
CMSC 330: Organization of Programming

Languages

Type Inference and Unification

CMSC330 Summer 2025 1

Type checking: use declared types to check types are

correct

Type inference:

• Infer the most general types that could have been declared,

and type checks the code without the type information

Type Checking vs Type Inference

let apply (f:('a->'b)) (x:'a):'b = f x

let apply f x = f x

CMSC330 Summer 2025 2

The Type Inference Algorithm

Input: A program without types

Output: A program with type for every expression, which

is annotated with its most general type

CMSC330 Summer 2025 3

Why do we want to infer types?

Reduces syntactic overhead of expressive types

• // C++ Declare a vector of vectors of integers

std::vector<std::vector<int>> matrix;

Guaranteed to produce most general type

Widely regarded as important language innovation

Illustrative example of a flow-insensitive static analysis

algorithm

CMSC330 Summer 2025 4

History

Original type inference algorithm
• Invented by Haskell Curry and Robert Feys for the simply typed

lambda calculus in 1958

In 1969, Hindley
• extended the algorithm to a richer language and proved it always

produced the most general type

In 1978, Milner
• independently developed equivalent algorithm, called algorithm W,

during his work designing ML

In 1982, Damas proved the algorithm was complete.
• Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,

Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,…

CMSC330 Summer 2025 5

Type Inference: Basic Idea

Example

What is the type of the expression?

• + has type: int → int → int

• 2 has type: int

• Since we are applying + to x we need x : int

• Therefore, fun x -> 2 + x has type int → int

fun x -> 2 + x

 -: int -> int = <fun>

CMSC330 Summer 2025 6

Type Inference: Basic Idea

Example

What is the type of the expression?

• 3 has type: int

• Since we are applying f to 3 we need f : int → a and the result is

of type a

• Therefore, fun f → f 3 has type (int → a) →a

fun f => f 3

 -:(int → a) → a = <fun>

CMSC330 Summer 2025 7

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3)

CMSC330 Summer 2025 8

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3)

CMSC330 Summer 2025 9

(int -> int) -> int

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f “hi”)

CMSC330 Summer 2025 10

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f “hi”)

CMSC330 Summer 2025 11

(string -> string) -> string

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3, f 4)

CMSC330 Summer 2025 12

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3, f 4)

CMSC330 Summer 2025 13

Type error!

Type Inference: Example

let square = fun z → z * z in

fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

CMSC330 Summer 2025 14

Type Inference: Example

let square = fun z → z * z in

fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

*: int → (int → int)

z : int

square : int → int

CMSC330 Summer 2025 15

Type Inference: Example

let square = fun z → z * z in

fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

* : int → (int → int) → z : int → square : int → int

f : ‘a → (‘b → bool), x: ‘a, y: ‘b

CMSC330 Summer 2025 16

Type Inference: Example

let square = fun z → z * z in

fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

* : int → (int → int) → z : int → square : int → int

f : ‘a → (‘b → bool), x: ‘a, y: ‘b

a: int

CMSC330 Summer 2025 17

Type Inference: Example

let square = fun z → z * z in

fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

* : int → (int → int) → z : int → square : int → int

f : ‘a → ‘b → bool, x: ‘a, y: ‘b

a: int

b: bool, y is the second argument of f. y and (f x y) have

the same type. (f x y): bool

CMSC330 Summer 2025 18

Type Inference: Example

let square = fun z → z * z in

fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

* : int → (int → int) → z : int → square : int → int

f : ‘a → ‘b → bool, x: ‘a, y: ‘b

a: int

b: bool

(int → bool → bool) →int →bool → bool

CMSC330 Summer 2025 19

Unification

Unification is an algorithmic process of solving equations

between symbolic expressions

Unifies two terms

Used for pattern matching and type inference

Simple examples

• int * x and y * (bool * bool) are unifiable

➢ y = int

➢ x = (bool * bool)

• int * int and int * bool are not unifiable

CMSC330 Summer 2025 20

Type Inference Algorithm

Parse program to build parse tree

Assign type variables to nodes in tree

Generate constraints:

• From environment: literals (2), built-in operators (+), known

functions (tail)

• From form of parse tree: e.g., application and abstraction nodes

Solve constraints using unification

Determine types of top-level declarations

CMSC330 Summer 2025 21

Type Inference: Example

fun x -> 2 + x

CMSC330 Summer 2025 22

int -> int -> int

Type: Guess -> type of

2 + x:Guess

int -> int

Type Inference: Function Application

CMSC330 Summer 2025 23

(fun x-> fun y -> x=y) 1;;

