* Generates / accepts the same set of strings

CMSC330 Summer 2025

CFGs Are Expressive

» CFGs subsume REs, DFAs, NFAs

* There is a CFG that generates any regular language
* But: REs are often better notation for those languages

» And CFGs can define languages regexps cannot
e S—H>(S)]|e I/ represents balanced pairs of ()’ s

» As a result, CFGs often used as the basis of parsers for
programming languages

CMSC330 Summer 2025

Parsing with CFGs

» CFGs formally define languages, but they do not define an
algorithm for accepting strings

» Several styles of algorithm; each works only for less
expressive forms of CFG
* LL(K) parsing . We will discuss this next lecture
* LR(k) parsing
* LALR(k) parsing
* SLR(K) parsing
» Tools exist for building parsers from grammars
« JavaCC, Yacc, etc.

CMSC330 Summer 2025 7

Formal Definition: Context-Free Grammar

» ACFG Gis a4-tuple (2, N, P, S)

* 2 — alphabet (finite set of symbols, or terminals)
» Often written in lowercase

* N — a finite, nonempty set of nonterminal symbols

> Often written in UPPERCASE
> ltmustbethatNN X =Y

* P — a set of productions of the form N — (Z|N)*

> Informally: the nonterminal can be replaced by the string of zero or more
terminals / nonterminals to the right of the —

» Can think of productions as rewriting rules (more later)

* S € N - the start symbol

CMSC330 Summer 2025

Notational Shortcuts

S — aBc S — aBc /I S is start symbol
A — aA

| b IIA—Db

| IIA— ¢

A production is of the form
* left-hand side (LHS) — right hand side (RHS)
If not specified
* Assume LHS of first production is the start symbol

Productions with the same LHS
* Are usually combined with |

If a production has an empty RHS

e |t meansthe RHS is ¢

v

v

v

v

CMSC330 Summer 2025

Aside: Backus-Naur Form

» Context-free grammar production rules are also called
Backus-Naur Form or BNF

* Designed by John Backus and Peter Naur

» Chair and Secretary of the Algol committee in the early 1960s. Used this
notation to describe Algol in 1962

» A production A—-BcD
IS written in BNF as <A> ::=c <D>

CMSC330 Summer 2025 10

Generating Strings

» Think of a grammar as generating strings by rewriting

* Beginning with the start symbol, repeatedly rewrite a nonterminal
per a production in the grammar (replace LHS with RHS)

» Example grammar G

S—>05|1S|¢
» Generate string 011 from G as follows:
S=0S // using S — 0S
= 01S //using S —» 1S
= 011S /[using S —» 1S

= 011 /lusing S —> ¢

CMSC330 Summer 2025 11

Accepting Strings (Informally)

» Checking if s € L(G) is called acceptance

* Algorithm: Find a rewriting from G’s start symbol that yields s
» 011 € L(G) according to the previous rewriting

» Terminology

* Such a sequence of rewrites is a derivation or parse
* Discovering the derivation is called parsing

CMSC330 Summer 2025

12

Derivations

» Notation
= indicates a derivation of one step
=* Indicates a derivation of one or more steps
=* indicates a derivation of zero or more steps
» Example
*« S—>05|1S|¢
» For the string 010
* S=>05=01S=010S = 010
« S="010
« 010 ="010

CMSC330 Summer 2025

13

Language Generated by Grammar

» L(G) the language defined by G is
L(G)={s e 2" |S=*s}

* Sis the start symbol of the grammar
* 2 is the alphabet for that grammar

» |In other words

 All strings over Z that can be derived from the start symbol via
one or more productions

CMSC330 Summer 2025 14

Quiz #1

Consider the grammar
S—>DbS|T
T—al|U
U—-cU]|e
Which of the following strings is generated by this grammar?
A. aba
B. ccc
C.bab
D.ca

CMSC330 Summer 2025 15

Quiz #1

Consider the grammar
S—>DbS|T
T—al|U
U—-cU]|e

Which of the following strings is generated by this grammar?

