CMSC 330: Organization of
Programming Languages

Lambda Calculus

CMSC330 Summer 2025

Turing Machine

Irfirite Tape

\1 ol olol1]1]1]0 .o
?F':-BH'-I FdTite Head
Control Unit

| Stafe: v |

Lambda Calculus (A-calculus)

» Proposed in 1930s by

e Alonzo Church
(born in Washingon DC!)

» Formal system
e Designed to investigate functions & recursion
e For exploration of foundations of mathematics
» Now used as
e Tool for investigating computability

e Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

» Itis a “core” language
e Very small but still Turing complete

» But with it can explore general ideas

e |anguage features, semantics, proof systems,
algorithms, ...

Lambda Calculus Syntax

» A lambda calculus expression is defined as

e =X variable
| Ax.e abstraction (fun def)
| ee application (fun call)

e Ax.eislike (fun x -> e) In OCaml

Two Conventions

» Scope of A extends as far right as possible
e Subject to scope delimited by parentheses
e AX. Ay.X Yy is same as AX.(Ay.(X y))

» Function application is left-associative
e Xyzis(Xy)z
e Same rule as OCaml

Quiz

This term is equivalent to which of the
following?

AX. X a b

A. (Ax.x) (a Db)
B. (((Ax.x) a) b)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

Quiz

This term is equivalent to which of the
following?

AX. X a b

A. (Ax.x) (a Db)
B. (((Ax.x) a) b)
C. Ax. (x (a b))
D. (Ax. ((x a) b))

Lambda Calculus Semantics

» Evaluation: (Ax.e1) e2
e Evaluate e1 with x replaced by e2

» Beta-reduction (substitution)

(Ax.e1) e2 — el[x:=e2]

Beta Reduction Example

» (AX.AzX 2)Yy

» Equivalent OCaml code
e (funx->(funz->(x2z))y — funz->(yz)

10

Eager Evaluation

» Notice that we evaluated the argument €2 before
performing the beta-reduction

» This is the first version we saw
» Hence, eager

(Ax.e1) U (Ax.el)

el U (Ax.e3) e2led e3[x=ed]led
ele2led

11

Lazy Evaluation

» Alternatively, we could have performed beta
reduction without evaluating €2; use it as is

. Hence, lazy

(Ax.e1) U (Ax.el)

el U (Ax.e3) ed[x:=e2] U e4
ele2l ed

12

Beta Reductions (CBV)

» (AX.X)Zz — Z
» (AX.y)z— Y

» (AXXY)Z— zy

e A function that applies its argument to y

13

Beta Reductions (CBV)

» (AXXYy)(Az.2) > (A\z.2)y >y

> (AXAYXY)Z— Ayzy
e A curried function of two arguments
e Applies its first argument to its second

> (MCAYXY) (AZ.2Z) X = (\y (Az.z2)y)x — (AZ.ZZ)X —X X

14

Quiz #3

(Ax.y) z can be beta-reduced to

Ay

B.y z

C.z

D. cannot be reduced

15

Quiz #3

(Ax.y) z can be beta-reduced to

A.y

B.y z

C.z

D. cannot be reduced

16

Quiz #4

Which of the following reduces to Az. z?

)
)

c) (AY.y)(AX. Az.z)w
) (Ay. AX. z) z (Az. 2)

17

Quiz #4

Which of the following reduces to Az. z?

a) (Ay.Az.x)z

b) (A\z.AX.2)y

c) (Ay.y) (Ax.Az.z) w
d) (Ay. AX.z)z (Az. 2)

18

CBN Reduction

» CBV
e (Az.z) ((Ay.y) X) — (Az.z) X — X

» CBN
® (Az.z) ((Ay.y) X) — (Ay.y) X — X

19

Beta Reductions (CBN)

(AX.X (AYy.y)) (ur) —

(AX.(AW. X wW)) (Y z) —

20

Static Scoping & Alpha Conversion

» Lambda calculus uses static scoping

» Consider the following
o (AXXX(AX.X))z—?
» The rightmost “X” refers to the second binding

e This is a function that
» Takes its argument and applies it to the identity function

» This function is “the same” as (Ax.x (Ay.y))

e Renaming bound variables consistently preserves meaning
» This is called alpha-renaming or alpha conversion

e EX.AXX=Ay.y =Az.z AYy.AXYy =Az.AX.z

21

Quiz #5

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. XVy)y

a)Ay.yy
b)Az.y z
C)(AX.Az.x2)y
d) (AX. Ay. Xy) z

22

Quiz #5

Which of the following expressions is alpha
equivalent to (alpha-converts from)

(AX. Ay. Xy)y

a)Ay.yy
b)Az.y z
c) (AX.Az.x2z)y
d) (AX. Ay. Xy) z

23

Getting Serious about Substitution

» We have been thinking informally about
substitution, but the details matter

» S0, let’s carefully formalize it, to help us see
where it can get tricky!

