CMSC 330: Organization of Programming
Languages

Type Inference and Unification

CMSC330 Summer 2025

Type Checking vs Type Inference

» Type checking: use declared types to check types are
correct

let apply (f:('a->'b)) (x:'a):'b = f x

» Type inference:

let apply £ x = £ x

* Infer the most general types that could have been declared,
and type checks the code without the type information

CMSC330 Summer 2025

The Type Inference Algorithm

» Input: A program without types

» Output: A program with type for every expression, which
Is annotated with its most general type

CMSC330 Summer 2025

Why do we want to infer types?

» Reduces syntactic overhead of expressive types

/| C++ Declare a vector of vectors of integers
std::vector<std::vector<int>> matrix;

» Guaranteed to produce most general type
» Widely regarded as important language innovation

» lllustrative example of a flow-insensitive static analysis
algorithm

CMSC330 Summer 2025

History

Original type inference algorithm

* Invented by Haskell Curry and Robert Feys for the simply typed
lambda calculus in 1958

» In 1969, Hindley

* extended the algorithm to a richer language and proved it always
produced the most general type

» In 1978, Milner

* independently developed equivalent algorithm, called algorithm W,
during his work designing ML

» In 1982, Damas proved the algorithm was complete.

* Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,
Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,...

v

CMSC330 Summer 2025

Type Inference: Basic Idea

» Example

fun x > 2 + x
-: 1nt -> int = <fun>

» What is the type of the expression?
*+ hastype:int —int — int
* 2 has type: int
 Since we are applying + to x we need x : int
* Therefore, fun x -> 2 + x hastype int — int

CMSC330 Summer 2025

Type Inference: Basic Idea

» Example
fun £ => £ 3
-:(int > a) > a = <fun>

» What is the type of the expression?
* 3 has type: int

* Since we are applying fto 3 we need f : int > a and the result is
of type a

* Therefore, fun £ —» £ 3 hastype (int— a) —a

CMSC330 Summer 2025

Type Inference: Basic Idea

» Example

fun £ > £ (£ 3)

» What is the type of the expression?

CMSC330 Summer 2025

Type Inference: Basic Idea

» Example

fun £ > £ (£ 3)

» What is the type of the expression?

(int -> int) -> int

CMSC330 Summer 2025

Type Inference: Basic Idea

» Example

fun £ > £ (£ “hi”)

» What is the type of the expression?

CMSC330 Summer 2025

10

Type Inference: Basic Idea

» Example

fun £ > £ (£ “hi”)

» What is the type of the expression?

(string -> string) -> string

CMSC330 Summer 2025

11

Type Inference: Basic Idea

» Example

fun £ > £ (£ 3, £ 4)

» What is the type of the expression?

CMSC330 Summer 2025

12

Type Inference: Basic Idea

» Example

fun £ > £ (£ 3, £ 4)

» What is the type of the expression?

Type error!

CMSC330 Summer 2025

13

Type Inference: Example

let square = fun z - z * z in
fun £ > fun x > fun y >
if (f x y) then (f (square x) vy)
else (f x (£ x vy))

CMSC330 Summer 2025

14

Type Inference: Example

let square = fun z —» z * z|in
fun £ > fun x > fun y >

if (f x y) then (f (square x) vy)
else (f x (f x y))

*: int > (int — int)

z : int
square : int — int

CMSC330 Summer 2025

Type Inference: Example

let square = fun z - z * z in
fun £ > fun x > fun y >

if |(f x y)| then (f (square x) y)
else (f x (f x y))

* : int > (int — int) 2 z : int =2 square

f: ‘a—> (‘b > bool), x: ‘a, y: ‘b

CMSC330 Summer 2025

: int > int

16

Type Inference: Example

let square = fun z - z * z in
fun £f > fun x > fun v >

if (f x y) then (f ksquare x) y)
else (f x (f x y))

*

: int > (int —> int) =2 z : int =2

square

: int > int

f: ‘a—> (‘b > bool), g: ‘aj y: ‘b

a: int

CMSC330 Summer 2025

17

Type Inference: Example

let square = fun z - z * z in
fun £ > fun x > fun y >
if |(f x y) | then (f (square x) E
else (f x Kf x y)l)

* : int > (int — int) =2 z : int =2 square : int — int

f : ‘a—> ‘b -5 bool, x: ‘a, y: ‘b

a: int

b: bool, y is the second argument of f. y and (f x y) have
the same type. (f x y): bool

CMSC330 Summer 2025

Type Inference: Example

let square = fun z - z * z in
fun £ > fun x > fun y >
if (f x y) then (f (square x) vy)
else (f x (£ x vy))

* : int > (int — int) =2 z : int =2 square : int — int

£f : ‘a—> ‘b -5 bool, x: ‘a, y: ‘b
a: int
b: bool

(int > bool — bool) —»>int —>bool — bool

CMSC330 Summer 2025 19

Unification

» Unification is an algorithmic process of solving equations
between symbolic expressions

» Unifies two terms
» Used for pattern matching and type inference

Simple examples

* int*x and y * (bool * bool) are unifiable
> y=int
» X = (bool * bool)

