CMSC388N: Build It, Break It, Fix It: Competing to Secure Software

Lecture 1

Prof. Daniel Votipka
Winter 2020
The Plan

• Introductions
• Course Overview and Logistics
• Project Description
• Threat Modeling
Why is Secure Development important?
Why does it matter?

• Enterprise Security
• National Security
• Financial Sector
• Industrial Control Systems
• Personal Security
• Identity Theft
• Privacy
Why does it matter?

- Enterprise Security
- National Security
- Financial Sector
- Industrial Control Systems
- Personal Security
- Identity Theft
- Privacy
Why does it matter?

- Enterprise Security
- National Security
- Financial Sector
- Industrial Control Systems
- Personal Security
- Identity Theft
- Privacy
Why does it matter?

• Enterprise Security
• National Security
• Financial Sector
• Industrial Control Systems
• Personal Security
• Identity Theft
• Privacy
Why does it matter?

• Enterprise Security
• National Security
• Financial Sector
• Industrial Control Systems
• Personal Security
• Identity Theft
• Privacy
Some bad news

Designing secure systems is difficult
Designing secure systems is difficult.
Fundamental asymmetry between attacker and defender
Functionality is easy to measure, but…

Airplane works

Airplane doesn’t work
...security is hard to measure

Web browser 0wned

Web browser not 0wned
Some good news

Computer security is a growth area.
Course Goals

• Learn how to design more robust systems
• Learn how to protect against attacks
• Think like the bad actor, behave like the good actor

This course provides hands-on practice developing and exploiting secure systems. Students will be asked to develop a secure IoT system and build a better understanding of secure design and implementation through doing.
Course Goals

- Learn how to design more robust systems
- Learn how to protect against attacks
- Think like the bad actor, behave like the good actor

This course provides hands-on practice developing and exploiting secure systems. Students will be asked to develop a secure IoT system and build a better understanding of secure design and implementation through doing.

This is compressed semester, so **we expect a lot**, but we think it will be very beneficial and hopefully a little fun!
Non-goals

- Familiarization with latest tools
- Professional security certification
Course as Research

• This course is part of our research studying how students learn about and write secure programs

• All information collected during discussions and through assignments will be used in our research

• All data will be anonymized to prevent association of your identity to results
Instructor Team

Michelle Mazurek

Michael Hicks

Kelsey Fulton

Dan Votipka
Instructor Team

Michelle Mazurek

Michael Hicks

Kelsey Fulton

Dan Votipka
Ice Breaker!
Ice Breaker!

• Favorite programming language
• Least favorite programming language
• Favorite time to work
Ice Breaker!

Think about who you might want on your team!

• Favorite programming language
• Least favorite programming language
• Favorite time to work
Ice Breaker!

Think about who you might want on your team!

• Favorite programming language

• Least favorite programming language

• Favorite time to work
Ice Breaker!

Think about who you might want on your team!

- Favorite programming language
- Least favorite programming language
- Favorite time to work
Ice Breaker!

Think about who you might want on your team!

- Favorite programming language
- Least favorite programming language
- Favorite time to work
Course policies, expectations, and other fun bureaucratic goodness
Course website:
https://www.cs.umd.edu/class/winter2020/cmsc388N/
This is the most important slide in this deck!

Course website:
https://www.cs.umd.edu/class/winter2020/cmsc388N/
Prerequisites

- CMSC216 and CMSC250
- You will build stuff. I expect you to:
 - know how to code
 - be(come) comfortable with Linux/UNIX/git
Office Hours

- Available on request
- Location: IRB 5112
Textbook

• There is no required textbook for this course.

• Some helpful texts:
 • Introduction to Computer Security by Goodrich and Tamassia
 • Security Engineering by Ross Anderson (available online)
 • Threat Modeling: Designing for Security by Adam Shostack (available online)
Things that are not your textbook

Slashdot
News for Nerds. Stuff that matters.

Wikipedia
The Free Encyclopedia

Stack Exchange

Google

digg
Online Course Discussion

- **Extensive** class discussions and announcements via Piazza
- Be prepared to receive many emails
- You are expected to read each and every posting (during the workday)
- See course webpage for Piazza URL.
Online Course Discussion

• Post to Piazza if…
 • …you have a question about the class subject matter (slides, lectures, etc.)
 • …you need a clarification on a homework or project specification
 • …you have a general question about secure development
 • …you have a question regarding a class policy
• If you send any of the above to me directly, I’ll ask you to post it on Piazza

• Don’t:
 • Give away project implementations details
 • Start flamewars

• Do be respectful of others
Emailing

• It’s really best not to email me. Emails get lost. Piazza posts stay there until I actually resolve them.