A. aba
B. ccc
C.bab
D.ca

CMSC330 Summer 2025

16

Quiz #2

» Consider the grammar
S—>DbS|T
T—al|U
U—-cU]|e
» Which of the following is a derivation of the string aac?
A.S=T=aT = aTaT = aaT = aacU = aac
B.S=T=U= aU = aaU = aacU = aac
C.S = aT = aaT = aaU = aacU = aac
D.S=T= aT = aaT = aaU = aacU = aac

CMSC330 Summer 2025

17

Quiz #2

» Consider the grammar
S—>DbS|T
T—al|U
U—-cU]|e

» Which of the following is a derivation of the string aac?

A.S=T=aT = aTaT = aaT = aacU = aac

B.S=T=U= aU = aaU = aacU = aac

C.S = aT = aaT = aaU = aacU = aac

D.S=T=aT = aaT = aaU = aacU = aac

CMSC330 Summer 2025

18

Quiz #3

Consider the grammar
S—>DbS|T
T—al|U
U—-cU]|e

Which of the following regular expressions accepts the same
language as this grammar?

A. (alblc)*

B. b*a*c*

C. (b|ba|bac)*
D. bac*

CMSC330 Summer 2025 19

Quiz #3

Consider the grammar
S—>DbS|T
T—al|U
U—-cU]|e

Which of the following regular expressions accepts the same

language as this grammar?

A. (alblc)*
B. b*a*c*
C. (b|ba|bac)*
D. bac*

CMSC330 Summer 2025

20

Designing Grammars

1. Use recursive productions to generate an arbitrary

number of symbols
A—xA|¢ /| Zero or more X' S

A—-vyAly // One or morey’ s

2. Use separate non-terminals to generate disjoint parts of
a language, and then combine in a production

a*b* /l a’ s followed by b’ s
S— AB
A—aAle /| Zero or more a’ s

B—-bB|¢ /| Zero ormore b’ s

CMSC330 Summer 2025

23

Designing Grammars

3. 1o generate languages with matching, balanced, or
related numbers of symbols, write productions which
generate strings from the middle

{anb" | n 2 0} /N a’s followed by Nb’'s
S—aSb|¢
Example derivation: S = aSb = aaSbb = aabb

{a b2 |n=0} // Na sfollowedby?2Nb’s
S —aSbb|¢
Example derivation: S = aSbb = aaSbbbb = aabbbb

CMSC330 Summer 2025 24

Designing Grammars

4. For alanguage that is the union of other languages, use
separate nonterminals for each part of the union and

then combine

{a"(b™c™) | m>n =0}

Can be rewritten as
{a"b™|m>nz=0}u{a'c™ | m>nz=0}
S—>T|V

T >aTb|U
U—Ub|b

V—-aVc|W
W —-Wc|c

CMSC330 Summer 2025

25

Practice

» Try to make a grammar which accepts

 O*1* * 0"M"wherenz=0
S—A|B
A—OA|e S—0S1]¢
B—1B|¢

» Give some example strings from this language
«S50]1S
> 0,10, 110, 1110, 11110, ...
* What language is it, as a regexp?
> 170

CMSC330 Summer 2025

26

Quiz #4

Which of the following grammars describes the same
language as 0"1™ where m =n ?

A. S—0S1]e

B. S—0S1|S1|¢
C. S—0S1|0S|¢
D. S—>SS|0|1]¢

CMSC330 Summer 2025

27

Quiz #4

Which of the following grammars describes the same
language as 0"1™ where m =n ?

A. S—0S1]|¢ same number of 0 and 1
B. S—>051|351]¢ more 1’s
C. S—>031[0S|¢ more 0’s
D. S—>SS|0|1]¢ no control of the number

CMSC330 Summer 2025 28

Parse Trees

» Parse tree shows how a string is produced by a grammar
* Will be useful for spotting ambiguity; discussed later

Root node of parse tree is the start symbol

Every internal node is a nonterminal

Children of an internal node
» Are symbols on RHS of production applied to nonterminal

