
CMSC388N:
Build It, Break It, Fix It: Competing

to Secure Software

Lecture 2 - Networking and Other Stuff

Prof. Daniel Votipka
Winter 2020

(some slides courtesy of Micah Sherr and Michael Hicks)

The Plan

• Administrivia

• Project specification updates

• Networking

• Scanning and Parsing

• Project submission (and git) demo

• In-class build time!

 2

(maybe)

Administrivia

• Each team should all have…

• …access to umdcmsc388n.slack.com with a
channel per team

• …a team repo on gitlab.cs.umd.edu

• Daily status reports start today: ter.ps/388Nreport

 3

http://umdcmsc388n.slack.com
http://gitlab.cs.umd.edu
http://ter.ps/388Nreport

Project Specification
Updates

 4

Problem Spec Update

•Passwords

•Access control

•Assume network is secure

 5

as principal admin password "admin" do
 create principal bob “B0BPWxxd"
 change password admin “BetterPassword”
 set rule too_hot if temperature >= 80 then set air_conditioning = 2
 activate rule too_hot
 set delegation air_conditioning admin read -> bob
 return temperature.0

Passwords

 6

Access Control - Grammar

 7

Access Control - Language
Description

 8

Access Control -
Enforcement

 9

1. Admin has <right> on x (for all rights <right>
on variables x*)

2. A principal p has <right> on x if principal
anyone has <right> on x.

3. A principal p has <right>on x if there exists
some q that has <right> on x and Sd includes a
delegation assertion q x <right> -> p.

Networking

 10

(Abbreviated)

What is the Internet?

 11

boundary router

backbone router

Backbone
area
border
router

internal
routers

Area 3

Area 2

Area 1

A collection of independently operated
autonomous systems (ASes)

Src=Alice,SrcPort=1234
Dest=Bob,DestPort=80
Content=“Hello world”

Network Programming

• The operating system provides an interface for sending/
receiving network packets

• A socket is a descriptor for network communication

• As a client, you connect your socket to a remote host,
and read/write to that socket as you would a file

• As a server, you listen and accept incoming
connections, and read/write to that socket as you would a
file

• read()/recv() is a blocking operation; to wait for input
from multiple sources, use select

 12

(aka Sockets)

Se
le

ct
 e

xa
m

pl
e

 13

What can go wrong?

 14

deposit $50

Internet $

bob balance: 1000
balance is $1050

1050

withdraw $400

balance is $650

650

Bob
Man-in-the Middle can…

• …listen in
• …change data
• …replay

What should we do?

 15

deposit $50

Internet $

bob balance: 1000
balance is $1050

1050

withdraw $400

balance is $650

650

Bob
Man-in-the Middle can…

• …listen in
• …change data
• …replay

Encryption and
Decryption

 16

Alice Bob

E D
M C M

C=E(M)
M=D(C)

i.e.,
M=D(E(M))

where

M = plaintext
C = ciphertext

E(x) = encryption function
D(y) = decryption function

“Hi” “afe!1” “Hi”

Symmetric and
Asymmetric Crypto

•Symmetric crypto: (also called private key crypto)

• Alice and Bob share the same key (K=K1=K2)

• K used for both encrypting and decrypting

• Doesn't imply that encrypting and decrypting are the same algorithm

• Also called private key or secret key cryptography, since knowledge of the key reveals the plaintext

•Asymmetric crypto: (also called public key crypto)

• Alice and Bob have different keys

• Alice encrypts with K1 and Bob decrypts with K2

• Also called public key cryptography, since Alice and Bob can publicly post their public keys

 17

Alice Bob

E D
M C M

K1 K2

AES, Triple DES

RSA, ECDSA
Approved

What should we do?

 18

deposit $50

Internet $

bob balance: 1000
balance is $1050

1050

withdraw $400

balance is $650

650

Bob
Man-in-the Middle can…

• …listen in
• …change data
• …replay

Message Authentication
Code

RSA Digital Signature

Message Authentication Codes (MACs)

 19

• MACs provide message integrity and authenticity

• MACK(M) – use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

• MACs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

• To provide confidentiality, authenticity, and integrity of a message, Alice
sends

• EK(M,MACK(M)) where EK(X) is the encryption of X using key K;
or

• EK(M),MACK(EK(M))

• Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

Encryption and Message Authenticity

Alice BobEve

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”},
MACk2(Ek1{“network security is fun”})

 20

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Without knowing k1,
Eve can’t read Alice’s message.