• Send a **private** Piazza post if…
 • …you have a grading issue
 • …you need to ask a question that would reveal a partial/complete solution to a homework problem
Intra-Team Communication

- Slack will be the **required** channel for intra-team communication
- Each team will have a private channel
- Channels will be created for you once you select teams

UMD CMSC388N
umdcmsc388n.slack.com
Excused Absences

• Most class time will be dedicated to completing the semester long project, so attendance is essential to your success in this course.

• Reasons for excused absences: Religious observation, illness, personal or family emergency

• Please notify us as soon as possible!!
 • For foreseeable events, you need to tell us **Today!!**
Lecture notes

- Slides will be released on the course web page after each class.
- I like trees.
Grading

- Course is designed around the BIBIFI project
- No extra credit assignments
- Teams of at most 2

Diagram:
- BIBIFI: 60%
- Status Reports: 15%
- Surveys: 10%
- Design Doc: 9%
- Commits: 6%
Build It, Break It, Fix It

- Majority of the grade is based on the course competition
- Per-round criterion (40%)
 - Build: Pass all non-optional tests
 - Break: Submit 5 breaks
 - Fix: Fix 50%* of breaks
- Build and break score ranking (20%)
You are Here!
Design Document

- Answers three questions:
 - How is the program organized?
 - How can an attacker effect the system?
 - How are threats mitigated?

- Three iterations due:
 - Initial design (due 6 Jan)
 - Build round design (due 13 Jan)
 - Final design (due 22 Jan)
Status Reports

- Submitted every **weekday** individually
- Answer the following questions:
 - What are you currently working on? How do you plan to approach the current problem?
 - Are there any issues you are currently struggling with?
- Submit at ter.ps/388Nreport
Commit Descriptions

• Submitted with every change to the codebase

• Commits should be made for individual functionality changes

• Build commit requirements:
 • Description of the change
 • Reason for the change
 • Associated requirement
 • How did you come up with the change?

• To provide longer commit in git, do not specify the “-m” flag when committing
Surveys

- Three rounds:
 - Pre-course (due by **tonight!**)
 - Mid-course (due **13 Jan**)
 - End-of-course (due **22 Jan**)
- Personalized links for each will be **emailed** to you
Other Policies

• Please turn off cell phones during class.

• I will do my best to respond to emails and Piazza posts within 24 hours on weekdays (48 hours on weekends).

• Students may appeal to the instructor for reconsideration of a grade, but the appeal must be in writing (i.e., email or private Piazza post), and must be sent within three days (or the close of the semester, whichever is sooner) of receiving the graded assignment.

• Behave civilly: don't be late for class; don't read newspapers/blogs/etc. during class; don't solve Sudoku puzzles during class; don't struggle with crossword puzzles during class; respect others' opinions.
Cheating policy

• Cheating is not allowed
• We run tools
• If you cheat, you will probably get caught

I REFER ALL ACADEMIC DISHONESTY INCIDENTS TO THE HONOR COUNCIL WITHOUT EXCEPTION

• If you are found to be in violation, you will almost certainly get an F on the course (not just for the parts you were caught cheating)

• If you don’t cheat and **work hard**, you will always do better than if you cheated
Cheating policy

- Cheating is (but is not limited to):
 - Working together to solve assignment problems (except for group-based assignments)
 - Taking credit for something that you did not create
 - It’s ok to copy/paste code you found online, but cite it in your comments.
Ethics and Legality

You will learn about, implement attacks:
• Do not use them without explicit written consent from everyone involved!
 • Make sure you know who is involved
• If you want to try something, tell me and I will try to help set up a test environment
• Don’t violate: ethics, UMD policies, state and national laws, good sense
Ethics and Legality

You will learn about, implement attacks:
• Do not use them without explicit written consent from everyone involved!
 • Make sure you know who is involved
• If you want to try something, tell me and I will try to help set up a test environment
• Don’t violate: ethics, UMD policies, state and national laws, good sense

Course credo:
Think like an attacker,
but behave like a responsible adult.
Project Description
IoT Smart Home
IoT Smart Home

Hub

Internet

Controller

66
IoT Smart Home

Hub

Internet

Controller
IoT Smart Home

Hub

Internet

Controller

Client
IoT Smart Home

Rules
if temp > 80 then set AC = on
if energy > 1000 then set light = off
IoT Smart Home

Rules
- if `temp` > 80 then set `AC` = on
- if `energy` > 1000 then set `light` = off