¥

 int *int and int * bool are not unifiable

CMSC330 Summer 2025 20

Type Inference Algorithm

» Parse program to build parse tree
Assign type variables to nodes in tree

» Generate constraints:

* From environment: literals (2), built-in operators (+), known
functions (tail)

* From form of parse tree: e.g., application and abstraction nodes
» Solve constraints using unification

» Determine types of top-level declarations

¥

CMSC330 Summer 2025

21

Type Inference: Example

fun x -> 2 + x

[\

int -> int -> int

Type: Guess -> type of
2 + x:Guess

int -> int

CMSC330 Summer 2025

22

Type Inference: Function Application

(fun x-> fun y -> x=y) 1;;

App (el, e2) ->

let t1 = infer el env in —

let t2 = infer e2 env in —
let g = fresh guess () in

unify tl (TArrow (t2, g));, —

‘a=int
Guess= (‘a->Bool) =(int ->
bool)

CMSC330 Summer 2025

(‘a->(‘a->Bool)

int

(‘a->(‘a->Bool) ==
(int -> Guess)

23

Inferring Polymorphic Types

Unconstrained type variables become polymorphic types

Fun x-> x: Guess -> Guess

‘a -> ‘a

CMSC330 Summer 2025

24

Recognizing Type Errors

let x = 10 in x=true

TypeError "unify failure: TInt <> TBool".

CMSC330 Summer 2025

25

Let Polymorphism

* Let polymorphism is formalized in the Hindley—Milner type
system:

« Generalization: When a value is bound to a name using let,
the type variables that don’t appear in the environment are
generalized to be universally quantified.

« Instantiation: Each use of that variable can have its
generalized type instantiated to a concrete type.

let id x = x in (id 1, id true)

CMSC330 Summer 2025 26

Most General Type

» Type inference produces the most general type

let rec map £ 1st =
match 1lst with

[1 -> [1
| hd :: t1 -> £ hd :: (map £ tl)
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

» Functions may have many less general types

val map : (t_1 -> int, [t 1]) -> [int]
val map : (bool -> t 2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]

» Less general types are all instances of most general
type, also called the principal type

CMSC330 Summer 2025

27

Complexity of Type Inference Algorithm

» When Hindley/Milner type inference algorithm was
developed, its complexity was unknown

» In 1989, Kanellakis, Mairson, and Mitchell proved that the
problem was exponential-time complete

» Usually linear in practice though...

* Running time is exponential in the depth of polymorphic
declarations

CMSC330 Summer 2025 28

Type Inference: Key Points

» Type inference computes the types of expressions
* Does not require type declarations for variables

* Finds the most general type by solving constraints
* Leads to polymorphism

» Sometimes better error detection than type checking

* Type may indicate a programming error even if no type error
» Some costs

* More difficult to identify program line that causes error

* Natural implementation requires uniform representation sizes

» ldea can be applied to other program properties
* Discover properties of program using same kind of analysis

CMSC330 Summer 2025

29

Varieties of Polymorphism

» Parametric polymorphism A single piece of code is typed
generically

* Imperative or first-class polymorphism
* ML-style or let-polymorphism
» Ad-hoc polymorphism The same expression exhibit different
behaviors when viewed in different types
* Overloading
* Multi-method dispatch
* intentional polymorphism
» Subtype polymorphism A single term may have many types

using the rule of subsumption allowing to selectively forget
information

CMSC330 Summer 2025

34

Summary

» Types are important in modern languages
* Program organization and documentation
* Prevent program errors
* Provide important information to compiler

» Type inference

* Determine best type for an expression, based on known
information about symbols in the expression

» Polymorphism
* Single algorithm (function) can have many types

CMSC330 Summer 2025

35

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Type Checking vs Type Inference
	Slide 3: The Type Inference Algorithm
	Slide 4: Why do we want to infer types?
	Slide 5: History
	Slide 6: Type Inference: Basic Idea
	Slide 7: Type Inference: Basic Idea
	Slide 8: Type Inference: Basic Idea
	Slide 9: Type Inference: Basic Idea
	Slide 10: Type Inference: Basic Idea
	Slide 11: Type Inference: Basic Idea
	Slide 12: Type Inference: Basic Idea
	Slide 13: Type Inference: Basic Idea
	Slide 14: Type Inference: Example
	Slide 15: Type Inference: Example
	Slide 16: Type Inference: Example
	Slide 17: Type Inference: Example
	Slide 18: Type Inference: Example
	Slide 19: Type Inference: Example
	Slide 20: Unification
	Slide 21: Type Inference Algorithm
	Slide 22: Type Inference: Example
	Slide 23: Type Inference: Function Application
	Slide 24: Inferring Polymorphic Types
	Slide 25: Recognizing Type Errors
	Slide 26: Let Polymorphism
	Slide 27: Most General Type
	Slide 28: Complexity of Type Inference Algorithm
	Slide 29: Type Inference: Key Points
	Slide 34: Varieties of Polymorphism
	Slide 35: Summary