Every leaf node is a terminal or €

» Reading the leaves left to right
e Shows the string corresponding to the tree

CMSC330 Summer 2025

29

Parse Tree Example

S

S—aS|T
T—-DbT|U
U—-cU]|c¢

CMSC330 Summer 2025

30

Parse Tree Example

S =aS

S—aS|T
T—-DbT|U
U—-cU]|¢

CMSC330 Summer 2025

31

Parse Tree Example

S>aS=aTl

S—aS|T
T—-DbT|U
U—-cU]|c¢

CMSC330 Summer 2025

32

Parse Tree Example

S=>aS=al =aU

S
S—aS|T AN
T >bT|U °
U—-cU]|c¢

cC—A—

CMSC330 Summer 2025

33

Parse Tree Example

S=>aS=al=aU = acU

S
S—aS|T AN
T—bT|U *
U—-cU]|c¢ T
|
U
VN

CMSC330 Summer 2025

34

Parse Tree Example

S=aS>>al=aU=acU=ac

S
S—aS|T AN
T—bT|U *
U—-cU]|c¢ T
|
U
VN

C

MNC

CMSC330 Summer 2025

35

CFGs and ASTs

» An abstract syntax tree is a data structure that represents
a parsed input, e.g., a program expression

* An AST can be expressed with an OCaml datatype that is very
close to the CFG that describes the language syntax

CFEG for arithmetic expressions: AST:

» E— alblc|d type expr = A | B | C | D
E+E | Plus of expr * expr
E-E | Minus of expr * expr

E*E | Mult of expr * expr

(E)

CMSC330 Summer 2025 38

Eventual Goal: Parse a CFG to get an AST

CFG (string): AST definition (OCaml):
» E— alb|c|d type expr = A | B | C | D
E+E | Plus of expr * expr
E-E | Minus of expr * expr
E*E | Mult of expr * expr
(E)
a-c parses to Minus (A, C)
a-(b*a) parsesto Minus (A, Mult (B,A))

c*(b+d) parsesto Mult (C, Plus (B,D))

CMSC330 Summer 2025

Parse Trees for Expressions

» A parse tree shows the structure of an expression as it
corresponds to a grammar

E—al|b|c|d]|E+E|E-E|E*E|(E)

a a*c c*(b+d)

CMSC330 Summer 2025

40

Parse Trees for Expressions

» A parse tree shows the structure of an expression as it
corresponds to a grammar

E—al|b|c|d]|E+E|E-E|E*E|(E)

a a*c c*(b+d)

I|E /T\E E/‘!\E

NN
ey

CMSC330 Summer 2025 b d

41

We will show how

to parse to an AST
Abstract Syntax Trees in the next lecture

» A parse tree and an AST are not the same thing
* The latter is a data structure produced by parsing

a*c /E\ c*(b+d) /E \ Parse trees
T I /IN
a C C (E)
ASTs /N 7/ N\ E o+ E
a ¢ C 4 | |
VN p)
Mult (A,C) b d

Mult (C,Plus(B,D))
CMSC330 Summer 2025 42

Practice

E—al|b|c|d|E+E|E-E|E*E|(E)

Make a parse tree for...
. ab

. a+(b-c)

. d*(d+b)-a

- (a+b)*(c-d)

. a+(b-c)*d

CMSC330 Summer 2025

43

Leftmost and Rightmost Derivation

» Leftmost derivation
* Leftmost nonterminal is replaced in each step

» Rightmost derivation
* Rightmost nonterminal is replaced in each step

» Example

e Grammar
>S—-AB,A—a,B—-b

e |eftmost derivation for “ab”
> S=>AB=aB > ab

 Rightmost derivation for “ab”
>»S=>AB=Ab=ab

CMSC330 Summer 2025

44

Parse Tree For Derivations

» Parse tree may be same for both leftmost & rightmost

derivations

« Example Grammar: S — a | SbS String: aba
Leftmost Derivation

S
S = SbS = abS = aba /1\
Rightmost Derivation “T’ b “T’
S = SbS = Sba = aba a a

» Parse trees don’ t show order productions are applied

Every parse tree has a unique leftmost and a unique
rightmost derivation

CMSC330 Summer 2025

45

Parse Tree For Derivations (cont.)

» Not every string has a unique parse tree

« Example Grammar: S — a | SbS String: ababa
Leftmost Derivation
S = SbS = abS = abSbS = ababS = ababa
Another Leftmost Derivation
S = SbS = SbSbS = abSbS = ababS = ababa

I\ /|
SN SN

a S b S

a a a a

CMSC330 Summer 2025

S\S

a

46

Ambiguity

» A grammar is ambiguous if a string may have multiple
leftmost derivations

| saw a girl with a
telescope.

