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The Plan

• Breaks found

• Secure development reflection

• Security best practices

• In-class survey time!
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Break Review

• Lots of crashes!

• Incorrect implementation of spec

• Security properties not specifically stated

• Non-logic problems
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https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html


Incorrect Implementation

• Admin password not checked

• Exit and set default delegator by non-admin

• Default delegator rights provided after creation

• Too many rights for the hub (e.g., read)

• Incorrect delegation checks

• No rollback on failure

• Rule permission checking
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 Who do you 
think this is?

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html


Un(der)specified

• Anyone login

• Leak of variable type information

• Circular delegation

• Multiple delegation paths
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https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html


Circular Delegation
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Circular Delegation

hasPermission(var, principal, right):
if principal is "admin":

else:
return true

delegator = getDelegator(var, principal, right)
if there is a delegator:

else:
return hasPermission(var, delegator, right)

return false



Multiple Paths
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Non-logic problems

• Bugs in libraries used

• Integer overflow

• Code injection
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https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html


as principal admin password "admin" do
   create principal bob "bob"
   set count = 1
   set delegation count admin write -> bob
   return count
***

Integer 
Overflow



as principal admin password "admin" do
   create principal bob "bob"
   set count = 1
   set delegation count admin write -> bob
   return count
***
as principal bob password “bob" do
   set count = 2147483647
   return x
***

Integer 
Overflow



as principal admin password "admin" do
   create principal bob "bob"
   set count = 1
   set delegation count admin write -> bob
   return count
***
as principal bob password “bob" do
   set count = 2147483647
   return x
***

0b1111111111111111111111111111111
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Overflow



as principal admin password "admin" do
   create principal bob "bob"
   set count = 1
   set delegation count admin write -> bob
   return count
***
as principal bob password “bob" do
   set count = 2147483647
   return x
***

0b1111111111111111111111111111111

as principal admin password "admin" do
   set count = count + 1
   if count < 0 then set door = 0
   return count
***

Integer 
Overflow



as principal admin password "admin" do
   create principal bob "bob"
   set count = 1
   set delegation count admin write -> bob
   return count
***
as principal bob password “bob" do
   set count = 2147483647
   return x
***

0b1111111111111111111111111111111

as principal admin password "admin" do
   set count = count + 1
   if count < 0 then set door = 0
   return count
***

0b10000000000000000000000000000000 (-1)

Integer 
Overflow



Code Injection
os.system(“<call compiled executable> " + port  + " " + 
config + " " + admin + " " + hub)

output = eval(<expr>)



Code Injection
os.system(“<call compiled executable> " + port  + " " + 
config + " " + admin + " " + hub)

./server 1024 config.json "; ls " "; rm -rf /"

output = eval(<expr>)



Code Injection
os.system(“<call compiled executable> " + port  + " " + 
config + " " + admin + " " + hub)

./server 1024 config.json "; ls " "; rm -rf /"

output = eval(<expr>)

set x = __import__(‘os’).system(‘rm -rf /’) + 1



Secure Development 
Reflection

•What worked?

•What didn’t work?

•What would you do differently?
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Best Practices

• Limit security-specific code

• Graceful error handling (and logging)

• In-depth design/threat modeling

• Test cases are important!

• Code review!
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In-class Survey Time!
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• End-of-course survey 
• link emailed to you

• Work on final design document