24

Defining Substitution

Substitution: (Ax.e1) e2 — e1[x:=e2]

1. (AX.X) e2 — x[x:=e2] = e2 /| Replace x by e

25

Defining Substitution

Substitution: (Ax.e1) e2 — e1[x:=e2]
2. (Ax.y)e2 — y[x:=e2] =y

y is different than x, so no effect

26

Defining Substitution

Substitution: (Ax.e1) e2 — e1[x:=e2]

3. (Ax.e0 el1)e2 — (e0 el)[x:=e2] —
(e0[x:=e2]) (e1[x:=e2])

Substitute both parts of application

27

Defining Substitution

Substitution: (Ax.e1) e2 — e1[x:=e2]
4. (Ax. (Ax.€’)) e2 — (Ax.€’)[x:=e] — Ax.€’

Example:
(AX. (AX.X)) @ — (AX.X)

28

Defining Substitution

Substitution: (Ax.e1) e2 — e1[x:=e2]
9. (AX. (Ay.€’)) e2 — (Ay.e)[x:=e] = ?

(Ay.(e'[x:=e2])) Ify ¢ (fvs e2)
(Ay.xy)z=(Ay. zy)

We want to avoid capturing (free) occurrences of y in e. Change y to a
fresh variable w that does not appearin e’ or e

(Ay.(e’[x:=e2])) alpha-converte’ify € (fvs e2)
(AY.XYy)y=(Az.Xxz)y=Az.y z
» Formally:

(Ay.€’)[x:=e] = Aw.((e’ [y:=w]) [x:=€]) (w is fresh)

29

Free Variables

FV(x) = {x}
FV(e1e2)=FV (el)UFV (e2)
FV (Ax.e) =FV(e) - {x}

Example:

FV(x) ={x}

FV(x'y) ={x,y}

FV(Ax. x) =FV(x) - {x} = {}

FV(AX. x'y) =FV(xy) - {x} = {y}

FV((AX. xy) X) = FV(AX. xy) U FV(x) ={x,y}

Lambda Calc, Impl in OCaml

type i1d = string

e =X .
type exp = Var of id
| Ax.e | Lam of id * exp
| ee | App of exp * exp
y Var \\y//
AX.X Lam (\\xll , Var \\xll)
AX Ay X y Lam (\\xll , (Lam(\\yll ’APP (Var \\xll , Var \\yll))))

App
(AX.Ay.X y) AX.X X (Lam (\\x// , Lam (\\y// ,APP (Var\\x// ,Var\\y//))) ,
Lam (“x”, App (Var “x”, Var “x”)))

31

OCaml Implementation: Substitution

(* substitute e for y in m-- M[y:=€] *)
let rec subst my e =
match m with
Var x ->
if y = x then e (* substitute ¥*)
else m (* don’t subst *)
| App (el,e2) ->
App (subst el y e, subst e2 y e)
| Lam (x,e0) -> ..

32

OCaml Impl: Substitution (cont'd)

(* substitute e for y in m-- mM[y:=€] *)
let rec subst m y e = match m with ..
L ,e0) -> _
| .am (x,20) Shadowing blocks
if y = x then m substitution
else if not (List.mem x (fvs e)) then

Lam (x, subst e0 y €) g,5: no capture possible

else \Might capture; need to a-convert
let z = newvar() in (* fresh ¥*)

let e0' = subst e0 x (Var z) in

Lam (z,subst e0' y e)

33

CBYV, L-to-R Reduction with Partial Eval

let rec reduce e =

match e with Straight B rule

App (Lam (x,e), e2) -> subst e x e2
| App (el,e2) ->
let el' = reduce el in Reduce |lhs of app
if el' '= el then App(el',be2)
else App (el,reduce e2) Reduce rhs of app
| Lam (x,e) -> Lam (x, reduce e)
| _ -> e Reduce function body
nothing to do