CMSC330 Summer 2025

47

Ambiguity

» A grammar is ambiguous if a string may have multiple
leftmost derivations
* Equivalent to multiple parse trees
 (Can be hard to determine
1. S—aS|T
T—-DbT|U No
U—-cU]|¢
2. S—>T|T
T—Tx|Tx|x]|x
3. S—>SS|(|(S) ?

Yes

CMSC330 Summer 2025

48

Ambiguity (cont.)

» Example
e Grammar. S —- SS | ()| (S) String: ()()()
e 2 distinct (leftmost) derivations (and parse trees)
>»S = SS = SSS =()SS =()()S =)
>S =SS = ()S =()SS =()0S =0())

CMSC330 Summer 2025

49

CFGs for Programming Languages

» Recall that our goal is to describe programming languages
with CFGs

» We had the following example which describes limited
arithmetic expressions

E_a|b|c|E+E|E-E|E*E|(E)

» What's wrong with using this grammar?
* |t's ambiguous!

CMSC330 Summer 2025 50

Example: a-b-c

E = E-E = a-E = a-E-E = E = E-E = E-E-E =
a-b-E = a-b-c a-E-E = a-b-E = a-b-c
E E

/

a E

N /]
SN N

Corresponds to a-(b-c) Corresponds to (a-b)-c

CMSC330 Summer 2025 51

E

N,

Example: a-b*c

E = E-E > a-E > a-E*E=> E=E-E>=>E-EE>
a-b’E = a-bc a-E*E = a-b*E = a-b*c
E E

/

E

! / - \ i / |
E E E / | \ E
b C a b

Corresponds to a-(b*c) Corresponds to (a-b)*c

CMSC330 Summer 2025 52

N,

*

Another Example: If-Then-Else

Aka the dangling else problem

<stmt> — <assignment> | <if-stmt> | ...
<if-stmt> — if (<expr>) <stmt> |
if (<expr>) <stmt> else <stmt>
(Recall < > s are used to denote nonterminals)

» Consider the following program fragment
if (Xx>vy)
if (x < 2z)
a=1;
else a = 2;
(Note: Ignore newlines)

CMSC330 Summer 2025

53

Two Parse Trees

if (x > y)
if (x < z)
a=1;
else a = 2;
<if-stmt>
<if-stmt>
if <expr> <stmt> \\
I if <expr> <stmt> else <strm>
| | |
X>y <if-stmt> ! !
// ' \\ X>y <if-stmt> a=2
if <expr> <stmt> else <stmt> / \
:' i E if <expr> <st£nl>
I |
X é z a =l 1 a ; 2 : |
| I
X<z a=1

CMSC330 Summer 2025

54

Quiz #5

Which of the following grammars is ambiguous?

A. S— 05351051 | ¢

B. S—>A1S1A | ¢
A—0

C. S—>(S,S,9) |1

D. None of the above.

CMSC330 Summer 2025

Quiz #5

Which of the following grammars is ambiguous?

A.

S—0SS1]0S1 (¢

B.

CMSC330 Summer 2025

S—> A1S1A | ¢
A—0
S—(S,S,9) |1
None of the above.

S -»0SS1 —-0S1 —01
S -0S1 —-01

56

Dealing With Ambiguous Grammars

» Ambiguity is bad
e Syntax is correct
e But semantics differ depending on choice

» Different associativity (a-b)-c vs. a-(b-c)
» Different precedence (a-b)*c vs. a-(b*c)
> Different control flow if (if else) vs. if (if) else

» TWO approaches

* Rewrite grammar

» Grammars are not unique — can have multiple grammars for the same
language. But result in different parses.

* Use special parsing rules
» Depending on parsing tool

CMSC330 Summer 2025

57

Fixing the Expression Grammar

» Require right operand to not be bare expression
E_E+T|E-T|E*T|T
T-al|b|c|(E) /E\
N T

E - T c

E

» Corresponds to left associativity /

» Now only one parse tree for a-b-c
* Find derivation

CMSC330 Summer 2025 59

What if we want Right Associativity?

