CMSC388N:

Build It, Break It, Fix It: Competing
to Secure Software

Lecture 8 - Wrap Up

Prof. Daniel Votipka
Winter 2020

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Q

The Plan

Breaks found
Secure development reflection
Security best practices

In-class survey time!

Break Review

Lots of crashes!
Incorrect implementation of spec
Security properties not specifically stated

Non-logic problems

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Incorrect Implementation

Admin password not checked

Exit and set default delegator by non-admin
Default delegator rights provided after creation
Too many rights for the hub (e.g., read)
Incorrect delegation checks

No rollback on failure

Rule permission checking

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Incorrect Implementation

Admin password not checked

Exit and set default delegator by non-admin
Default delegator rights provided after creation
Too many rights for the hub (e.g., read)

Incorrect delegation checks

. Who do you

No rollback on failure |
| think this is? |

Rule permission checking

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Un(der)specified

Anyone login
Leak of variable type information
Circular delegation

Multiple delegation paths

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

Circular Delegation

admin

Circular Delegation

admin

bob charlie

alice

Circular Delegation

admin

/

bob «——— charlie

alice

Circular Delegation

hasPermission(var, principal, right):
if principal is "admin":
return
else:

delegator = getDelegator(var, principal, right)
if there is a delegator:

return hasPermission(var, delegator, right)
else:

return

Multiple Paths

admin

/ \

charlie

\ /

alice

Multiple Paths

admin

\

bob charlie

NS

alice

Multiple Paths

admin

\

bob charlie

NS

alice

Multiple Paths

admin

\

bob charlie

N\

alice DENIED

Non-logic problems

® Bugs in libraries used
® |nteger overflow

® Code injection

|0

https://www.cs.umd.edu/class/winter2020/cmsc388N/resources.html

as principal admin password "admin” do |ntege|‘
create principal bob "bob" O fl
set count = | vertiow
set delegation count admin write -> bob

return count
Rk

as principal admin password "admin” do |ntege|‘
create principal bob "bob" O fl
set count = | vertiow
set delegation count admin write -> bob

return count
Rk

as principal bob password “bob" do
set count = 2147483647

return X
ke

as principal admin password "admin” do |ntege|‘
create principal bob "bob" O fl
set count = | vertiow
set delegation count admin write -> bob

return count
Rk

as principal bob password “bob" do
set count = Ob1T111111111111111111111111111111

return X
ke

as principal admin password "admin” do |ntege|‘
create principal bob "bob" O fl
set count = | vertiow
set delegation count admin write -> bob

return count
Rk

as principal bob password “bob" do
set count = Ob1T111111111111111111111111111111

return X

as principal admin password "admin” do

set count = count + |
if count < 0 then set door =0

return count
kersk

as principal admin password "admin” do |ntege|‘
create principal bob "bob" O fl
set count = | vertiow
set delegation count admin write -> bob

return count
Rk

as principal bob password “bob" do
set count = Ob1T111111111111111111111111111111

return X

as principal admin password "admin” do

set count = 0b10000000000000000000000000000000 (-1)
if count < 0 then set door =0

return count
kersk

Code Injection

os.system(“<call compiled executable> " + port + " " +
config + " " + admin + " " + hub)

output = eval(<expr>)

Code Injection

os.system(“<call compiled executable> " + port + " " +
config + " " + admin + " " + hub)

Iserver 1024 config.json “;Is " "; rm -rf /*

output = eval(<expr>)

Code Injection

os.system(“<call compiled executable> " + port + " " +
config + " " + admin + " " + hub)

Iserver 1024 config.json “;Is " "; rm -rf /*

output = eval(<expr>)

set X = ___import__ (‘os’).system(‘rm -rf /") + |

Secure Development
Reflection

® VWhat worked?
® VWhat didn’t work?
® VWhat would you do differently?

13

Secure Development
Reflection

® VWhat worked!?

| 4

Secure Development
Reflection

® VWhat didn’t work?

|5

Secure Development
Reflection

® VWhat would you do differently?

|6

Best Practices

Limit security-specific code

Graceful error handling (and logging)
In-depth design/threat modeling
Test cases are important!

Code review!

|7

In-class Survey Time!

® End-of-course survey
® |ink emailed to you

® Work on final design document

|18

