CMSC 330: Organization of Programming Languages

Lambda Calculus

Turing Machine

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 - (born in Washingon DC!)
- Formal system

- Designed to investigate functions & recursion
- For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
 - Very small but still Turing complete

- But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, ...

Lambda Calculus Syntax

- A lambda calculus expression is defined as
 - e ::= x variable | λx.e abstraction (fun def) | e e application (fun call)

λx.e is like (fun x -> e) in OCaml

Two Conventions

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - λx . $\lambda y.x y$ is same as $\lambda x.(\lambda y.(x y))$

- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml

Quiz

This term is equivalent to which of the following?

λx.x a b

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx. (x (a b))
D. (λx. ((x a) b))

Quiz

This term is equivalent to which of the following?

λx.x a b

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx. (x (a b))
D. (λx. ((x a) b))

Lambda Calculus Semantics

- Evaluation: (λx.e1) e2
 - Evaluate e1 with x replaced by e2

Beta-reduction (substitution)

 $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$

Beta Reduction Example

(λx.λz.x z) y

- Equivalent OCaml code
 - (fun x -> (fun z -> (x z))) y \rightarrow fun z -> (y z)

Eager Evaluation

- Notice that we evaluated the argument e2 before performing the beta-reduction
 - This is the first version we saw
- ► Hence, *eager*

(λx.e1) ↓ (λx.e1)

e1 ↓ (λx.e3)	e2 ↓ e4	e3[x:=e4] ↓ e5
e1 e2 ↓ e5		

Lazy Evaluation

- Alternatively, we could have performed beta reduction *without* evaluating e2; use it as is
 - Hence, *lazy*

(λx.e1) ↓ (λx.e1)

e1 ↓ (λx.e3) e3[x:=e2] ↓ e4 e1 e2 ↓ e4

Beta Reductions (CBV)

- ► $(\lambda X.X) Z \rightarrow Z$
- $(\lambda x.y) z \rightarrow y$
- $(\lambda x.x y) z \rightarrow z y$
 - A function that applies its argument to y

Beta Reductions (CBV)

- $(\lambda x.x y) (\lambda z.z) \rightarrow (\lambda z.z) y \rightarrow y$
- $(\lambda x.\lambda y.x y) z \rightarrow \lambda y.z y$
 - A curried function of two arguments
 - Applies its first argument to its second
- ► $(\lambda x.\lambda y.x y) (\lambda z.zz) x \rightarrow (\lambda y.(\lambda z.zz)y)x \rightarrow (\lambda z.zz)x \rightarrow x x$

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

CBN Reduction

- ► CBV
 - $(\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda z.z) x \rightarrow x$
- CBN
 - $(\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda y.y) x \rightarrow x$

Beta Reductions (CBN)

 $(\lambda x.x (\lambda y.y)) (u r) \rightarrow$

 $(\lambda x.(\lambda w. x w)) (y z) \rightarrow$

Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - $(\lambda x.x (\lambda x.x)) z \rightarrow ?$
 - The rightmost "x" refers to the second binding
 - This is a function that
 - > Takes its argument and applies it to the identity function
- This function is "the same" as (λx.x (λy.y))
 - Renaming bound variables consistently preserves meaning
 This is called alpha-renaming or alpha conversion
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

Getting Serious about Substitution

- We have been thinking informally about substitution, but the details matter
- So, let's carefully formalize it, to help us see where it can get tricky!

Substitution: $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$

1. ($\lambda x.x$) e2 $\rightarrow x[x:=e2] = e2$ // Replace x by e

Substitution: $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$

2. $(\lambda x.y) e2 \rightarrow y[x:=e2] = y$

y is different than x, so no effect

Substitution: $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$

3. $(\lambda x. e0 e1) e2 \rightarrow (e0 e1)[x:=e2] \rightarrow (e0[x:=e2]) (e1[x:=e2])$

Substitute both parts of application

Substitution: $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$

4. $(\lambda x. (\lambda x.e')) e2 \rightarrow (\lambda x.e')[x:=e] \rightarrow \lambda x.e'$