» Left-recursive productions
* Used for left-associative operators
* Example
E-E+T|E-T|E*T|T
T-al|lb|c]|(E)
» Right-recursive productions

» Used for right-associative operators
* Example

E-T+E|T-E|TE|T
T-al|lb|c|(E)

CMSC330 Summer 2025

60

A Different Problem

» How about the string a+b*c ? /T\
E_E+T|E-T|E*T|T Ny
T-alblc|(E) SN

T b

» Doesn’t have correct

precedence for * a

* When a nonterminal has productions for several operators,
they effectively have the same precedence

» Solution — Introduce new nonterminals

CMSC330 Summer 2025

62

Final Expression Grammar

E-E+T|E-T|T Iowest precedence operators
T->TP|P higher precedence
P—al|b|c|(E) highestprecedence (parentheses)

Derivation of a+b*c:

E- E+T->T+T—-P+T—at+tT—a+T"P—at+tP*P—at+b*P—atb*c

CMSC330 Summer 2025

63

Fixing the Expression Grammar

» Controlling precedence of operators

* Introduce new nonterminals
* Precedence increases closer to operands

» Controlling associativity of operators

* Introduce new nonterminals

* Assign associativity based on production form
> E — E+T (left associative) vs. E — T+E (right associative)
» But parsing method might limit form of rules

CMSC330 Summer 2025

64

Conclusion

» Context Free Grammars (CFGs) can describe
programming language syntax

* They are a kind of formal language that is more powerful than
regular expressions

» CFGs can also be used as the basis for programming
language parsers (details later)

* But the grammar should not be ambiguous
» May need to change more natural grammar to make it so

* Parsing often aims to produce abstract syntax trees
» Data structure that records the key elements of program

CMSC330 Summer 2025 65

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Interpreters
	Slide 3: Implementing the Front End
	Slide 4: Front End – Scanner and Parser
	Slide 5: Context-Free Grammar (CFG)
	Slide 6: CFGs Are Expressive
	Slide 7: Parsing with CFGs
	Slide 8: Formal Definition: Context-Free Grammar
	Slide 9: Notational Shortcuts
	Slide 10: Aside: Backus-Naur Form
	Slide 11: Generating Strings
	Slide 12: Accepting Strings (Informally)
	Slide 13: Derivations
	Slide 14: Language Generated by Grammar
	Slide 15: Quiz #1
	Slide 16: Quiz #1
	Slide 17: Quiz #2
	Slide 18: Quiz #2
	Slide 19: Quiz #3
	Slide 20: Quiz #3
	Slide 23: Designing Grammars
	Slide 24: Designing Grammars
	Slide 25: Designing Grammars
	Slide 26: Practice
	Slide 27: Quiz #4
	Slide 28: Quiz #4
	Slide 29: Parse Trees
	Slide 30: Parse Tree Example
	Slide 31: Parse Tree Example
	Slide 32: Parse Tree Example
	Slide 33: Parse Tree Example
	Slide 34: Parse Tree Example
	Slide 35: Parse Tree Example
	Slide 38: CFGs and ASTs
	Slide 39: Eventual Goal: Parse a CFG to get an AST
	Slide 40: Parse Trees for Expressions
	Slide 41: Parse Trees for Expressions
	Slide 42: Abstract Syntax Trees
	Slide 43: Practice
	Slide 44: Leftmost and Rightmost Derivation
	Slide 45: Parse Tree For Derivations
	Slide 46: Parse Tree For Derivations (cont.)
	Slide 47: Ambiguity
	Slide 48: Ambiguity
	Slide 49: Ambiguity (cont.)
	Slide 50: CFGs for Programming Languages
	Slide 51: Example: a-b-c
	Slide 52: Example: a-b*c
	Slide 53: Another Example: If-Then-Else
	Slide 54: Two Parse Trees
	Slide 55: Quiz #5
	Slide 56: Quiz #5
	Slide 57: Dealing With Ambiguous Grammars
	Slide 59: Fixing the Expression Grammar
	Slide 60: What if we want Right Associativity?
	Slide 62: A Different Problem
	Slide 63: Final Expression Grammar
	Slide 64: Fixing the Expression Grammar
	Slide 65: Conclusion