34

The Power of Lambdas

» To give a sense of how one can encode various
constructs into LC we’ll be looking at some
concrete examples:

e Let bindings

e Booleans

e Pairs

e Natural numbers & arithmetic
e Looping

35

Let bindings

» Local variable declarations are like defining a
function and applying it immediately (once):
e letx=el1ine2 = (Ax.e2) e1

» Example
e let x = (Ay.y) In X X = (AX.X X) (Ay.y)

where
(AX.X X) (Ay.y) — (AX.X X) (AY.y) — (Ay.y) (Ay.y) — (AY.y)

36

Booleans

» Church’s encoding of mathematical logic
e frue = AX.Ay.X
e false = AX.Ay.y

e if athen b else ¢
> Defined to be the expression:ab c

» Examples
e iftrue thenbelse c = (AXAy.x)bc— (Ay.b)c — Db
o if false then b else c = (Ax.Ay.y) bc — (Ay.y)c — C

37

Booleans (cont.)

» Other Boolean operations

e not = Ax.x false true
> not x = x false true = if x then false else true
» not true — (Ax.x false true) true — (true false true) — false

e and = Ax.Ay.x y false

» and xy = if x then y else false

e Or = AX.Ay.x true y
» or Xy = if x then true else y

» Given these operations
e Can build up a logical inference system

38

Pairs

» Encoding of a paira, b
e (a,b) = Ax.if xthenaelse b
o fst = Af.f true
e snd = Af.f false

» Examples
e fst(a,b) = (Af.ftrue) (Ax.if x then a else b) —
(Ax.if x then a else b) true —
if true then aelse b — a
e snd (a,b) = (Af.f false) (Ax.if x then a else b) —
(Ax.if x then a else b) false —
if false thena elseb — b

39

Natural Numbers (Church* Numerals)

» Encoding of non-negative integers
e 0 =A.Ayy
o 1=AN.Ayfy
o 2 =MNAyf(fy)
o 3 =AN.Ay.f(f (fy))
i.e., n = AM.Ay.<apply f n times to y>
e Formally: n+1 = Af.Ay.f (nfy)

*(Alonzo Church, of course)

40

Operations On Church Numerals

» Successor

o succ = AZMAy.f(z fy) * 0=AAy.y
o 1 =A.Ayfy
» Example
e succ 0=
(AZ.AFAY.f (z Ty)) (MAYY) —
M.AY.f (AMLAyy) fy) —
ALAYT((Av.y) Y) = Since (Ax.y)z -y

A.Ay.fy
=1

41

Operations On Church Numerals (cont.)

» IsZero?
e iszero = Az.z (Ay.false) true
This is equivalent to Az.((z (Ay.false)) true)

» Example
e iszero 0 =
(Az.z (Ay.false) true) (Af.Ay.y) —
(Af.Ay.y) (Ay.false) true —
(Ay.y) true —
true

e 0 =A.Ayy

Since (Ax.y)z —y

42

Arithmetic Using Church Numerals

» If M and N are numbers (as A expressions)
e Can also encode various arithmetic operations
» Addition
e M+ N=AMAYMTf(NTfy)
Equivalently: + = AMLAN.AMAY.M f (N fy)

> In prefix notation (+ M N)

» Multiplication
e M*N =A.M(NT)
Equivalently: * = AM.AN.Af.AY.M (N f) y

> In prefix notation (* M N)

43

Arithmetic (cont.)

. Prove 141 = 2 e 1=N.Ayfy
o 1+1 = AXAy.(1X) (1 xy)= * 2= AAyE(Ty)
o AX.AY.((MAY.fy)x) (1 xy)—
o AXAY.(Ay.XxYy) (1xYy)—
® AXAY.X (1XYy)—
o AX.AY.X ((AM.AY.fy)xy) —
o AX.AY.X ((Ay.xYy)y) —
o AX.AYy.X (XYy)=2

» With these definitions
e Can build a theory of arithmetic

44

Arithmetic Using Church Numerals

» What about subtraction?
e Easy once you have ‘predecessor’, but...
e Predecessor is very difficult!

» Story time:

e One of Church’s students, Kleene (of Kleene-star
fame) was struggling to think of how to encode
‘predecessor’, until it came to him during a trip to the
dentists office.

e Take from this what you will

» Wikipedia has a great derivation of
‘predecessor’.

45

Looping+Recursion

» So far we have avoided self-reference, so how
does recursion work?