App (e1, e2) ->

 let t1 = infer e1 env in

 let t2 = infer e2 env in

 let g = fresh_guess () in

 unify t1 (TArrow (t2, g));

g

(‘a->(‘a->Bool)

int

(‘a->(‘a->Bool) ==
(int -> Guess)

‘a=int
Guess= (‘a->Bool) =(int ->
bool)

Inferring Polymorphic Types

Unconstrained type variables become polymorphic types

Fun x-> x: Guess -> Guess

‘a -> ‘a

:: :
CMSC330 Summer 2025 24

Recognizing Type Errors

TypeError "unify failure: TInt <> TBool".

let x = 10 in x=true

CMSC330 Summer 2025 25

Let Polymorphism

let id x = x in (id 1, id true)

CMSC330 Summer 2025 26

• Let polymorphism is formalized in the Hindley–Milner type

system:

• Generalization: When a value is bound to a name using let,

the type variables that don’t appear in the environment are

generalized to be universally quantified.

• Instantiation: Each use of that variable can have its

generalized type instantiated to a concrete type.

Most General Type

Type inference produces the most general type

Functions may have many less general types

Less general types are all instances of most general
type, also called the principal type

val map : (t_1 -> int, [t_1]) -> [int]

val map : (bool -> t_2, [bool]) -> [t_2]

val map : (char -> int, [cChar]) -> [int]

let rec map f lst =

 match lst with

 [] -> []

 | hd :: tl -> f hd :: (map f tl)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

CMSC330 Summer 2025 27

Complexity of Type Inference Algorithm

When Hindley/Milner type inference algorithm was

developed, its complexity was unknown

In 1989, Kanellakis, Mairson, and Mitchell proved that the

problem was exponential-time complete

Usually linear in practice though…

• Running time is exponential in the depth of polymorphic

declarations

CMSC330 Summer 2025 28

Type Inference: Key Points

Type inference computes the types of expressions
• Does not require type declarations for variables

• Finds the most general type by solving constraints

• Leads to polymorphism

Sometimes better error detection than type checking
• Type may indicate a programming error even if no type error

Some costs

• More difficult to identify program line that causes error

• Natural implementation requires uniform representation sizes

Idea can be applied to other program properties

• Discover properties of program using same kind of analysis

CMSC330 Summer 2025 29

Varieties of Polymorphism

Parametric polymorphism A single piece of code is typed
generically
• Imperative or first-class polymorphism

• ML-style or let-polymorphism

Ad-hoc polymorphism The same expression exhibit different
behaviors when viewed in different types
• Overloading

• Multi-method dispatch

• intentional polymorphism

Subtype polymorphism A single term may have many types
using the rule of subsumption allowing to selectively forget
information

CMSC330 Summer 2025 34

Summary

Types are important in modern languages

• Program organization and documentation

• Prevent program errors

• Provide important information to compiler

Type inference

• Determine best type for an expression, based on known

information about symbols in the expression

Polymorphism

• Single algorithm (function) can have many types

CMSC330 Summer 2025 35

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Type Checking vs Type Inference
	Slide 3: The Type Inference Algorithm
	Slide 4: Why do we want to infer types?
	Slide 5: History
	Slide 6: Type Inference: Basic Idea
	Slide 7: Type Inference: Basic Idea
	Slide 8: Type Inference: Basic Idea
	Slide 9: Type Inference: Basic Idea
	Slide 10: Type Inference: Basic Idea
	Slide 11: Type Inference: Basic Idea
	Slide 12: Type Inference: Basic Idea
	Slide 13: Type Inference: Basic Idea
	Slide 14: Type Inference: Example
	Slide 15: Type Inference: Example
	Slide 16: Type Inference: Example
	Slide 17: Type Inference: Example
	Slide 18: Type Inference: Example
	Slide 19: Type Inference: Example
	Slide 20: Unification
	Slide 21: Type Inference Algorithm
	Slide 22: Type Inference: Example
	Slide 23: Type Inference: Function Application
	Slide 24: Inferring Polymorphic Types
	Slide 25: Recognizing Type Errors
	Slide 26: Let Polymorphism
	Slide 27: Most General Type
	Slide 28: Complexity of Type Inference Algorithm
	Slide 29: Type Inference: Key Points
	Slide 34: Varieties of Polymorphism
	Slide 35: Summary