Example: $(\lambda x. (\lambda x. x)) a \rightarrow (\lambda x. x)$

Substitution: $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$ 5. $(\lambda x. (\lambda y.e')) e2 \rightarrow (\lambda y.e')[x:=e] = ?$

 $(\lambda y.(e'[x:=e2]))$ If $y \notin (fvs e2)$ $(\lambda y. x y) z = (\lambda y. z y)$

We want to avoid capturing (free) occurrences of y in e. Change y to a fresh variable w that does not appear in e' or e

($\lambda y.(e'[x:=e2])$) alpha-convert e' if $y \in (fvs e2)$ ($\lambda y. x y$) $y = (\lambda z. x z) y = \lambda z. y z$

Formally:

 $(\lambda y.e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e]) (w \text{ is fresh})$

Free Variables

Example:

$$FV(x) = \{x\}$$

 $FV(x y) = \{x, y\}$
 $FV(\lambda x. x) = FV(x) - \{x\} = \{ \}$
 $FV(\lambda x. x y) = FV(x y) - \{x\} = \{y\}$
 $FV((\lambda x. x y) x) = FV(\lambda x. x y) \cup FV(x) = \{x, y\}$

Lambda Calc, Impl in OCaml

► e ::= x λx.e e e	type id = string	
	type exp = Var of id	
	Lam of id * exp	
	App of exp * exp	

y Var "y" λx.x Lam ("x", Var "x") λx.λy.x y Lam ("x", (Lam("y", App (Var "x", Var "y")))) (λx.λy.x y) λx.x x (Lam("x", Lam("y", App(Var"x", Var"y"))), Lam ("x", App (Var "x", Var "x")))

OCaml Implementation: Substitution

(* substitute e for y in m-- M[Y:=e] *) let rec subst m y e = match m with Var x \rightarrow if y = x then e (* substitute *) (* don't subst *) else m | App (e1,e2) -> App (subst e1 y e, subst e2 y e) | Lam $(x,e0) \rightarrow \dots$

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- M[Y:=0] *) let rec subst m y e = match m with ... | Lam $(x,e0) \rightarrow$ Shadowing blocks if y = x then m substitution else if not (List.mem x (fvs e)) then Lam (x, subst e0 y e) Safe: no capture possible **else** Might capture; need to α-convert let z = newvar() in (* fresh *) let $e0' = subst e0 \times (Var z)$ in Lam (z, subst e0' y e)

CBV, L-to-R Reduction with Partial Eval

The Power of Lambdas

- To give a sense of how one can encode various constructs into LC we'll be looking at some concrete examples:
 - Let bindings
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 - Looping

Let bindings

- Local variable declarations are like defining a function and applying it immediately (once):
 - let x = e1 in e2 = (λx.e2) e1
- Example
 - let $x = (\lambda y.y)$ in $x x = (\lambda x.x x) (\lambda y.y)$

where

 $(\lambda x.x x) (\lambda y.y) \rightarrow (\lambda x.x x) (\lambda y.y) \rightarrow (\lambda y.y) (\lambda y.y) \rightarrow (\lambda y.y)$
Booleans

- Church's encoding of mathematical logic
 - true = $\lambda x.\lambda y.x$
 - false = $\lambda x.\lambda y.y$
 - if a then b else c
 - Defined to be the expression: a b c
- Examples
 - if true then b else c = $(\lambda x . \lambda y . x) b c \rightarrow (\lambda y . b) c \rightarrow b$
 - if false then b else c = $(\lambda x.\lambda y.y)$ b c $\rightarrow (\lambda y.y)$ c \rightarrow c

Booleans (cont.)

- Other Boolean operations
 - not = λx.x false true
 - not x = x false true = if x then false else true
 - > not true \rightarrow ($\lambda x.x$ false true) true \rightarrow (true false true) \rightarrow false
 - and = $\lambda x \cdot \lambda y \cdot x$ y false
 - > and x y = if x then y else false
 - or = $\lambda x.\lambda y.x$ true y

> or x y = if x then true else y

- Given these operations
 - Can build up a logical inference system

Pairs

Encoding of a pair a, b

- (a,b) = λx .if x then a else b
- fst = λ f.f true
- snd = λ f.f false
- Examples
 - fst (a,b) = (λf.f true) (λx.if x then a else b) → (λx.if x then a else b) true → if true then a else b → a
 - snd (a,b) = (λf.f false) (λx.if x then a else b) → (λx.if x then a else b) false → if false then a else b → b

Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f \cdot \lambda y \cdot y$
 - $1 = \lambda f \cdot \lambda y \cdot f y$
 - $2 = \lambda f \cdot \lambda y \cdot f (f y)$
 - $3 = \lambda f \cdot \lambda y \cdot f (f (f y))$

i.e., $n = \lambda f \cdot \lambda y \cdot \langle apply f n times to y \rangle$

• Formally: $n+1 = \lambda f \cdot \lambda y \cdot f (n f y)$

*(Alonzo Church, of course)

Operations On Church Numerals

- Successor
 - succ = $\lambda z \cdot \lambda f \cdot \lambda y \cdot f(z f y)$

0 = λf.λy.y
1 = λf.λy.f y

- Example
 - succ 0 =

 $(\lambda z.\lambda f.\lambda y.f (z f y)) (\lambda f.\lambda y.y) \rightarrow$ $\lambda f.\lambda y.f ((\lambda f.\lambda y.y) f y) \rightarrow$ $\lambda f.\lambda y.f ((\lambda y.y) y) \rightarrow$ $\lambda f.\lambda y.f y$

Since $(\lambda x.y) z \rightarrow y$

= 1

Operations On Church Numerals (cont.)

IsZero?

- iszero = λz.z (λy.false) true
 This is equivalent to λz.((z (λy.false)) true)
- Example
 - iszero 0 =

•
$$0 = \lambda f \cdot \lambda y \cdot y$$

 $\begin{array}{ll} (\lambda z.z \ (\lambda y.false) \ true) \ (\lambda f.\lambda y.y) \rightarrow \\ (\lambda f.\lambda y.y) \ (\lambda y.false) \ true \rightarrow \\ (\lambda y.y) \ true \rightarrow \\ \end{array} \\ \begin{array}{ll} \text{Since} \ (\lambda x.y) \ z \rightarrow y \\ \text{true} \end{array}$

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations
- Addition
 - M + N = λf.λy.M f (N f y)
 Equivalently: + = λM.λN.λf.λy.M f (N f y)
 > In prefix notation (+ M N)
- Multiplication
 - $M * N = \lambda f.M (N f)$

Equivalently: * = $\lambda M.\lambda N.\lambda f.\lambda y.M$ (N f) y

In prefix notation (* M N)

Arithmetic (cont.)

- Prove 1+1 = 2
 - $1+1 = \lambda x \cdot \lambda y \cdot (1 x) (1 x y) =$
 - $\lambda x.\lambda y.((\lambda f.\lambda y.f y) x) (1 x y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.x y) (1 \times y) \rightarrow$
 - $\lambda x.\lambda y.x (1 \times y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda f.\lambda y.f y) \times y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda y.x y) y) \rightarrow$
 - λx.λy.x (x y) = 2
- With these definitions
 - Can build a theory of arithmetic

• $1 = \lambda f \cdot \lambda y \cdot f y$

• $2 = \lambda f \cdot \lambda y \cdot f (f y)$

Arithmetic Using Church Numerals

- What about subtraction?
 - Easy once you have 'predecessor', but...
 - Predecessor is very difficult!
- Story time:
 - One of Church's students, Kleene (of Kleene-star fame) was struggling to think of how to encode 'predecessor', until it came to him during a trip to the dentists office.
 - Take from this what you will
- Wikipedia has a great derivation of 'predecessor'.

Looping+Recursion

- So far we have avoided self-reference, so how does recursion work?
- We can construct a lambda term that 'replicates' itself:
 - Define $D = \lambda x.x x$, then
 - D D = $(\lambda x.x x) (\lambda x.x x) \rightarrow (\lambda x.x x) (\lambda x.x x) = D D$
 - D D is an infinite loop
- We want to generalize this, so that we can make use of looping

