
CMSC 330: Organization of Programming

Languages

Subtyping

1CMSC330 Summer 2025

Subtyping

The Liskov Substitution Principle:

• Let P(x) be a property provable about objects x of type T.

Then P(y) should be true for objects y of type S where S is a

subtype of T.

In other words

• If S is a subtype of T, then an S can be used anywhere a T is

expected

Commonly used in object-oriented programming

• Subclasses can be used where superclasses expected .

• This is a kind of polymorphism

2CMSC330 Summer 2025

What is subtyping?

Sometimes “every B is an A”

• Example:

➢ Every Circle or Square is a Shape

Subtyping expresses this
• “B is a subtype of A” means: “every object that satisfies the rules

for a B also satisfies the rules for an A”

Goal: code written using A's specification operates
correctly even if given a B
• Plus: clarify design, share tests, (sometimes) share code

3

A

B

Shape

Circle Square

CMSC330 Summer 2025

Subtyping

A type S is a subtype of T, written S <: T, when any term of type S

can safely be used in a context where a term of type T is expected.

S <: T means

• S is more informative than T.

• the values of type S are a subset of the values of type T.

4CMSC330 Summer 2025

The Subsumption Rule

5

G⊢ e:S S <: T

G ⊢ e:T

• This rule tells us that, if S <: T, then every element t of S is

also an element of T.

• For example, if we define the subtype relation so that
 G⊢{x:Int, y:Int} <: {x:Int}

 then we can use the subsumption rule to derive
 G⊢ {x=0,y=1} <: {x:Int}

 which is what we need to make our motivating example typecheck.

(T-Sub)

CMSC330 Summer 2025

Subtyping: A Preorder

6

• The subtype relation is formalized as a collection of inference
rules for deriving statements of the form S <: T, pronounced “S is

a subtype of T” (or “T is a supertype of S”).

• The subtype relation should always be a preorder, meaning that it

is reflexive and transitive.

S <: S (S-REFL)Reflexivity:

Transitivity:
S <: U U <: T

S <: T

(S-TRANS)

CMSC330 Summer 2025

Subtyping — Records: Width Subtyping

7

• Width Subtyping:

S-RCDWIDTH

• A longer record constitutes a more demanding—i.e., more

informative—specification, and so describes a smaller set of values.

• Examples:
• {x:Int, y:Int} <: {x:Int}

• {x:Int, y:Int, z:Bool} <: {x:Int}

CMSC330 Summer 2025

Quiz

{x:Int, y:Int} <: {y:Int}

8

A. True

B. False

CMSC330 Summer 2025

Quiz

{x:Int, y:Int} <: {y:Int}

9

A. True

B. False

CMSC330 Summer 2025

Subtyping — Records: Depth Subtyping

10

Depth Subtyping:

It is safe to allow the types of individual fields to vary, as long as the

types of each corresponding field in the two records are in the

subtype relation.

Example:

• {x:{a:Int, b:Int}, y:{m:Int}} <: {x:{a:Int},y:{}}

S-RCDDEPTH

CMSC330 Summer 2025

Quiz

{ x:{a:Int, b:Bool} }

11

A. {a:Int,b:Bool}

B. {x:{a:Int}}

C. {x:{a:Int}, y:{b:Bool}}

D. {x:{a:Int, b:Bool,c:Int}, y:{d:Int}}

Which is the subtype of

CMSC330 Summer 2025

Quiz

{x:{a:Int,b:Bool}}

12

A. {a:Int,b:Bool}

B. {x:{a:Int}}

C. {x:{a:Int}, y:{b:Bool}}

D. {x:{a:Int, b:Bool,c:Int}, y:{d:Int}}

Which is the subtype of

CMSC330 Summer 2025

Subtyping Derivations

13CMSC330 Summer 2025

Subtyping — Records: Permutation Subtyping

14

Permutation Subtyping: the order of fields in a record does not make
any difference to how we can safely use it

Example:

• {c:Unit,b:Bool,a:Int} <: {a:Int,b:Bool,c:Unit}

• {a:Nat,b:Bool,c:Unit} <: {c:Unit,b:Bool,a:Nat}

S-RCDPERM

CMSC330 Summer 2025

Quiz

15

A. S-RCDDEPTH

B. S-RCDWIDTH

C. S-RCDPERM

D. S-TRANS

Which rules will we need to build a derivation of the following?

{x:Int,y:Int,z:Int} <: {y:Int}

CMSC330 Summer 2025

Quiz

16

A. S-RCDDEPTH

B. S-RCDWIDTH

C. S-RCDPERM

D. S-TRANS

Which rules will we need to build a derivation of the following?

{x:Int, y:Int, z:Int} <: {y:Int}

CMSC330 Summer 2025

Subtyping — Functions

17

Functions can be passed as arguments to other functions, we must

also give a subtyping rule for function types

Notice that the sense of the subtype relation is reversed

(contravariant) for the argument types in the left-hand premise,

while it runs in the same direction (covariant) for the result types

as for the function types themselves.

S-ARROW

CMSC330 Summer 2025

Subtyping — Functions

Intuition

• Let’s say I have a Java function, f, which takes a Cat object and

returns an Animal. What are the subtypes of this function? Well, if

it takes a Cat then I can certainly replace this function with one

that takes an Animal. Likewise, if it returns an Animal then I can

certainly replace this function with one that returns a Cat (or

Dog). Therefore, I conclude that…

(Animal → Cat) <: (Cat → Animal)

(Animal → Dog) <: (Cat → Animal)

18CMSC330 Summer 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Subtyping
	Slide 3: What is subtyping?
	Slide 4: Subtyping
	Slide 5: The Subsumption Rule
	Slide 6: Subtyping: A Preorder
	Slide 7: Subtyping — Records: Width Subtyping
	Slide 8: Quiz
	Slide 9: Quiz
	Slide 10: Subtyping — Records: Depth Subtyping
	Slide 11: Quiz
	Slide 12: Quiz
	Slide 13: Subtyping Derivations
	Slide 14: Subtyping — Records: Permutation Subtyping
	Slide 15: Quiz
	Slide 16: Quiz
	Slide 17: Subtyping — Functions
	Slide 18: Subtyping — Functions

