CMSC388N:

Build It, Break It, Fix It: Competing
to Secure Software

Lecture 2 - Networking and Other Stuff

Prof. Daniel Votipka
Winter 2020

(some slides courtesy of Micah Sherr and Michael Hicks)

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Q

The Plan

Administrivia

Project specification updates
Networking

Scanning and Parsing

Project submission (and git) demo

In-class build time! (maybe)

Administrivia

® Each team should all have...

® ...access to umdecmsc388n.slack.com with a
channel per team

® ...ateam repo on gitlab.cs.umd.edu

® Daily status reports start today: ter.ps/388Nreport

http://umdcmsc388n.slack.com
http://gitlab.cs.umd.edu
http://ter.ps/388Nreport

Project Specification
Updates

Problem Spec Update

® Passwords
® Access control

® Assume network is secure

Passwords

as principal admin password "admin” do «f==
create principal bob “BOBPWxxd" <=
change password admin “BetterPassword” e
set rule too_hot if temperature >= 80 then set air_conditioning = 2
activate rule too_hot
set delegation air_conditioning admin read -> bob
return temperature.O

*k%k

Access Control - Grammar

<prim_cmd> ::=

create principal p s

change password p s

set x = <expr>

local set x = <expr>

if <cond> then <prim_cmd>

set delegation <tgt> g <right> -> p =

delete delegation <tgt> g <right> -> p ‘_

default delegator p e

print <expr>

set rule x = if <cond> then <prim_cmd>

activate rule x

deactivate rule x

<tgt>:=all | x

<right> ::= read | write | delegate | toggle <=
7

Access Control - Language
Description

set x = <expr>

Sets x’s value to the result of evaluating <expr>, where x is a variable. If x does not exist this command
creates it. If x is created by this command, and the current principal is not admin, then the current
principal is delegated read, write, and delegate rights from the admin on x (equivalent to executing
set delegation x admin read -> p and set delegation x admin write -> p, etc. where p is the

current principal). \
Failure conditions:

Fails or exhibits security violation if evaluating <expr> does
Fails if x is already set to a rule
Security violation x exists and the current principal does not have write permission on x.

(DENIED_WRITE)

Successful status code: SET

Access Control -
Enforcement

|. Admin has <right> on x (for all rights <right>
on variables x*)

2. A principal p has <right> on x if principal
anyone has <right> on x.

3. A principal p has <right>on x if there exists
some ¢ that has <right> on x and Sqincludes a
delegation assertion g x <right> -> p.

Networking
(Abbreviated)

|0

What is the Internet?

A collection of independently operated
autonomous systems (ASes)

boundary router

K backbone router

Src=Alice,SrcPort=1234 _
Dest=Bob,DestPort=80 =
Content="Hello world”

Network Programming

(aka Sockets)

® The operating system provides an interface for sending/
receiving network packets

® A socket is a descriptor for network communication

® As aclient,you connect your socket to a remote host,
and read/write to that socket as you would a file

® As a server, you listen and accept incoming
connections, and read/write to that socket as you would a

file

® read()/recv() is a blocking operation; to wait for input
from multiple sources, use select

12

Select example

@O oHm et AW /
import socket,select
listen_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
listen_socket.bind(('"', 9998))
listen_socket.listen(10)
‘client_sockets = [# an empty list
while True:
read_list = [listen_socket] + client_sockets
(ready_read,_,_) = select.select(read_list,[],[])
for sock in ready_read:
1f sock is listen_socket:
new_conn, addr = sock.accept() # accept the connection
client_sockets.append(new_conn)
else:
data = sock.recv(1024) # read up to 1K of data
if data != "": # the connection is open
sock.send("Go away.\n") # I'm not very nice
else: # the connection 1s closed

client_sockets.remove(sock)
sock.close()

U:--- myselect.py All(7,0) (Py Outl)

Y

13

What can go wrong!

<.~ TR

deposit $50

» bob balance: 650

balance is $1050
—
withdraw $400

BOb balance is $650>
4—

Man-in-the Middle can...
e .. .listen in
* ...change data
* ...replay

| 4

What should we do!?

e
] -
L E 7 - » —5
deposit $
» bob balance: 650
1050
ﬂ withd.__ i/

Bob

Man-in-the Middle can...
e ..listenin

Encryption and

Decryption
£-8——88
Alice

C=E(M) M = plaintext
M=D(C) h C = ciphertext
i.e., WhETS E(x) = encryption function

M=D(E(M)) D(y) = decryption function

|6

Symmetric and
Asymmetric Crypto

&

L’ﬂ—”ac n S
Alice Bob
K1 K2

® Symmetric crypto: (also called private key crypto)

® Alice and Bob share the same key (K=K 1=K2) AES, TI"I Ple D ES

® K used for both encrypting and decrypting f Y

® Also called private key or secret key cryptography, since knowledge of§ A
| pproved

® Doesn't imply that encrypting and decrypting are the same algorithm

® Asymmetric crypto: (also called public key crypto)

® Alice and Bob have different keys RSA EC DSA
)

® Alice encrypts with K| and Bob decrypts with K2

® Also called public key cryptography, since Alice and Bob can publicly post their public keys
|7

What should we do!?

@b» T

» bob balance: 650
withdraw $400 l
balance is $650 /
Bob

Man-in-the Middle can...