The Fixpoint Combinator

- $\mathbf{Y} = \lambda f(\lambda x.f(x x)) (\lambda x.f(x x))$
- Then
 - **Y** F =
 - $(\lambda f.(\lambda x.f(x x)) (\lambda x.f(x x))) F \rightarrow$ $(\lambda x.F(x x)) (\lambda x.F(x x)) \rightarrow$ $F ((\lambda x.F(x x)) (\lambda x.F(x x)))$ = F (Y F)

- Y F is a *fixed point* (aka fixpoint) of F
- ► Thus **Y F** = **F** (**Y F**) = **F** (**F** (**Y F**)) = ...
 - We can use Y to achieve recursion for F

Example

fact = $\lambda f.\lambda n.if n = 0$ then 1 else n * (f (n-1))

- The second argument to fact is the integer
- The first argument is the function to call in the body
 - > We'll use Y to make this recursively call fact
- (Y fact) 1 = (fact (Y fact)) 1
 - \rightarrow if 1 = 0 then 1 else 1 * ((Y fact) 0)
 - \rightarrow 1 * ((Y fact) 0)
 - = 1 * (fact (Y fact) 0)
 - \rightarrow 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

 \rightarrow 1 * 1 \rightarrow 1

Factorial 4=?

```
(YG)4
G (YG) 4
(\lambda r.\lambda n.(if n = 0 then 1 else n \times (r (n-1)))) (Y G) 4
(\lambda n.(if n = 0 then 1 else n \times ((Y G) (n-1)))) 4
if 4 = 0 then 1 else 4 \times ((Y G) (4-1))
4 \times (G (Y G) (4-1))
4 × ((\lambdan.(1, if n = 0; else n × ((Y G) (n-1)))) (4-1))
4 \times (1, \text{ if } 3 = 0; \text{ else } 3 \times ((Y G) (3-1)))
4 \times (3 \times (G (Y G) (3-1)))
4 \times (3 \times ((\lambda n.(1, if n = 0; else n \times ((Y G) (n-1)))) (3-1)))
4 \times (3 \times (1, \text{ if } 2 = 0; \text{ else } 2 \times ((Y G) (2-1))))
4 \times (3 \times (2 \times (G (Y G) (2-1))))
4 \times (3 \times (2 \times ((\lambda n.(1, if n = 0; else n \times ((Y G) (n-1)))) (2-1))))
4 \times (3 \times (2 \times (1, if 1 = 0; else 1 \times ((Y G) (1-1)))))
4 \times (3 \times (2 \times (1 \times (G (Y G) (1-1)))))
4 \times (3 \times (2 \times (1 \times ((\lambda n.(1, if n = 0; else n \times ((Y G) (n-1)))) (1-1)))))
4 \times (3 \times (2 \times (1 \times (1, if 0 = 0; else 0 \times ((Y G) (0-1))))))
4 \times (3 \times (2 \times (1 \times (1))))
24
```

Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in "real" language
 - > Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 \rightarrow thousands of function calls)
 - Pretty large (10000 + 1 \rightarrow hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
 - false = $\lambda x.\lambda y.y$
 - $0 = \lambda x . \lambda y . y$
- Since everything is encoded as a function...
 - We can easily misuse terms...
 - \succ false 0 $\rightarrow \lambda y.y$
 - ➢ if 0 then ...

... because everything evaluates to some function

- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words

Simply-Typed Lambda Calculus (STLC)

► e ::= n | x | λx:t.e | e e

- Added integers **n** as primitives
 - > Need at least two distinct types (integer & function)...
 - …to have type errors
- Functions now include the type **t** of their argument

► t ::= int | t \rightarrow t

- int is the type of integers
- $t1 \rightarrow t2$ is the type of a function
 - > That takes arguments of type t1 and returns result of type t2

Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
 - Cannot type check Y in STLC
 - > Or in OCaml, for that matter, at least not as written earlier.
- Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
 - A normal form is one that cannot be reduced further
 > A value is a kind of normal form
 - Strong normalization means STLC terms always terminate
 - Proof is not by straightforward induction: Applications "increase" term size

Summary

- Lambda calculus is a core model of computation
 - We can encode familiar language constructs using only functions
 - These encodings are enlightening make you a better (functional) programmer
- Useful for understanding how languages work
 - Ideas of types, evaluation order, termination, proof systems, etc. can be developed in lambda calculus,
 - > then scaled to full languages