Diagram

- Hub
- Internet
- Client
- Controller
- as hub
 - set `lights` = on
 - set `door` = open
 ...
- Rules
 - if `temp` > 80 then set `AC` = on
 - if `energy` > 1000 then set `light` = off
IoT Smart Home

Rules
if temp > 80 then set AC = on
if energy > 1000 then set light = off
IoT Smart Home

Rules
- if temp > 80 then set AC = on
- if energy > 1000 then set light = off

Diagram
- Hub
- Internet
- Client
- Controller

- As hub
 - set lights = on
 - set door = open
- As admin
 - set x = mean temp
 - return x
IoT Smart Home

Rules
- if \(\text{temp} > 80 \) then set \(\text{AC} = \) on
- if \(\text{energy} > 1000 \) then set \(\text{light} = \) off

1. Admin can read and write everything*
2. Admin can create new users with limited access
3. Users can delegate their privileges to other users
You’re building this

Rules
- if `temp` > 80 then set `AC` = on
- if `energy` > 1000 then set `light` = off

1. Admin can read and write everything*
2. Admin can create new users with limited access
3. Users can delegate their privileges to other users

IoT Smart Home

- **Hub**
 - `as hub`
 - set `lights` = on
 - set `door` = open
 - `as admin`
 - set `x` = mean `temp`
 - return `x`

- **Internet**
- **Controller**
- **Client**
IoT Smart Home

1. Admin can read and write everything*
2. Admin can create new users with limited access
3. Users can delegate their privileges to other users

Rules
- if temp > 80 then set AC = on
- if energy > 1000 then set light = off

*As hub
 - set lights = on
 - set door = open

*As admin
 - set x = mean temp
 - return x

Controller

Hub

Client
Project Specification
Project Setup

- Register
 - Use your directory ID as your username

- Make Teams (due **Tomorrow** by 11:59am)
 - At most 2 per team

- Setup gitlab
 - gitlab.cs.umd.edu
Threat Modeling

- What are you building?
- What can go wrong?
- What should you do about those things that could go wrong?
Threat Modeling Homework (Design Doc v1)

• You’ll be identifying possible threats for your IoT system
• Performed individually
• Due January 6th at 11:59am EDT (Monday before class!)
• Detailed instructions on the course website
Threat Modeling Example
What are you building?
What are you building?

Bob

ATM

Internet

BANK

deposit $50

$
What are you building?

Bob

ATM

Internet

BANK

deposit $50

bob balance: 1000
What are you building?

Bob

ATM

Internet

deposit $50

BANK

bob balance: 1050

$
What are you building?

Bob

ATM

Internet

BANK

deposit $50

balance is $1050

bob balance: 1050

balance is $1050

$
What are you building?

Bob

ATM

deposit $50
balance is $1050
withdraw $400

Internet

BANK

$1050

bob balance: 1050
What are you building?

Bob

deposit $50
balance is $1050
withdraw $400

Bob balance: 650

ATM

Internet

BANK

$
What are you building?

Bob makes a deposit of $50
balance is $1050

Bob makes a withdrawal of $400
balance is $650

Bob balance: 650
What can go wrong?

- **Bob**
 - deposit $50
 - balance is $1050
 - withdraw $400
 - balance is $650

bob balance: 650
What can go wrong?

Bob

ATM

Internet

BANK

$50

deposit $50

balance is $1050

withdraw $400

balance is $650

bob balance: 650
What can go wrong?

Bob

ATM

Internet

BANK

$50

balance is $1050

withdraw $400

balance is $650

bob balance: 650
What should we do?

Bob

deposit $50
balance is $1050
withdraw $400
balance is $650

bob balance: 650
What should we do?

Bob

ATM

Internet

BANK

$0

deposit $50
balance is $1050
withdraw $400
balance is $650

bob balance: 650
What should we do?

Bob

ATM

Internet

BANK

deposit $50

withdraw $400

balance is $1050

balance is $650

bob balance: 650
What should we do?
Summary

- Introductions
- Course Overview and Logistics
 - https://www.cs.umd.edu/class/winter2020/cmsc388N/
- IoT Smart Home
- Threat Modeling Example
 - Homework due on Monday
- Divide into teams (Due Saturday by 11:59am)!
Summary

• Introductions
• Course Overview and Logistics
 • https://www.cs.umd.edu/class/winter2020/cmsc388N/
• IoT Smart Home
• Threat Modeling Example
 • Homework due on Monday
• Divide into teams (Due Saturday by 11:59am)!
 • http://128.8.130.12:3000/createteam

Pre-course surveys due Today