Message Authentication
* ...change data Code

deposit $50

RSA Digital Signature

|18

Message Authentication Codes (MACs)

® MACs provide message integrity and authenticity

® MACk(M) — use symmetric encryption to produce short sequence of
bits that depends on both the message (M) and the key (K)

® MAGCs should be resistant to existential forgery: Eve should not
be able to produce a valid MAC for a message M' without knowing K

® To provide confidentiality, authenticity, and integrity of a message, Alice
sends

® Ex(M,MACk(M)) where Ex(X) is the encryption of X using key K;
or

® Ex(M),MACk(Ex(M))

® Proves that M was encrypted (confidentiality) by someone who
knew K (authenticity) and hasn’t been changed (integrity)

19

Encryption and Message Authenticity
4 Src = Alice, Dest = Bob) SHA-26

Msg = Ei{"network security is fun"}, ‘ N lSI_

MACi2(Ei{"network security is fun"})
. Approved

- %

S

—

4

Alice Eve

Without knowing ki,
Eve can’t read Alice’s message.

Without knowing k2, Eve can’t compute a valid
MAC for her forged message!

Asymmetric Crypto

Kl = Bpubllc KZ Bprlvate
51 - Aprivate 52 - Apublic

ROA, ECDSA

_ Approved

21

What should we do!?

@ 0 3N:

deposit $50

———- D OD balance: 650
s $1050
—

withdraw $400

>

BOb bala s $650

Man-in-the Middle can...

Nonces!
* ...replay

22

Nonces

4 Src = Alice, Dest = Bob)
Msg = Exi{"network security is fun”, Nonce},

MAC2(Eii{"network security is fun”,
Nonce})

/

S

Eve

23

What should we do!?

@ <& TR

deposit $50

—— - DOD balance: 650

balance is $1050
—

withdraw $400

BOb balance is $650>
4—

Man-in-the Middle can...
e ..listenin

* ...change data TLS and PK|
* ...replay

24

Scanning and Parsing
(Abbreviated)

25

/

-

\

Source

J

Scanner and Parser

Front End

4)

Token
Scanner Stream

=

Parser

N

« Scanner / lexer / tokenizer converts program source
into tokens (keywords, variable names, operators,

numbers, etc.) with regular expressions

» Parser converts tokens into an AST (abstract syntax
tree) based on a context free grammar (CFG)

26

Scanning (“‘tokenizing”)

Converts textual input into a stream of tokens
e These are the terminals in the parser’'s CFG
 Example tokens are keywords, identifiers, numbers,
punctuation, efc.

Tokens determined with regular expressions
e |dentifiers match regexp [a-zA-Z][a-zA-Z0-9 |*
 Non-negative integers match [0-9]+
o EfC.

Scanner typically ignores/eliminates whitespace

27

Implementing Parsers

Many efficient techniques for parsing

e LL(k), SLR(k), LR(k), LALR(K)...

e Take CMSC 430 for more details
One simple technique: recursive descent
parsing

e This is a top-down parsing algorithm
Other algorithms are bottom-up

28

Recursive Descent -

Non-terminal Intu |t|0n
1 Terminal

'

Eid=n|{L}
L—-E;L | (3
Start at the top, try

(Assume: id is variable | productions in order
name, n is integer)

Show parse tree for
{x=3;{y=4;}:}

lookahead

29

Recursive Descent -

Example
PIC,

@
Eid=n|{L) / I\
L—-E;L]|¢ E ; L
(Assume: id is variable id = n E ; L

name, n is integer) (x) (3) {//\} L
L

Show parse tree for
{x=3;{y=4;1};} E/I\L
T D ZANR

id = n g

Recursive Descent

At each step, we'll keep track of two facts
* \What grammar element are we trying to match/expand?
* \What is the lookahead (next token of the input string)?

At each step, apply one of three possible cases

e [f we're trying to match a terminal

> |If the lookahead is that token, then succeed, advance the lookahead,
and continue

e [f we're trying to match a nonterminal
» Pick which production to apply based on the lookahead

e Otherwise fail with a parsing error

31

Additional Material

® Video series by Alex Aiken

® https://www.youtube.com/playlist?
ist=PLDcmCggul 9rxPoVn2ykUFc8TOpLyDU5gx

® 6.3 - Recursive Descent Overview
® 6.4 - Recursive Descent Implementation
® Other parsing algorithms

® Parsing slides by Michael Hicks (CMSC 330)

® http://www.cs.umd.edu/class/spring2019/cmsc330/
lectures/04-parsing.pdf

32

https://www.youtube.com/playlist?list=PLDcmCgguL9rxPoVn2ykUFc8TOpLyDU5gx
https://www.youtube.com/playlist?list=PLDcmCgguL9rxPoVn2ykUFc8TOpLyDU5gx
http://www.cs.umd.edu/class/spring2019/cmsc330/lectures/04-parsing.pdf
http://www.cs.umd.edu/class/spring2019/cmsc330/lectures/04-parsing.pdf

Project Submission
Demo

Summary

Project Specification Updates

® Passwords

JSON, git,and |
- Socket tutorials on §
| course website

® Access Control
® Network is secure!

Networking basics

® Socket programming tutorials on website
Scanning and Parsing basics

® Additional materials on website

Project submission demo

Daily status reports start today: ter.ps/388Nreport
34

http://ter.ps/388Nreport

In-class Build Time!

® Divide up into teams and spread out
® You can leave this room, but stay on this floor
® Send us a message in Slack with where you go

® Some possible-todos:
® Merge desigh documents
® Discuss logistics

® Ex:language, libraries, divide-and-conquer vs.
pair programming

® Start writing code!

® |nstructors will come around to talk

35