» \We can construct a lambda term that ‘replicates’
itself:
e Define D = Ax.x X, then
e DD =(AxXxX)(AXXX)— (AXXX)(AXxxx)=DD

e D D is an infinite loop

» We want to generalize this, so that we can make
use of looping

46

The Fixpoint Combinator

Y = M. (AX.f (X X)) (AX.T (X X))

» Then
YF=
(Af.(AX.T (X X)) (AX.f (X X))) F —
(AX.F (X X)) (AX.F (X X)) —
F ((AX.F (x X)) (AX.F (X x)))
=F(YF)
» Y F is a fixed point (aka fixpoint) of F
» ThusYF=F(YF)=F (F(YF))=...

e \We can use Y to achieve recursion for F

47

Example

fact = Mf.An.if n =0 then 1 else n * (f (n-1))

e The second argument to fact is the integer
e The first argument is the function to call in the body

» We'll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
— if1=0then 1 else 1 * ((Y fact) 0)

—

—
—

1 * ((Y fact) 0)
1 * (fact (Y fact) 0)
1*({if0=0then 1 else 0 * ((Y fact) (-1))

/*1_)1

48

Factorial 4="

(Y G) 4
G (Y G) 4

(Ar.An.(if n = @ then 1 elsen X (r (n-1)))) (Y G) 4
(An.(if n = @ then 1 else n X ((Y G) (n-1)))) 4
if 4 = @ then 1 else 4 X ((Y G) (4-1))

4

NP EDMDEADPA

X X X X X X X X X X X X X

(G (Y G) (4-1))

((An.(1, if n = 0; else n X ((Y G) (n-1)))) (4-1))

(1, if 3 = 0; else 3 X ((Y G) (3-1)))

(G (Y G) (3-1)))

((An.(1, if n = 9; else n X ((Y G) (n-1)))) (3-1)))

(1, if 2 = 0; else 2 X ((Y G) (2-1))))

(G (Y G) (2-1))))

((An.(1, if n = 9; else n X ((Y G) (n-1)))) (2-1))))
(1, if 1 =0; else 1 X ((Y G) (1-1)))))

(3
(3
(3
(3
(3
(3
(3
(3
(3
(3

X X X X X X X X X X

(2
(2
(2
(2
(2
(2
(2

X X X X X X X

(1
(1
(1
(1

X
X
X
X

(G (Y G) (1-1)))))
((An.(1, if n = 9; else n X ((Y G) (n-1)))) (1-1)))))
(1, if @ = 0; else @ X ((Y G) (©-1))))))

(1))))

49

Discussion

» Lambda calculus is Turing-complete
e Most powerful language possible

e Can represent pretty much anything in “real” language
» Using clever encodings

» But programs would be
e Pretty slow (10000 + 1 — thousands of function calls)
e Pretty large (10000 + 1 — hundreds of lines of code)
e Pretty hard to understand (recognize 10000 vs. 9999)

» In practice
e \We use richer, more expressive languages
e That include built-in primitives

50

The Need For Types

» Consider the untyped lambda calculus
e false = AX.Ay.y
e 0 = AX.Ay.y
» Since everything is encoded as a function...

e \We can easily misuse terms...

> false 0 — Ay.y
> if O then ...

...because everything evaluates to some function

» The same thing happens in assembly language
e Everything is a machine word (a bunch of bits)
e All operations take machine words to machine words

51

Simply-Typed Lambda Calculus (STLC)

e =n|x|Axtel|ee
e Added integers n as primitives

» Need at least two distinct types (integer & function)...
» ...to have type errors

e Functions now include the type t of their argument

»to=int|t—t
e intis the type of integers

e {1 — t2 is the type of a function
» That takes arguments of type t1 and returns result of type t2

52

Types are limiting

» STLC will reject some terms as ill-typed, even if
they will not produce a run-time error
e Cannot type check Y in STLC

> Or in OCaml, for that matter, at least not as written earlier.
» Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing

e A normal form is one that cannot be reduced further
> A value is a kind of normal form

e Strong normalization means STLC terms always
terminate

» Proof is not by straightforward induction: Applications
“‘increase” term size

53

Summary

» Lambda calculus is a core model of computation

¢ \We can encode familiar language constructs using
only functions

» These encodings are enlightening — make you a better
(functional) programmer

» Useful for understanding how languages work

e |deas of types, evaluation order, termination, proof
systems, etc. can be developed in lambda calculus,
» then scaled to full languages

54

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Free Variables
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

