
CMSC388N:
Build It, Break It, Fix It: Competing

to Secure Software

Lecture 8 - Wrap Up

Prof. Daniel Votipka
Winter 2020

The Plan

• Breaks found

• Secure development reflection

• Security best practices

• In-class survey time!

 2

Break Review

• Lots of crashes!

• Incorrect implementation of spec

• Security properties not specifically stated

• Non-logic problems

 3

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Incorrect Implementation

• Admin password not checked

• Exit and set default delegator by non-admin

• Default delegator rights provided after creation

• Too many rights for the hub (e.g., read)

• Incorrect delegation checks

• No rollback on failure

• Rule permission checking

 4

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Incorrect Implementation

• Admin password not checked

• Exit and set default delegator by non-admin

• Default delegator rights provided after creation

• Too many rights for the hub (e.g., read)

• Incorrect delegation checks

• No rollback on failure

• Rule permission checking

 4

 Who do you
think this is?

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Un(der)specified

• Anyone login

• Leak of variable type information

• Circular delegation

• Multiple delegation paths

 5

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Circular Delegation

admin

Circular Delegation

admin

bob

alice

charlie

Circular Delegation

admin

bob

alice

charlie

Circular Delegation

hasPermission(var, principal, right):
if principal is "admin":

else:
return true

delegator = getDelegator(var, principal, right)
if there is a delegator:

else:
return hasPermission(var, delegator, right)

return false

Multiple Paths

admin

bob

alice

charlie

Multiple Paths

admin

bob

alice

charlie

Multiple Paths

admin

bob

alice

charlie

Multiple Paths

admin

bob

alice

charlie

DENIED

Non-logic problems

• Bugs in libraries used

• Integer overflow

• Code injection

 10

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

as principal admin password "admin" do
 create principal bob "bob"
 set count = 1
 set delegation count admin write -> bob
 return count

Integer
Overflow

as principal admin password "admin" do
 create principal bob "bob"
 set count = 1
 set delegation count admin write -> bob
 return count

as principal bob password “bob" do
 set count = 2147483647
 return x

Integer
Overflow

as principal admin password "admin" do
 create principal bob "bob"
 set count = 1
 set delegation count admin write -> bob
 return count

as principal bob password “bob" do
 set count = 2147483647
 return x

0b1111111111111111111111111111111

Integer
Overflow

as principal admin password "admin" do
 create principal bob "bob"
 set count = 1
 set delegation count admin write -> bob
 return count

as principal bob password “bob" do
 set count = 2147483647
 return x

0b1111111111111111111111111111111

as principal admin password "admin" do
 set count = count + 1
 if count < 0 then set door = 0
 return count

Integer
Overflow

as principal admin password "admin" do
 create principal bob "bob"
 set count = 1
 set delegation count admin write -> bob
 return count

as principal bob password “bob" do
 set count = 2147483647
 return x

0b1111111111111111111111111111111

as principal admin password "admin" do
 set count = count + 1
 if count < 0 then set door = 0
 return count

0b10000000000000000000000000000000 (-1)

Integer
Overflow

Code Injection
os.system(“<call compiled executable> " + port + " " +
config + " " + admin + " " + hub)

output = eval(<expr>)

Code Injection
os.system(“<call compiled executable> " + port + " " +
config + " " + admin + " " + hub)

./server 1024 config.json "; ls " "; rm -rf /"

output = eval(<expr>)

Code Injection
os.system(“<call compiled executable> " + port + " " +
config + " " + admin + " " + hub)

./server 1024 config.json "; ls " "; rm -rf /"

output = eval(<expr>)

set x = __import__(‘os’).system(‘rm -rf /’) + 1

Secure Development
Reflection

•What worked?

•What didn’t work?

•What would you do differently?

 13

Secure Development
Reflection

•What worked?

•What didn’t work?

•What would you do differently?

 14

Secure Development
Reflection

•What worked?

•What didn’t work?

•What would you do differently?

 15

Secure Development
Reflection

•What worked?

•What didn’t work?

•What would you do differently?

 16

Best Practices

• Limit security-specific code

• Graceful error handling (and logging)

• In-depth design/threat modeling

• Test cases are important!

• Code review!

 17

In-class Survey Time!

 18

• End-of-course survey
• link emailed to you

• Work on final design document