SHA-256

Approved

Asymmetric Crypto

 21

Alice Bob

E D
M C M

K1 K2= Bpublic = Bprivate

S1 S2= Aprivate = Apublic

RSA, ECDSA

Approved

What should we do?

 22

deposit $50

Internet $

bob balance: 1000
balance is $1050

1050

withdraw $400

balance is $650

650

Bob
Man-in-the Middle can…

• …listen in
• …change data
• …replay

Nonces!

Nonces

Alice BobEve

Src = Alice, Dest = Bob

Msg = Ek1{“network security is fun”, Nonce},
MACk2(Ek1{“network security is fun”,

Nonce})

 23

What should we do?

 24

deposit $50

Internet $

bob balance: 1000
balance is $1050

1050

withdraw $400

balance is $650

650

Bob
Man-in-the Middle can…

• …listen in
• …change data
• …replay

TLS and PKI

Scanning and Parsing

 25

(Abbreviated)

 26

Recall: Front End Scanner and Parser

CMSC 330 Fall 2019 2

Front End

Source Scanner Parser

AST

Token
Stream

• Scanner / lexer / tokenizer converts program source
into tokens (keywords, variable names, operators,
numbers, etc.) with regular expressions

• Parser converts tokens into an AST (abstract syntax
tree) based on a context free grammar

Scanner and Parser

(CFG)

Scanning (“tokenizing”)

Converts textual input into a stream of tokens
• These are the terminals in the parser’s CFG
• Example tokens are keywords, identifiers, numbers,
punctuation, etc.

Tokens determined with regular expressions
• Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*
• Non-negative integers match [0-9]+
• Etc.

Scanner typically ignores/eliminates whitespace

 27

Implementing Parsers
Many efficient techniques for parsing
• LL(k), SLR(k), LR(k), LALR(k)…
• Take CMSC 430 for more details

One simple technique: recursive descent
parsing
• This is a top-down parsing algorithm

Other algorithms are bottom-up

 28

Recursive Descent -
Intuition

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable
name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

 29

Non-terminal
Terminal

Start at the top, try
productions in order

lookahead

Recursive Descent -
Example

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable
name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

 30

E

{ L }

E ; L

id = n
(x) (3)

E ; L

{ L } ε

id = n
(y) (4)

ε

E ; L

Recursive Descent

At each step, we'll keep track of two facts
• What grammar element are we trying to match/expand?
• What is the lookahead (next token of the input string)?

At each step, apply one of three possible cases
• If we’re trying to match a terminal
! If the lookahead is that token, then succeed, advance the lookahead,
and continue

• If we’re trying to match a nonterminal
! Pick which production to apply based on the lookahead

• Otherwise fail with a parsing error

 31

Additional Material

 32

• Video series by Alex Aiken

• https://www.youtube.com/playlist?
list=PLDcmCgguL9rxPoVn2ykUFc8TOpLyDU5gx

• 6.3 - Recursive Descent Overview

• 6.4 - Recursive Descent Implementation

• Other parsing algorithms

• Parsing slides by Michael Hicks (CMSC 330)

• http://www.cs.umd.edu/class/spring2019/cmsc330/
lectures/04-parsing.pdf

https://www.youtube.com/playlist?list=PLDcmCgguL9rxPoVn2ykUFc8TOpLyDU5gx
https://www.youtube.com/playlist?list=PLDcmCgguL9rxPoVn2ykUFc8TOpLyDU5gx
http://www.cs.umd.edu/class/spring2019/cmsc330/lectures/04-parsing.pdf
http://www.cs.umd.edu/class/spring2019/cmsc330/lectures/04-parsing.pdf

Project Submission
Demo

 33

Summary
• Project Specification Updates

• Passwords

• Access Control

• Network is secure!

• Networking basics

• Socket programming tutorials on website

• Scanning and Parsing basics

• Additional materials on website

• Project submission demo

• Daily status reports start today: ter.ps/388Nreport
 34

JSON, git, and
Socket tutorials on

course website

http://ter.ps/388Nreport

In-class Build Time!

 35

• Divide up into teams and spread out

• You can leave this room, but stay on this floor

• Send us a message in Slack with where you go

• Some possible-todos:

• Merge design documents

• Discuss logistics

• Ex: language, libraries, divide-and-conquer vs.
pair programming

• Start writing code!

• Instructors will come around to talk

